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Oldřich KOWALSKI, Generalized Symmetric Spaces . . . . . . . . . . . . . . . . 25
Jan KUBARSKI, Cohomology of flat connections in some Lie algebroids . . . . . 36
Vitaly KUSHNIREVITCH and Roman KADOBIANSKI, Configuration Spaces

and Algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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FOREWORD

This is the conference of the cycle initiated in 1998 with a meeting in Konopnica
(http://im0.p.lodz.pl/konferencje) and is organized as in 1999 in Krynica from 29.04.2001
to 5.05.2001 (Poland). Krynica is a well known resort situated in Beskidy Mountains.

The main purpose of the conference is to present an overwiew of principal directions of
research conducted in differential geometry, topology and analysis on manifolds and their appli-
cations, mainly (but not only) to Lie algebroids and related topics.

We would like to attract attention to:

• Riemannian, symplectic and Poisson manifolds,

• Lie groups, Lie groupoids, Lie algebroids and Lie-Rinehart algebras,

• foliations,

• characteristic classes.

The organizers of the conference are grateful to the following sponsors:

• Rector of the Technical University of �Lódź,

• Rector of the Jagiellonian University,

• Rector of the Stanis�law Staszic University of Mining and Metallurgy,

• State Committee for Scientific Research.
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12. KOLÁŘ, Ivan Functorial prolongations of principal bundles
and Lie algebroids
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16. KWAŚNIEWSKI, Andrzej K. Extended finite operator calculus — an example of
algebraization of analysis

17. MASLOV V. P.
and MISHCHENKO, Alexandr Geometry of Lagrangian manifolds in Thermodynamics

18. MISHCHENKO, Alexandr The Hirzebruch formula with nonflat coefficients

19. MORMUL, Piotr Geometry of Goursat flags and their singularities of
codimension 2

20. NAGY, Peter Tibor 2-divisible Bruck loops and exponential affine
symmetric spaces

21. NEGREIROS, Caio On (1,2)-symplectic structures on flag manifolds and
loop groups

22. NGUIFFO BOYOM, Michel KV-cohomology of contact manifolds

23. PIA̧TKOWSKI, Andrzej On prefoliations of the K-differential space

24. POPESCU, Paul Submodules of vector fields and algebroids

25. POPESCU, Paul
and POPESCU, Marcela Modular classes of anchored modules

26. PRYKARPATSKI, Anatoliy Ergodic and spectral properties of Lagrangian and
Hamiltonian dynamical systems and their adiabatic
perturbations

27. RYBICKI, Tomasz Infinite dimensional Lie theory by means of
the evolution mapping

28. SZENTHE, János On the set of geodesic vectors of a left-invariant metric

29. ZAJTZ, Andrzej On the stability of smooth dynamical systems and
diffeomorphisms

10



ABSTRACTS. PAPERS



THE STRUCTURE INVARIANTS OF A TRANSVERSE

G-STRUCTURE

IVAN BELKO

Abstract

The problems of equivalence and integrability of G-structure were considered by
many authors. Ch.Ehresmann, E.Cartan, S.Chern, V.Guillemin, D.Bernard and many
others studied this problems. The solution of the equivalence problem is based on
construction of structure invariants and cohomology classes correspondent. It is possible
to pick out two main approaches to construction of the structure tensor, wich are different
in their methods. We can call one of them geometrical, it uses the fundamental form
and the forsion of the connection on principal bundle of the frames. Another approach is
caracterised by use of differential operators and their Spencer cohomologies. The Ngo van
Que paper [1] is an example of this.

Our goal is the construction of a structure invariants for a kth order foliated
transversal structure on foliated manifold. Geometrical construction of such tensor for
the first- order transversal structure is given in R.Wolak paper [2].

The particularity of our approach is in using of foliated Lie algebgoid anddevel-
opment of Spencer cohomology method to transversal differential operators. For a foli-
ated manifold (B,F ) the transversal k-jets of local diffeomorfisms forms the foliated Lie
groupoid Πk(B). His Lie algebroid can be identified with the foliated Lie algebroid Ĵk(TB)
of transversal k-jets of foliated vector filds. In this Lie algebroid the partial plate connec-
tion τ : TF → Ĵk(TB) is defined by canonical way. The natural projection by Ker τ
determines the exact sequance of foliated vector bundles

0→ Ĵko (TB)→ Ĵk(TrB)→ TrB → 0.

The adjoint Lie algebra bundle Ĵko (TB) = Ĵko (TrB) plays an important role in con-
struction of a structure invariants.

A regular infinitesimal transversal kth order structure on a foliated manifold is a regular
section of the bundle associated to Lie groupoid Πk(B). Such a bundle is foliated and
permits to distinguish the foliated sections and structures.

A regular structure S defines a Lie subgroupoid Πk(S) in Πk(B). His Lie subalgebroid
is a vector bundle and can be considered as a system of linear differential equations

Ek(S) ⊂ Ĵk(TB).

On the base of the exacte sequance of vector bundles is built the transversal Spencer
operator

D̂ : Γ(ĴkTB)→ Γ(Ĵk−1TB ⊗ Tr∗B).

This operator defines a transversal cohomologycal sequance

δ : TrB ⊗ Sk+1(Tr∗B)⊗Λp(Tr∗B)→ TrB ⊗ Sk(Tr∗B)⊗ Λp+1(Tr∗B).

In the terms of these cohomologies is defined the type and the degree of a structure
S. For a connection in Lie algebroid Ĵk(TB) also in its Lie subalgebroid Ek(S) can be
defined the torsion. The class of transversal δ-cohmology correspondent is an obstacle to
the integrability of a foliated first-order G-structure S.

12



REFERENCES

[1 ] Ngo van QUE , Du prolongement des espaces fibrés et des structures infinitésimales,
Ann. Inst. Fourier (Grenoble), 17, 1 (1967), 157-223.

[2 ] R.A.Wolak, The structure tensor of a transverse G-structure on a foliated manifold,
Bollettino U.M.I. (7) 4-A (1990), 1-15.

Belarusian State Economics University
High Mathem. Department
26 Partizansky avenue, 220070 Minsk
BELARUS
e-mail: hmd@bseu.by, niipulm@bcsmi.minsk.by

13



HOMOLOGY OF COMPLETE SYMBOLS AND
NON-COMMUTATIVE GEOMETRY

MOULAY—TAHAR BENAMEUR and VICTOR NISTOR

Abstract

We identify the periodic cyclic homology of the algebra of complete symbols on a dif-
ferential grupoid G in terms of the cohomology of S∗ (G), the cosphere bundle of A (G),
where A (G) is the Lie algebroid of G. We also relate the Hochschild homology of this
algebra with the homogenous Poisson homology of the space A∗ (G) \ 0 ∼= S∗ (G)× (0,∞),
the dual of A (G) with the zero section removed. We use then these results to compute
the Hochschild and cyclic homologies of the algebras of complete symbols associated with
manifolds with corners, when the corresponding Lie algebroid is rationally isomorphic to
the tangent bundle.

MOULAY—TAHAR BENAMEUR
Pennsylvania State University and Institut Desargues
FRANCE
e-mail: benameur@desargues.univ—lyon1.fr

VICTOR NISTOR
Institut Desargues and Pennsylvania State University
University Park, PA 16802
e-mail: nistor@math.psu.edu
http://www.math.psu.edu/nistor/
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METRIC-POLYNOMIAL STRUCTURES FROM GRAVITATIONAL

LAGRANGIANS

ANDRZEJ BOROWIEC

Abstract

We study these metric-polynomial structures on manifold which arises as extremals of
the Palatini variational principle for some class of gravitational Lagrangians. They can be
described in the following way.

