Przejdź do treści

dr inż. Bogdan Balcerzak

Balcerzak Bogdan

Zakład Modelowania Matematycznego

Stanowisko: adiunkt badawczo-dydaktyczny
Pokój 156
Telefon +48 426313616
e-mail bogdan.balcerzak@p.lodz.pl

 

Treść (rozbudowana)
Autorstwo i redakcja książek oraz wydań specjalnych
  • Bogdan Balcerzak, Linear connections and secondary characteristic classes of Lie algebroids, Wydawnictwo Politechniki Łódzkiej, ISBN 9788366741287, doi: 10.34658/9788366741287, Monografia, 2021
  • Bogdan Balcerzak, Jan Kubarski, Geometria analityczna, Wydawnictwo Politechniki Łódzkiej, 2013
0
Publikacje w czasopismach naukowych
  • Bogdan Balcerzak, A Generalization of Secondary Characteristic Classes on Lie Pseudoalgebras. Symmetry. 2024; 16(1):24. (70 pkt.)
  • Bogdan Balcerzak, On Symmetric Brackets Induced by Linear Connections, Symmetry, 13 (6), art. 1003 (2021), 28 pp, JCR
  • Bogdan Balcerzak, On the Dirac Type Operators on Symmetric Tensors, Geometric Methods in Physics XXXVI. Trends in Mathematics., Springer Nature Switzerland AG (2019), 215-222
  • Bogdan Balcerzak, Chern-Simons forms for R-linear connections on Lie algebroids, International Journal of Mathematics, 29 (13) (2018), 1850094, 13 pp, JCR
  • Bogdan Balcerzak, On a structure of the Lie algebroid of a vector bundle, Bulletin de la Société des Sciences et des lettres de Łódź, Série: Recherches sur les déformations, 67 (2) (2017), 35-42
  • Bogdan Balcerzak, Antoni Pierzchalski, On Dirac operators on Lie algebroids, Differential Geom. Appl.,35 (2014), 242-254, JCR
  • Bogdan Balcerzak, Antoni Pierzchalski, Generalized gradients on Lie algebroids, Ann. Global Anal. Geom., 44 (3) (2013), 319-337, JCR
  • Bogdan Balcerzak, Antoni Pierzchalski, Derivatives of skew-symmetric and symmetric vector-valued tensors, In: Brasilian-Polish Topology Workshop (ed. A. K. M. Libardi, M. Golasiński, V. V. Sharko, S. Spież), in: Zbirnik Prac' Institutu Matematiki NAN Ukraini, 6 (6), Institute of Mathematics of NAS of Ukraine (2013), 35-55
  • Bogdan Balcerzak, Jan Kubarski, The Koszul homomorphism for a pair of Lie algebras in the theory of exotic characteristic classes of Lie algebroids, Topology Appl., 160 (12) (2013), 1384-1394, JCR
  • Bogdan Balcerzak, Jerzy Kalina, Antoni Pierzchalski, Weitzenböck Formula on Lie Algebroids, Bull. Pol. Acad. Sci. Math., 60 (2012), 165-176
  • Bogdan Balcerzak, The generalized Stokes theorem for R-linear forms on Lie algebroids, J. Appl. Anal, 18 (2012), 117-131
  • Bogdan Balcerzak, Jan Kubarski, Some exotic characteristic homomorphism for Lie algebroids, Topology Appl., 159 (2012), 1853 - 1862, JCR
  • Bogdan Balcerzak, Modular classes of Lie algebroids homomorphisms as Chern-Simons forms, Univ. Iagellonicae Acta Math., 47 (2009), 11-28
  • Bogdan Balcerzak, Jan Kubarski, Witold Walas, Endomorphisms of the Lie algebroids TMxg up to homotopy, Univ. Iagellonicae Acta Math., Fasciculus XL (2002), 215-223
  • Bogdan Balcerzak, Jan Kubarski, Witold Walas, Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid, Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publ., 54 (2001), 71-97
  • Bogdan Balcerzak, Classification of endomorphisms of some Lie algebroids up to homotopy and the fundamental group of a Lie algebroid, Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl. 59 (1999), 89-101
0