Let (M,g,Γ) be a n-dimensional (pseudo-) Riemannian manifold (M,g) equipped with
a symmetric (i.e. torsion-free) connection Γ. Define a (1, 1) tensor field concomitant

Sµ
ν ≡ Sµν (g,Γ)

.
= gµαR(αν)(Γ)

where R(αν)(Γ) denotes the symmetric part of the Ricci tensor of Γ. Consider a family of
scalar-valued concomitant

sk ≡ sk(g,Γ)
.
= trSk

the so-called Ricci scalar of order k, k = 1, · · · , n. For F being an arbitrary (differentiable)
real-valued function of n-variables one can define the corresponding Lagrangian of the Ricci
type

LF
.
=
√
g F (s1, · · · , sn)

Applying now the Palatini variational principle we arrive to the following results:

• the connection Γ is a Levi-Civita connection for some pseudo-Riemannian Einstein
metric h,

• the (1, 1) tensor field S satisfies a polynomial equation

wF (S) = 0

for some polynomial function wF (t) of constant coefficients,

• the metric h and polynomial structure S are compatible in a sense

h(SX,Y ) = h(X, SY )

for each pair of tangent vector fields (X,Y ) on M .

In particular, for f being a function of one variable the Lagrangian Lf =
√
g f(s1)

reconstructs the Einstein theory. For Lf =
√
g f(s2), besides the Einstein equation, one

gets a pseudo-Riemannian almost product structure (S2 = I) and/or an almost-complex
anti-Hermitian structure (S2 = −I). Some other examples will be also considered.

Institute of Theoretical Physics, Wroc?law University
pl. M. Borna 9, 50-204 WROC?LAW, Poland
e-mail: borow@ift.uni.wroc.pl
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APPLICATION OF LIE ALGEBROIDS ON FIELD THEORIES

JAIME CAMACARO

Abstract

We will show some examples of how the Lie algebroids can play an interesting role in
the study of gauge fields theories. Our talk will be based on four examples: Yang—Mills
theory, Topological sigma models, Poisson sigma models and open bosonic string, where
the Lie algebroid structure can be easily recognized and used to obtain an algebra which
take in consideration the gauge structure.

Jaime CAMACARO
Departamento de F́isica Teórica, Facultad de Ciencias
Universidad de Zaragoza
SPAIN
e-mail: jcama@wigner.unizar.es

Thanks: JRC acknowledges the financial support of the Agencia Española de Coop-
eración Internacional, under an AECI scholarship

Keywords: BV master equation, Gauge theories, Lie algebroids

16



ON A CLASS OF RICCI-RECURRENT MANIFOLDS

STANISTLAW EWERT-KRZEMIENIEWSKI

1 Introduction

Following Prvanivić ([P]), a semi-Riemannian manifold (M, g) will be called conformally
quasi-recurrent if its Weyl conformal curvature tensor C satisfies

∇ZC(X,Y, V,W ) = w(Z)C(X,Y, V,W )+
p(X)C(Z,Y, V,W ) + p(Y )C(X,Z, V,W )+
p(V )C(X,Y,Z,W ) + p(W )C(X, Y, V,Z)

(1.1.1)

for some 1-forms w, p. In condition considered originally by Prvanović w = 2p. However,
the last relation together with (1.1.1) implies that for the tensor C ( and in fact for any
generalized curvature tensor satisfying (1.1.1)) the second Bianchi identity must hold. The
aim of this note is to give a classification of conformally quasi-recurrent manifolds in the
sense of (1.1.1) which are simultaneously Ricci-recurrent, i. e. those the Ricci tensor S
satisfies

∇S = b⊗ S

for some 1-form b.
For a generalized curvature tensor B define �B by

g
�
�B (X,Y )V,W

�
= B (X,Y, V,W ) .

Then for a (0, k) tensor field T, k ≥ 1, and (0, 2) tensor field S we define the tensor fields
B · T and Q(S, T ) by the formulas

(B · T ) (X1, ...Xk;X,Y ) =

−T
�
�B (X,Y )X1,X2, ...,Xk

�
− ...− T

�
X1, ...,Xk−1, �B (X,Y )Xk

�
,

Q (S, T ) (X1, ...Xk;X, Y ) =
T ((X ∧S Y )X1,X2, ..., Xk) + ...+ T (X1, ...,Xk−1, (X ∧S Y )Xk) ,

where

(X ∧S Y )Z = S(Y, Z)X − S(X,Z)Y.

If the tensors R ·R and Q(S,R) are linearly dependent then the manifold is said to be
Ricci-generalized pseudosymmetric one ([D-D]). It is obvious that any semisymmetric as
well as any Ricci flat manifold is Ricci generalized pseudosymmetric. The manifold (M,g)
is Ricci-generalized pseudosymmetric iff the relation

R ·R = LQ(S,R) (1.1.2)

holds on the set {x ∈M,Q(S,R) (x) �= 0} , L being a function on M. Remark that the
relation (1.1.2) with L = 1 is of particular importance.

All manifolds under consideration are assumed to be smooth Hausdorff connected and
their metrics are not assumed to be definite.

17



2 Results

The first Lemma shows the difference between the 1-forms w and p :

Lemma 2.1. Suppose that at a point of the manifold M relation (1.1.1) holds. Then

prC
r
ijk = 0,

wrC
r
ijk = Cr

ijk,r,

Chijk,[lm] = ∆wlmChijk + phmClijk + pimChljk + pjmChilk + pkmChijl−
phlCmijk − pilChmjk − pjlChimk − pklChijm,

where ∆wlm = wl,m−wm,l, phm = ph,m−phpm and comma denotes covariant differentiation.

From the so called Patterson identity we have

Proposition 2.2. Let M be a 4-dimensional manifold with nowhere vanishing Weyl con-
formal curvature tensor C. If C satisfies (1.1.1), then M is conformally recurrent manifold,
precisely

∇C = (w + 2p)⊗ C.

In the sequel we shall assume the following hypothesis:

(H) M is a Ricci − recurrent manifold with nowhere vanishing Weyl conformal
curvature tensor and Ricci tensor.Moreover, theWeyl conformal curvature tensor
satisfies (1.1.1), p does not vanishes on a dense subset and the Ricci tensor
is not parallel.

By hypothesis, M admits a covector field b satisfying

Sij,k = bkSij, Sij,kl = (bk,l + bkbl)Sij, Sij,[kl] = ∆bklSij,

where ∆bkl = bk,l − bl,k.

Proposition 2.3. Let M (dimM > 3) be a Ricci-recurrent manifold with non-parallel
Ricci tensor and suppose that M admits a covector field p with properties:

i) p does not vanish on a dense subset of M ;
ii) prC

r
ijk = 0 on M.

Then the scalar curvature of M vanishes.

Lemma 2.4. Under hypothesis (H) relations

prS
r
h = 0,

db = 0

SmrC
r
ijk = 0

hold on M.

From the above Lemma it follows
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Corollary 2.5. Under hypothesis (H)

d(w+ 2p) = 0

holds on M .

Making use of the Corollary 2.5 one can deduce

Proposition 2.6. Assume that on a manifold (M, g) hypothesis (H) is satisfied.
If t = w − 2p = 0 on (M, g), then the manifold is conformally related to a non-

conformally flat conformal symmetric one (M, Exp (2f ) g). Conversely, if (M, g) is con-
formally related to a non-conformally flat conformally symmetric one, then w − 2p = 0
.

Proposition 2.7. Suppose that on a manifoldM , (dimM > 4), hypothesis (H) is satisfied.
If bl �= 0 at a point x ∈M, then on some neighbourhood of x there exists null (i.e. isotropic)
parallel vector field

vi = Exp[
−1

2
b] ki, ∂ib = bi,

related to the Ricci tensor by

Sij = ǫ kikj, |ǫ| = 1.

Define the tensor

Q(S, C)hiqtpj = ShpCjiqt − ShjCpiqt + SipChjqt − SijChpqt+
SqpChijt − SqjChipt + StpChiqj − StjChiqp.

It is well known, that if the scalar curvature vanishes and the rank of the Ricci tensor is
one, then

Q(S,C)hiqtpj = Q(S,R)hiqtpj

Lemma 2.8. Suppose that on a manifold M , (dimM > 4), hypothesis (H) is satisfied.
Then

trb
r ·Q(S,C)hiqtpj = 0.

Lemma 2.9. Suppose that on a manifold M , (dimM > 4), hypothesis (H) is satisfied and

trb
r = 0.

Then

(n− 4) brb
r = 0,

tlChijk + tjChikl + tkChilj = 0

and

tl
�
CtqlrC

r
jih −CtqjrC

r
lih

�
= 0
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Proposition 2.10. Suppose that on a manifold M, (dimM ≥ 4), hypothesis (H) is sat-
isfied. If at x ∈ M, trbr (x) �= 0 (hence bl(x) �= 0), then on some neighbourhood of x the
Riemann-Christoffel curvature tensor has the form

Rhijk = kikjShk − kikkShj + khkkSij − khkjSik,

where Sij = zrzsRrijs, z
rkr = 1.

As a consequence of Propositions 2.3, 2.7 and 2.10 we obtain

Corollary 2.11. Suppose that on a manifold M , (dimM > 4), hypothesis (H) and and
Q (S, C)hiqtpj = 0 hold. If bl �= 0 at a point x ∈ M, then on some neighbourhood of x the
metric g is of the Walker type. Moreover, M is semi-symmetric, i.e. R ·R = 0.

On the other hand, if Q (S,C)hiqtpj �= 0, then Lemma 2.9 results in

Corollary 2.12. Let on a manifold M , (dimM > 4), hypothesis (H) be satisfied. Suppose
moreover that Q (S,C)hiqtpj �= 0 and w − 2p �= 0. Then

(R ·R)hiqtpj = Q(S,R)hiqtpj.

Thus we conclude with the following

Theorem 2.13. A conformally quasi-recurrent and Ricci-recurrent manifold of dimension
n > 4 with nowhere vanishing Weyl conformal curvature tensor and Ricci tensor non-
conformally related to a conformally symmetric one must be necessary Ricci-generalized
pseudosymmetric manifold.
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ON INVARIANTS OF CONTINUOUS SUBGROUPS OF

THE GENERALIZED POINCARÉ GROUP P (1, 4)

VASYL FEDORCHUK

Abstract

For all continuous subgroups of the group P (1, 4) the invariants in the five-dimensional
Minkowski space M(1, 4) have been constructed. The invariants obtained are one-, two-,
three and four-dimensional.

On the base of the invariants obtained the nonsingular manifolds in the spacesM(1, 3)×
R andM(1, 4)×R invariant under nonconjugate subgroups of the group P (1, 4) have been
described.

The manifolds obtained have already been used for the symmetry reduction of some
important equations of the theoretical physics in the spaces M(1, 3)×R and M(1, 4)×R.
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INTEGRATING LIE ALGEBROIDS TO LIE GRUPOIDS

RUI LOJA FERNANDES

Abstract

I will report on some recent joint work with Marius Crainic (Utrecht), where we give
the obstructions for integrating Lie algebroids to Lie grupoids [2]. This puts into a new
perspective the work of Cattaneo and Felder [1] for the special case of Poisson manifolds
and the ”new” proof of Lie’s third theorem given by Duistermaat and Kolk in [3].
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JACOBI STRUCTURES REVISITED

JANUSZ GRABOWSKI

Abstract

A lifting procedure of first-order multi-differential operators is defined which maps the
Nijenhuis-Richardson into the Schouten bracket. This is a way of associating canonically a
Lie algebroid with any local Lie algebra structure on a 1—dimensional vector bundle.
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DIFFERENTIAL GEOMETRY STRUCTURE FOR FORMAL MAPS

ROMAN KADOBIANSKI and VITALY KUSHNIREVITCH

Abstract

Usually, differential geometry is formulated in the terms of smooth maps of smooth man-
ifolds. The conception proposed by I.M.Gel’fand and Yu.L.Daletskii is to replace smooth
manifolds by formal one. The formal manifold is the pair (A,M), where A is Lie algebra and

M is a module over it. Let Lk(X,Y ) be k-linear map from X to Y ; (X,Y ) =
∞�
k=1

Lk(X, Y ).

Formal map is defined as sequence a = (a1, a2, . . . ) ∈ (X, Y ), ak ∈ Lk(X,Y ). The natural
further step is to use formal maps instead of smooth ones. It turns out that Lie algebra
structure and module over it can be defined in the space of formal maps. So, differential
geometry of formal maps can be constructed. For example, such construction is useful in
nonlinear partial diferential equations theory and for different nontrivial dynamical systems
in physics.
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GENERALIZED SYMMETRIC SPACES

OLDŘICH KOWALSKI

Abstract

1 Introduction

Let (M,g) be a Riemannian symmetric space. Then for any x ∈M , there exists an isometry
sx :M −→M such that x is an isolated fixed point of sx and sx

2 = Id. Then we have

(sx)∗x = (−Id)x

vx �→ −vx

Now we consider a generalization of the notion of Riemannian symmetric spaces: Let
(M, g) be a Riemannian manifold. We consider only the following condition.

∀x ∈M,∃sx :M −→M : isometry s.t. x : isolated fixed point

Such an isometry sx is called a generalized symmetry. And a set of generalized symme-
tries {sx | x ∈M} is called a (Riemannian) s-structure.

Lemma 1.1. If {sx | x ∈M} on (M,g) is an s-structure, then the closure Cl({sx}) of the
group generated by all sx, x ∈ M , in the Lie group I(M,g) (the full isometry group) acts
transitively on (M, g).

Theorem 1.1 (Brickel). Each (M,g) admitting an s-structure is homogeneous and thus
real analytic.

Here, “homogeneous” means that ∀x, y ∈ M , ∃ϕ : M −→ M : isometry, such that
ϕ(x) = y.

The proof is elementary and interesting, but not short.

Affine case analogue:

Theorem 1.2 (Ledger). Let (M,∇) be an affine manifold (with an affine connection ∇).
Let there exists a family {sx | x ∈M} of generalized affine symmetries. If the map x �→ sx
is smooth, then (M,∇) is a homogeneous affine manifold.

In general, it is an open problem whether (M,∇) is still homogeneous if the map x �→ sx
is not smooth. (Elementary but interesting question).

Regularity condition:

sx ◦ sy = sz ◦ sx z = sx(y) ∀x, y ∈ (M, g)

This condition is satisfied for each symmetric space and its standard symmetries sx!

Example. In the case R2, we can illustrate the above condition by a picture. (In general,
it is not easy to check).
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�
x

�

ū = sx(u)

� u

�z = sx(y)

� y

�
u′′ = sx(u′)

�

u′ = sy(u)�
�
�
�
�
�
�
�
�
�
��

���
���

���
���

�
�
�
�
�
�
�
�
�
�
��

Definition 1. Tangent symmetry field S of {sx | x ∈M}

Sx := (sx)∗x ∀x ∈ (M,g)

Lemma 1.2. The regularity condition for {sx | x ∈ M} is satisfied if and only if S is
invariant with respect to each sx:

(sx)∗y ◦ Sy = Ssx(y) ◦ (sx)∗y ∀x, y ∈ (M, g)

In the case of symmetric spaces,

Sy = (−Id)y, Ssx(y) = (−Id)sx(y),

and the regularity follows.

An s-structure {sx | x ∈M} which satisfies the regularity condition is called a regular
s-structure. (It is a very strong condition).

Example of regular s-structures:
M = R

2, sx = rotation arround x with constant angle α.
It is obvious from Lemma 2 that this s-structure is regular because each tangent symmetry
Sx is also a rotation. (This direct proof of regularity is a good excercise for high school
students).

�
x
�� �

y
��

��
��

��
��� ���

Proposition 1.1. If {sx | x ∈M} is a regular s-structure on (M,g), then the tangent field
is analytic and the map (x, y) �→ sx(y) is also analytic.

Proposition 1.2. If (M,g) admits an s-structure (resp. regular s-structure) {sx | x ∈M},
then (M,g) admits an s-structure (resp. regular s-structure) {s′x | x ∈M} of finite order.
It means that ∃k ∈ Z, k ≥ 2 s.t.

(s′x)
k = Id for ∀x ∈M.
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Remark: It it not true for the affine case.
If there exists a regular s-structure {sx | x ∈ M} of order k on (M,g), then (M,g) is

called a k-symmetric space. (Without regularity, a pointwise k-symmetric space).
Thus if there exists a regular s-structure on (M,g), then for some ∃k, (M,g) is a k-

symmetric space.

Regularity condition is really an additional condition but in a nontrivial sense:
1) (R.A. Marinosci [4]) If dim(M,g) ≤ 5, then every (M,g) admitting an s-structure also
admit a regular s-structure.
2) S9 = SU(5)/SU(4)
S9 is a geodesic sphere in (P 5, Fubini-Study metric) with the induced metric, which is not
the standard sphere. This S9 admits an s-structure of order 4 but no regular s-structure
at all.

There are finitely many other examples S13, S17, · · · .

In the following, we always assume regularity!
(M,g) is called a generalized symmetric space if it admits a regular s-structure.
(M,g) is called of order k (k ≥ 2) if it admits a regular s-structure of order k but not

of any lower order l < k.

2 Examples and Classifications

Dimension n = 3

G =

������

e−z 0 x
0 ez y
0 0 1

������
(solvable)

G ∼= R
3(x, y, z)

Special invariant metrics on G:

g = e2zdx2 + e−2zdy2 + λ2dz2

where λ > 0 is an arbitrary parameter.
Symmetry of order 4 at the origin:

x′ = −y, y′ = x, z′ = −z

(See B-Spaces by Takahashi).
Thses are all generalized symmetric spaces of dimension n = 3 which are not locally

symmetric!

One kind of symmetric spaces:
G: compact connected Lie group

Consider the coset space (G×G)/∆(G×G), where ∆(G×G) is the diagonal of G×G,
i.e., ∆(G×G) = {(g, g) | g ∈ G}. G×G/∆(G×G) is diffeomorphic to G via the map

(g1, g2) �→ g1g2
−1.

G×G acts on G by

(g1, g2)(y) = g1yg2
−1.

27



The isotropy group at the origin e ∈ G is ∆(G×G).
Now define σ : G×G −→ G×G by

σ(g1, g2) = (g2, g2),

which is an involutive automorphism. The fixed point set is (G × G)σ = ∆(G × G). σ
induces a map s : G −→ G defined by

s(g) = g−1 for ∀g ∈ G.

Take a bi-invariant Riemannian metric Φ on G. Then Φ is invariant with respect to the
action of G×G on G. It is also invariant with respect to s : G −→ G.

Then (G,Φ) is a Riemannian symmetric space in which the symmetry with respect to
e is just the map

s : g �→ g−1.

The symmetry sx at general x ∈ G is given by

g �→ xg−1x.

Generalization(Ledger + Obata)

Gk+1/∆Gk+1 ∼= Gk

via π : Gk+1 −→ Gk, where

π(g1, · · · , gk+1) = (g1gk+1
−1, · · · , gkgk+1−1).

Further define σ : Gk+1 −→ Gk+1 by

σ(g1, · · · , gk+1) = (gk+1, g1, · · · , gk).

Then σ is an automorphism of order k + 1. It induces a map s : Gk −→ Gk defined by

s(g1, · · · , gk) = (gk
−1, g1gk

−1, · · · , gk−1gk−1).

Let Φ be a bi-invariant metric on G. Then Φ generates a bi-invariant metric Φk+1 on Gk+1

such that

(Gk+1,Φk+1) ∼= (G,Φ)× · · · × (G,Φ)� 	
 �
k+1

.

Then Φk+1 induces aGk+1-invariant metric Φ[k] onGk. The Riemannian manifold (Gk,Φ[k])
is a (k + 1)-symmetric space. (Here Φ[k] �= Φk). (Gk,Φ[k]) is not a symmetric space.

Proposition 2.1. Let
a) G be compact and simple,
b) Φ = −(Killing form).
Assume that τ : Gk+1 −→ I(Gk,Φ[k]) has as image the full identity component of I(Gk,Φ[k]).
Then (Gk,Φ[k]) is not l-symmetric for any l < k + 1.
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Example. If we choose G = SO(3), Φ = −(Killing form), then the assumption of the
Proposition 3 can be shown to be satisfied. Hence we get

Theorem 2.1. For each k ≥ 2, there is a generalized symmetric space (M, g) of order k,
i.e., k-symmetric but not l-symmetric for ∀l < k. M = G/K with semisimple group G.

Classifications:
1) All generalized symmetric spaces of order 3 with semisimple (or reductive group) G by
A. Gray [1].
2) All compact generalized symmetric spaces of order 4 by J.A. Jiménez [2].

An example of generalized symmetric Riemannian spaces of solvable type:

G =

�����������

eu0 0 · · · 0 x0
0 eu1 · · · 0 x1
...

...
. . .

...
...

0 0 · · · eun xn
0 0 · · · 0 1

�����������

∼= R
2n+1

u0, u1, · · · , un, x1, · · · , xn are variables, where

u0 + u1 + · · · un = 0.

We define a Riemannian metric

g =
n�

i=0

e−2ui(dxi)
2 + a

n�

α,β=1

duαduβ , a > 0.

Then
1) (G, g) is generalized symmetric of order 2n+ 2 (even).
2) The group of all isometries preserving the origin is finite and isometric to

(Z2)
n+1 × Sn+1

where Sn+1 is the permutation group pf n + 1 elements. Thus, the group is of order
2n+1(n+ 1)!.

Remark. There are also examples of generalized symmetric spaces of solvable type and odd
order. For any order k, there exists an example of solvable type. This is the main obstacle to
the classification of all generalized symmetric spaces (in contrary to the ordinary symmetric
spaces, where the classification is known).

3 Canonical connection

Let (M, g) be a Riemannian manifold and {sx | x ∈M} a regular s-structure on M . Then
there is a unique affine conncetion �∇ on M such that
(i) �∇ is invariant under all sx,
(ii) �∇S = 0 (where S is the tangent symmetry field defined by Sx := (sx)∗x x ∈M).

In the explicit form, �∇ is given by the Ledger’s formula

�∇XY = ∇XY − (∇(I−S)−1XS)(S−1Y ) for X,Y ∈ X(M)
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where ∇ denotes the Riemannian connection of (M,g).
Note that since S has no engenvalue equal to 1 (sx has only isolated fixed point),

(I − S)−1 exists.

�∇ is always complete.
Each tensor field P on M which is invariant by all sx is parallel with respect to �∇, i.e.,
�∇P = 0. Therefore, the torsion tensor field �T and the curvature tensor field �R of �∇ are
parallel:

�∇�T = 0, �∇ �R = 0.(∗)

Remark that if M is a symmetric space with standard {sx}, �∇ = ∇.
Because of (∗), we have

�∇ �R = �∇�T = �∇S = �∇g = 0.

Therefore we can linearize Riemannian manifolds ((M,g), {sx | x ∈M}) with specific regu-
lar s-structure. We get algebraic objects (V,<,>,S, �R, �T ), where S is a nonsingular linear
isometry without fixed directions and �R, �T are tensors of types (1, 3), (1, 2) respectively
satisfying standard algebraic identities for the curvature and torsion. These objects are
called infinitesimal models.

We have one-to-one correspondence between the set of simply connected Riemannian
manifolds with regular s-structures and the set of infinitesimal models. Using the methods
of linear algebra, we can classify regular s-structures and hence also generalized symmetric
spaces (at least locally and for small dimensions).

If (M,g) is a generalized symmetric space and simply connected, then we have the de
Rham decomposition

M =M1 × · · · ×Mr,

here if {sx} is an s-tructure of order k of M , each Mi is a generalized symmetric space of
order ki and ki divides k (i = 1, · · · , r).

4 Theory of eigenvalues for generalized symmetric spaces

This theory is useful for the classification procedure of generalized symmetric spaces.
Let {sx | x ∈ M} be a regular s-structure. Then Sx : TxM −→ TxM has the same

eigenvalues for ∀x ∈ M . Sx is real, orthogonal, without fixed vectors. Hence its system
(θ1, · · · , θn) of eigenvalues must satisfy

|θi| = 1, θi �= 1 for i = 1, · · · , n

and

(θ̄1, · · · , θ̄n) = (θ1, · · · , θn) up to numeration.

Every n-tuple with these properties is called an admissible n-tuple. Denote by Pn the set
of all admissible n-tuples.

We now make Pn a partially ordered set. We introduce characteristic equations
(of two classes):
a) XiXj = 1, i, j = 1, · · · , n,
b) XiXj = Xk, i �= j �= k �= i, i, j, k = 1, · · · , n.
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Each element (θ1, · · · , θn) ∈ Pn satisfies at least one equation of type a) (n ≥ 2). (If the
eigenvalues of Sx on (M,g) do not satisfy any equation of type b), then (M,g) is locally
symmetric.)

We introduce the partial ordering ”�” on Pn as follows: (θi) � (θ′i) if all characteristic
equations satisfied by (θi) are also satisfied by (θ′i) after possible re-numeration.

(Here (θi) � (θ′i) and (θ′i) � (θi) is possible, e.g., if (θ′i) is a renumeration of (θi).)

Proposition 4.1. Let {sx | x ∈ M} be a regular s-structure on (M,g) with the corre-
sponding eigenvalues (θi). Let (θ′i) ∈ Pn and (θ′i) � (θi). Then there is a regular s-structure
{s′x | x ∈M} on (M,g) with the eigenvalues (θ′i).

Theorem 4.1. In the partially ordered set (Pn,�), there is only a finite set of maximal
elements, which are all of finite order.

�

� �

�
�
�

�
�
�

�
��

�
��

�
��

�
��

�

� �

�
�
�

�
�
�

�
��

�
��

�
��

�
��

←− maximal elements

This set will be denoted by Dn.

The same procedure works without regularity condition.
We only have to add new type of characteristic equations

c) XiXjXk = Xl.
The corresponding set D′n of maximal elements contains Dn, but it is bigger.

Now we go back to the regular s-structures. We have the following theorem.

Theorem 4.2. For every dimension n ≥ 2, there is a finite set Dn = {(θα1 , · · · , θαn) | α =
1, · · · , r(n)} with the following properties:
a) all elements of Dn are of finite order,
b) if (M, g) admits a regular s-structure, then it also admits a regular s-structure with the
system of eigenvalues contained in Dn.

(Warning: the same (M,g) can admit regular s-structures corresponding to more ele-
ments of Dn).

This theorem is important for the classification of generalized symmetric spaces in low
dimensions.
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4.1 Basic systems of eigenvalues in small dimensions

D2 : (−1,−1) (symmetric space)
D3 : (−1,−1,−1) (symmetric space)

(i,−i,−1) (4-symmetric space of dimension 3)
D4 : (−1,−1,−1,−1) (symmetric space)

(θ, θ, θ2, θ2), θ = e
2πi
3 (∃ new example of order 3)

(i,−i,−1,−1) (direct product or space of order 3)

(θ, θ2, θ3, θ4), θ = e
2πi
5 (only space of order 3)

D5 : (−1,−1,−1,−1,−1) (symmetric space)
(i,−i,−1,−1,−1) (direct product)
(i,−i, i,−i,−1) (∃ new examples of order 4)

(θ, θ2, θ3, θ4, θ5), θ = e
2πi
6 (∃ new examples of order 6)

(e
πi
4 , e−

πi
4 , i,−i,−1) (no additional examples)

An estimate: Let k(n) denote the maximum of all orders of the elements in Dn. Then

k(n) ≤ 5
n
4 n : even,

k(n) ≤ 2 · 5n−14 n : odd.

We see that k(4) ≤ 5 (exact estimate) and k(5) ≤ 10 (not exact, in fact k(5) ≤ 8). It is a
natural question whether there is an estimate to improve the above inequality or not.

4.2 Classification in dimension n = 4

All generalized symmetric spaces of dimension 4 are symmetric spaces or spaces of order 3
isometric to one of the following forms:

M =

������

a b u
c d v
0 0 1

������

������

cos t − sin t 0
sin t cos t 0
0 0 1

������

where det

����
a b
c d

���� = 1

M =




group of all equiaffine trans-
formations of the Euclidean
plane



�

subgroup of all rotations ar-
round the origin

�

M ∼= R4[x, y, u, v] and then

g = (−x+
�
x2 + y2 + 1)du2 + (x+

�
x2 + y2 + 1)dv2

−2ydudv+ λ2
�
(1 + y2)dx2 + (1+ x2)dy2 − 2xydxdy

1 + x2 + y2

�

where λ > 0 is a parameter.
A typical symmetry of order 3 at the origin is given by

u′ = cos
2π

3
· u− sin

2π

3
· v,

v′ = sin
4π

3
· u+ cos

4π

3
· v,

x′ = cos
2π

3
· x− sin

2π

3
· y,

y′ = sin
4π

3
· x+ cos

4π

3
· y.
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4.3 Classification in dimension n = 5

A generalized symmetric space of dimension 5 is locally isometric to one of the followings:

• a symmetric space,

• 11 families of order 4,

• 1 family of order 6.

4.3.1 Examples of order 4 — selection:

Example 1. Nilpotent matrix group

��������

1 0 0 x
0 1 0 y
u v 1 z
0 0 0 1

��������
∼= R

5[x, y, z, u, v],

g = dx2 + dy2 + du2 + dv2 + λ2(xdu− ydv + dz)2,

where λ > 0 arbitrary parameter.

Typical symmetry of order 4 at the origin is given by

x′ = −y, y′ = x, z′ = −z, u′ = −v, v′ = u.

Example 2. M = SO(3, )/SO(2) with the invariant Riemannian metrics depending on 3
real parameters. The symmetry at the origin of M is as follows

������

a1 a2 a3
b1 b2 b3
c1 c2 c3

������
�→

������

b̄2 −b̄1 b̄3
−ā2 ā1 −ā3
c̄2 −c̄1 c̄3

������
.

Example 3. Solvable complex matrix group

M =

������

eλt 0 z
0 e−λt w
0 0 1

������
∼= R

2[z,w]× [t]

where z,w: complex variables, t: real variable, λ: complex parameter, λ �= 0.
A family of invariant metrics g such that (M,g) is irreducible (i.e., not a product of

Riemannian manifolds).
Symmetry at the origin is given by

z′ = iw, w′ = iz, t′ = −t.

Example 4. M = SO(3)× SO(3)/SO(2)

SO(2) =







������

cos t − sin t 0
sin t cos t 0
0 0 1

������
,

������

cos t sin t 0
− sin t cos t 0

0 0 1

������


 , t ∈ R
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Symmetry of order 4 at the origin is induced by the following automorphisms of the group
GL(3, )×GL(3, ):




������

a1 a2 a3
b1 b2 b3
c1 c2 c3

������
,

������

ã1 ã2 ã3
b̃1 b̃2 b̃3
c̃1 c̃2 c̃3

������


 �→




������

ã1 −ã2 −ã3
−b̃1 b̃2 b̃3
−c̃1 c̃2 c̃3

������
,

������

a1 −a2 a3
−b1 b2 −b3
c1 −c2 c3

������




Example 5. M = SU(3)/SU(2) ∼= S5 ((M,g) is not a standard sphere). For a special
choice of the invariant metric, S5 has the metric induced from the Fubini—Study metric in
P 3 as a geodesic sphere in P 3.

4.3.2 A family of spaces of order 6

M =

��������

e−(u+v) 0 0 x
0 eu 0 y
0 0 ev z
0 0 0 1

��������
∼= R

5[x, y, z, u, v] (A solvable Lie group)

We consider invarinat Riemannian metrics depending on two real parameters a > 0, b > 0:

g = a2(du2 + dv2 + dudv) + (b2 + 1)(e2(u+v)dx2 + e−2udy2 + e−2vdz2)

+(b2 − 2)(evdxdy + eudxdz − e−(u+v)dydz).

The typical symmetry at the origin is given by

x′ = y, y′ = −z, z′ = x, u′ = v, v′ = −(u+ v).

This symmetry is of order 6!
The isotropy group of isometries at the origin consists of 8 elements.

Remark. Let (M,g) be not necessarily homogeneous in general. Let there exist a point
p ∈M such that p is an isolated fixed point for some isometry ∃sp : M −→M . Then there
exists an isometry s′p :M −→M of finite order k:

k ≤ (4 + s(p))
dimM+1

2

where s(p) denotes the Singer number defined as follows: Put

G(l)p = {A ∈ Aut(TpM) | A(gp) = gp, A(Rp) = Rp, · · · , A((∇(l)R)p) = (∇(l)R)p},

l = 0, 1, 2, · · · . Then there exists the minimal k ≥ 0 such that the sequence {G(l)p } stabilizes,
i.e.,

G(0)p ⊃ G(1)p ⊃ · · · ⊃ G(k)p = G(k+1)p = · · ·

Such a number k = s(p) is called the Singer number.
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Abstract

We study flat connections in spherical Lie algebroids (over oriented compact man-
ifolds) defined everywhere but a finite number of points. Under some assumptions
concerning dimensions with any such isolated singularity we join a real number called
an index. For R-spherical Lie algebroids, this index cannot be an integer. We prove the
index theorem saying that the index sum is independent of the choice of a connection.
Multiplying this index sum by the orientation class of M, we get the Euler class of this
Lie algebroid. Some integral formulae for indexes are given.

1 Introduction

Lie algebroids arise in many subjects of differential geometry and play a role analogous to
that of Lie algebras for Lie groups (i.e. compose an infinitesimal invariant). For example,
they arise in the theory of differential groupoids, principal bundles and vector bundles [ P],
[ L2], [ K-S], [ M1], [ K2], [ N1], [ N2], transversally complete and transversally paralleliz-
able foliations [ MO1], [ MO2], nonclosed Lie subgroups [ MO2], [ K4], Poisson manifolds
[ C-D-W], [ D-S], [ G1], [ V1], [ V2], [ Ko1], [ Ko2] and others (see the survey article by
K.Mackenzie [M2], and also see J.Kubarski [ K6]). Connections — splittings of the Atiyah
sequences of Lie algebroids (in regular case) — correspond in the majority of the above
categories to well known geometric objects such as distributions or differential systems.

On the ground of Lie algebroids, we observe an interesting analogy of the theory of
sphere bundles, namely, it turns out that, in some sense, the roles of flat connections for Lie
algebroids and of cross-sections for sphere bundles correspond mutually. The common ideas
are the index at a singularity and the theorem of Euler-Poincaré-Hopf type as well as some
technique methods. This analogy was first noticed for Lie algebroids with 1-dimensional
isotropy Lie algebras in the geometry of regular Poisson manifolds over R-Lie foliations
[ K8]. The main purpose of our work is to research this phenomenon in the domain of
transitive Lie algebroids without a restriction of the dimensions of isotropy Lie algebras.

This paper is based on [ K7] and [ K10]. In [ K7] the idea of the fibre integral is adopted
to regular Lie algebroids: the integration operator over the adjoint bundle of Lie algebras is
defined, the class of Lie algebroids for which this operator commutes with differentials (giv-
ing then a homomorphism on cohomology) is characterized and many families of examples
coming from principal bundles, TC-foliations and Poisson manifolds are given. Paper [ K10]
deals with a subclass of the above class which contains so-called s-Lie algebroids, defined
as the transitive ones with spherical isotropy Lie algebras i.e. cohomologically looking like
a sphere (Lie algebras R, sk (3,R), sl (2,R) are examples). For an s-Lie algebroid there is
constructed a long exact sequence of cohomology (Gysin types) and the Euler class.

In this paper the cohomology theory of flat connections in s-Lie algebroids is developed.
If the dimension of the base manifold is equal to n + 1, where n is the dimension of the
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isotropy Lie algebras, the index at a isolated singularity is defined. A version of the Euler-
Poincaré-Hopf theorem joining the sum of indexes to the Euler class is given. In the
context of Lie algebroids coming from S1 or Spin (3) principal bundles (over M2 or M4,
respectively) the above theorem generalizes the classical E-P-H theorem since cross-sections
of these bundles determine flat connections (but not every connection determines a cross-
section). In the end, some integral formulae for indexes are obtained. We add that in
general the index can not be an integer and the sum of indexes has nothing in common
with the Euler-Poincaré characteristic of the Lie algebroid understood as an alternative
sum of the dimensions of the cohomology groups of this Lie algebroid.

2 Fibre integral and Gysin sequence

By a Lie algebroid on a manifold M [ P] we mean a system A = (A,
[[·, ·]], γ) consisting of a vector bundle A onM and mappings [[·, ·]] : SecA×SecA→ SecA,

γ : A→ TM, such that (1) (SecA, [[·, ·]]) is an R-Lie algebra, (2) γ, called the anchor, is a
homomorphism of vector bundles, (3) Secγ : SecA→ X(M), ξ �→ γ ◦ξ, is a homomorphism
of Lie algebras, (4) [[ξ, f · η]] = f · [[ξ, η]] + (γ ◦ ξ)(f) · η, ξ, η ∈ SecA, f ∈ C∞(M). The
properties make the space of global cross-sections SecA a Lie-Rinehart algebra [called also a
Lie module, a Lie pseudoalgebra, etc, according to particular authors] over the commutative
algebra C∞ (M) [ H1]. A Lie algebroid A is said to be transitive if γ is an epimorphism
of vector bundles, and regular if γ is of constant rank. When the isotropy Lie algebras g|x
of A are isomorphic to a given Lie algebra g then A is shortly called a g-Lie algebroid. In
the sequel, the notions and the notations from [ P], [ M1], [ K3], [ M-R], [ K1], [ M1] are
adopted. Among them, the adjoint bundle of Lie algebras ggg := Kerγ, the Atiyah sequence
0 → ggg → A

γ−→ F → 0, the notions of representations, connections, homomorphisms
(strong or non-strong) of Lie algebroids as well as the exterior derivative dA and the pullback
of A-differential forms, are used.

In [ K7] we introduce the notion of a vertically oriented Lie algebroid as a pair (A, ε)
consisting of a regular Lie agebroid A and a non-singular cross-section ε of

�n ggg, n =
rankggg. By a homomorphism of vertically oriented Lie algebroids (A, ε)→ (A′, ε′) , assuming
rankggg = rankggg′ = n, we mean a non-strong, in general, homomorphism T : A → A′,
inducing t : M → M ′, of Lie algebroids, such that (

�n T+) (εx) = ε′tx, x ∈ M (where
T+ : ggg → ggg′ is the restriction of T to adjoint bundles). We write (T, t) : (A, ε)→ (A′, ε′).

An operator of the fibre integral �
�
A

in a vertically oriented Lie algebroid (A, ε) is intro-
duced. For a transitive Lie algebroid (the case considered in this work), the fibre integral
�
�
A

: Ω⋆
A (M) → Ω⋆−n (M) is defined in the following way: �

�
A
Φ = 0 if degΦ < n and

γ⋆
�
�
�
A
Φ
�
= (−1)nk ιεΦ if degΦ = n+ k, k � 0. We recall that ΩA (M) denotes the space of

real A-differential forms, i.e. the space Sec
�
A⋆ of cross-sections of the bundle

�
A⋆. The

following are basic properties (a) �
�
A
◦γ⋆ = 0, (b) �

�
A
γ⋆ψ∧Φ = ψ∧ �

�
A
Φ for arbitrary forms

ψ ∈ Ω(M) and Φ ∈ ΩA (M) , (c) �
�
A

is an epimorphism [ K7].
The operator �

�
A

commutes with the exterior derivatives dA and dM if and only if (a1)
the isotropy Lie algebras ggg�x are unimodular, and (a2) the cross-section ε is invariant with
respect to the adjoint representation of A on

�n ggg. The transitive Lie algebroid A fulfilling
properties (a1) and (a2) above is shortly called a TUIO-Lie algebroid. In [ K7] and [ K9]
many examples can be found. The paper [ K10] deal with the subcategory of TUIO-Lie
algebroids for which isotropy Lie algebras g are spherical, i.e. satisfy conditions Hk (g) = R

for k = 0, dimg, and Hk (g) = 0 for 1 ≤ k ≤ dim g − 1. Such Lie algebroids are called
briefly s-Lie algebroids. Many examples for principal bundles and TC-foliations are given.
For an s-Lie algebroid (A, ε) , there is constructed a long exact sequence of cohomology
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(Gysin sequence)

· · · −→ Hp (M)
Dp

−→ Hp+n+1 (M )
γ#−→ Hp+n+1

A (M)
�
� #
A−→ Hp+1 (M)

Dp+1

−→ · · · (2.2.1)

The class χ(A,ε) := D0 (1) ∈ Hn+1 (M) is called the Euler class of (A, ε) and χ(A,ε) = [Ψ]
where γ∗Ψ = dAΦ for �

�
A
Φ = −1. The equality D (α) = α ∧ χ(A,ε) holds. The Euler class

χ(A,ε) can be computed via the Chern-Weil homomorphism of A (introduced in [ K3]).

3 Difference class

By a connection in a transitive Lie algebroid A we mean a splitting λ : TM → A of the
Atiyah sequence 0 → ggg →֒ A

γ→ TM → 0, i.e. a homomorphism of vector bundles such
that γ ◦ λ = id. If λ is a homomorphism of Lie algebroids λ ◦ [X,Y ] = [[λ ◦ X, λ ◦ Y ]],
X, Y ∈ X (M) , then λ is called flat. In this situation, the pullback of differential forms λ⋆ :
ΩA (M)→ Ω (M) commutes with differentials λ⋆ ◦ dA = dM ◦ λ⋆, giving – on cohomology
– a homomorphism of algebras λ# : HA (M) → H (M) . Let λ be a flat connection in an
s-Lie algebroid (A, ε). According to the exactness of sequence (2.2.1), [ K7, Prop. 4.2.1
(b)] and [ K10, Cor. 3.4] we can easily show that

HA (M) = ker �
� #

A

 
kerλ#, (3.3.1)

�
� #

A

!!!! kerλ
# : kerλ#

∼=−→ H (M) . (3.3.2)

By the above, there exists a uniquely determined cohomology class

ωλ ∈ ker λ#n ⊂ Hn
A (M)

such that �
�#
A
ωλ = 1 ∈ H0 (M). ωλ depends on the mapping λ# : HA (M) → H (M) only.

The class ωλ is called the cohomology class of a flat connection λ.
For two flat connections λ, σ : TM → A, their cohomology classes ωλ, ωσ ∈ Hn

A (M)

satisfy the equality �
�#
A

(ωλ − ωσ) = 0. Thanks to the exactness of sequence (2.2.1) there
exists a cohomology class [λ, σ] ∈ Hn (M) such that

ωλ − ωσ = γ# [λ, σ] .

Definition 3.1. The class [λ, σ] is called the difference class of flat connections λ and σ
in the s-Lie algebroid (A, ε) .

Proposition 3.2. For flat connections λ and σ in an s-Lie algebroid (A, ε) , we have λ#α−
σ#α = −

�
�
� #
A
α
�
∧ [λ, σ] , α ∈ HA (M) .

Since γ# is a monomorphism for a flat Lie algebroid A, we obtain

Corollary 3.3. Let λ and σ be two flat connections in an s-Lie algebroid A. Then the
following conditions are equivalent: (a) λ# = σ#, (b) ωλ = ωσ, (c) [λ, σ] = 0. If Hn (M) =
0, then, clearly, Hn (M) ∋ [λ, σ] = 0, therefore λ# = σ#.

Lemma 3.4. Let (A, ε) be an arbitrary s-Lie algebroid with rankggg = n. For a represen-
tative Ψ of the Euler class χ(A,ε) and an n-form Φ ∈ Ωn

A (M) such that �
�
A
Φ = −1 and

dAΦ = γ⋆Ψ, for any open subset U ⊂ M and two flat connections λ, σ : TU → A|U , the
following equalities hold:
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(1) ωσ = [γ⋆|Uσ
⋆
�
Φ|U
�
− Φ|U ],

(2) [λ, σ] = [λ⋆Φ|U − σ⋆Φ|U ].

Theorem 3.5 (The naturality of the difference class). Let (T, t) : (A, ε) → (A′, ε′)
be a homomorphism of s-Lie algebroids such that Tx : A�x → A′�tx, x ∈M, are isomorphisms.

(a) Assume that σ, σ′ are flat connections in A and A′, respectively, such that T◦σ = σ′◦t∗.
Then T#ωσ′ = ωσ .

(b) For any two pairs of such flat connections (λ, λ′) , (σ, σ′) , we obtain t#([λ′, σ′]) =
[λ, σ] .

Proof. (a): To check (a), it is sufficient to notice that σ#
�
T#ωσ′
�

= (T ◦ σ)# ωσ′ =

(σ′ ◦ t⋆)# ωσ′ = t#σ′#ωσ′ = 0 and (see [ K7]) �
� #
A
T#ωσ′ = t# �

� #
A′
ωσ′ = 1.

(b): According to the fact that γ# is a monomorphism, we only need to notice

γ#t#
"
λ′, σ′
#
= (t⋆ ◦ γ)#

"
λ′, σ′
#
=
�
γ′ ◦ T
�#

([λ′, σ′]) = T# (ωλ′ − ωσ′)
= ωλ − ωσ = γ# [λ, σ] .

The folowing theorem gives a relationship between the Euler class and the difference
class (compare with the classical theorem for sphere bundles, for example [1]).

Theorem 3.6. Let {U,V } be an open covering of M and let λU : TU → A|U and σV :
TV → A|V be flat connections in (A, ε) over U and V, respectively (U, V need not be
connected). Consider the Mayer-Vietoris sequence of the triad {M,U,V } for the usual real
de Rham cohomology and let ∂ : H (U ∩ V ) → H (M) be the connecting homomorphism.
Then

χ(A,ε) = ∂ [λ, σ]

where λ = λU |U∩V and σ = σV |U∩V .

Proof. For the inclusions j1 : U ∩ V →֒ U and j2 : U ∩ V →֒ V according to Lemma 3.4,
[λ, σ] =

"
λ⋆Φ|U∩V − σ⋆Φ|U∩V

#
= [j⋆1 (λ

⋆
UΦ|U)−j⋆2(σ⋆V Φ|V )]. Since d(λ⋆UΦ|U ) = λ⋆UdA|UΦ|U =

λ⋆Uγ
⋆
|UΨ|U = Ψ|U , analogously d(σ⋆V Φ|V ) = Ψ|V , we get – via the construction of ∂ –

∂ [λ, σ] = [Ψ] = χ(A,ε).

4 The index of a flat connection at an isolated singular point

and the Euler number

By a local connection with singularity at a point a ∈M in a Lie algebroid A we mean the
connection

σ : TU̇ → A|U̇ , a ∈ U ⊂M (U is open), U̇ = U \ {a} .

Let (A, ε) be an arbitrary s-Lie algebroid over an n+ 1-dimensional oriented manifold
M (n � 1) with n = rankggg and let σ : TU̇ → A|U̇ be a local connection with singularity

at a ∈ U ⊂M. Take additionally a neighbourhood V ∋ a such that V ⊂ U and V ∼= R
n+1.

A|V possesses, [ M1], a global flat connection λ : TV → A|V . Denote λ|V̇ (V̇ = V \{a}) by λ̇

and consider the difference class [λ̇, σ|V̇ ] ∈ Hn(V̇ ). Let αV : Hn(V̇ )
∼=−→ R be the canonical
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mapping [1, Vol.I] (V̇ has the orientation induced from M). By analogous reasoning as in
the theory of sphere bundles [1, Vol.I] and due to Corollary 3.3 we check that the number
αV ([λ̇, σ|V̇ ]) is independent of the auxiliary flat connection λ and of the neighbourhood V .

This means αV ([λ̇, σ|V̇ ]) depends only on the choice of σ.

Definition 4.1. The number αV ([λ̇, σ|V̇ ]) is called the index of σ at a and denoted by

ja (σ) .

Proposition 4.2 (Naturality of the index). Let (Â, ε̂) be another s-Lie algebroid over
an oriented n+1-dimensional manifold M̂ and (T, t) : (Â, ε̂)→ (A, ε) be a homomorphism
of s-Lie algebroids fulfilling conditions

Tx : Â�x → A�tx, x ∈M, is an isomorphism,

t : M̂ →M is a diffeomorphism onto an open subset.

Let a ∈ M, â ∈ M̂, t (â) = a. Take a local flat connection σ : TU̇ → A|U̇ with singularity

at a. Then the mapping T#σ : TẆ → Â|Ẇ , W = t−1 [U] , Ẇ = W \ {â} , defined by
�
T#σ
�
(v) = T−1

|pv
(σ (t⋆v)) is a flat connection in Â with singularity at â, and jâ

�
T#σ
�
=

ja (σ) .

The main goal of this article is a theorem joining the index sum
$
jav (σ) of any

flat connection with a finite number of singularities {a1, . . . , ak} to the Euler class of Lie
algebroid.

Theorem 4.3 (The Euler-Poincaré-Hopf theorem for flat connections). Let (A, ε)
be an s-Lie algebroid of rank n over an oriented compact manifoldM of dimension n+1 and
let σ : T (M \ {a1, . . . , ak})→ A be a flat connection with singularities at points a1, . . . , ak.
Then the Euler class χ(A,ε) ∈ Hn+1 (M) is given by the formula

χ(A,ε) =

%
k�

v=1

jav (σ)

&
· ωM

where ωM is the orientation class of M ; equivalently,
� #
M
χ(A,ε) =

$k
v=1 jav (σ). In partic-

ular, the index sum
$k

v=1 jav (σ) is independent of the choice of the connection.

Proof. For each v = 1, . . . , k, choose a neighbourhood Uv ∋ av diffeomorphic to Rn+1 and
such that the sets Uv are pairwise disjoint. Put U =

'
Uv , V = M \ {a, . . . , ak} . Then

M = U ∪ V and U ∩ V =
'
U̇v where U̇v = Uv \ {av} . Take arbitrary flat connections

λ̃v : TUv → A|Uv , v = 1, . . . , k. The family {λ̃v} determines one flat connection λ̃ : TU →
A|U such that λ̃|Uv = λ̃v . Define λ̌ = λ̃|U∩V and σ̌ = σ|U∩V . According to Theorem 3.6,

χ(A,ε) = ∂[λ̌, σ̌]. In the sequel, put λv = λ̃v|U̇v and σv = σ|U̇v . Then [λ̌, σ̌] = ⊕v [λv, σv ] .

By [1, Prop.VII Chap.VI, Vol.I]
�#
M
◦∂ = α, where α :

(
vH

n(U̇v)→ R is equal to ⊕βv �→$
αUv (βv) . Therefore we get

� #

M

χ(A,ε)A =

� #

M

∂[λ̌, σ̌] =

� #

M

∂ (⊕ν [λv, σv]) = α (⊕ν [λv , σv])

=
k�

v=1

αUv [λv , σv] =
k�

v=1

jav (σ) .
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The sum

j(A,ε) =
k�

v=1

jav (σ)

is called the Euler number of the s-Lie algebroid (A, ε) . According to Theorem 5.4 from
[ K10], the Euler number j(A,ε) is not — in general — an invariant of the cohomology algebra
of A and has nothing in common with the Euler-Poincaré characteristic of A. The last,
when considered for TUIO-Lie algebroids (dimM + rankggg is odd), always is 0 [ K9].

5 Integral formulae

Proposition 5.1. For a trivial s-Lie algebroid A = TM ×g vertically oriented by a tensor
0 �= εo ∈

�n
g (n = dim g) and equipped with a ”standard” flat connection τ0 : TM →

TM × g, v �→ (v, 0) , we have

(a) if σ : TM → A is a flat connection, then its cohomology class ωσ is given by ωσ =
−σ̂# [ϕo]× 1 + 1× [ϕo] where σ̂ = pr2 ◦ σ : TM → g and ϕo ∈

�n
g⋆ is a tensor such

that ιεoϕo = 1. In particular ωτ0 = 1× [ϕo] .

(b) The difference class [τ0, σ] is equal to [τ0, σ] = σ̂# [ϕo] .

Proof. Using the fact that the projection pr2 : TM → g is a nonstrong homomorphism of
Lie algebroids [ K5], we can easily see that

σ#
�
−σ̂# [ϕo]× 1 + 1× [ϕo]

�
= 0,

�
� #

A

�
−σ̂# [ϕo]× 1 + 1× [ϕo]

�
= 1.

Now (a) follows from the definition of the cohomology class ωσ whereas (b) may be obtained
from the definition of the difference class and the equality

ωτ0 − ωσ = 1× [ϕo]−
�
−σ̂# [ϕo]× 1 + 1× [ϕo]

�
= γ#σ̂# [ϕo] .

Corollary 5.2. For arbitrary flat connections λ, σ : TM → TM × g,

[λ, σ] = (σ̂# − λ̂#) [ϕo] .

Put
.

R
n+1

= Rn+1 \ {0} and let g be any n-dimensional unimodular Lie algebra g. Take
tensors 0 �= εo ∈

�n g, ϕo ∈
�n g⋆ joined by the relation ιεo (ϕo) = 1. Fix a flat connection

σ : T
.

R
n+1
→ T

.

R
n+1
× g in the trivial Lie algebroid A = TRn+1 × g (oriented by the

tensor εo). Let i : Sn →֒
.

R
n+1

be the inclusion.

Proposition 5.3. The index j0 (σ) of σ is given by the formula

j0 (σ) =

�

Sn
σ⋆S (ϕo) (5.5.1)

where σS is a nonstrong homomorphism of Lie algebroids defined as the composition σS :

TSn i⋆→֒ T
.

R
n+1 σ̂−→ g.
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Treat now σ̂ : T
.

R
n+1
→ g as a 1-form on

.

R
n+1

with values in g and take the exterior

n-product σ̂∧ . . .∧ σ̂ ∈ Ωn(
.

R
n+1

;
�n
g).We have σ̂⋆ (ϕo) = 1

n! (ϕo)⋆ (σ̂ ∧ . . . ∧ σ̂) . Therefore

j0 (σ) =
1

n!
ϕo

��

Sn
i⋆ (σ̂ ∧ . . .∧ σ̂)

�
. (5.5.2)

Example 5.4. Each trivial Lie algebroid A = TRn+1 × g is integrable: A = A (P ) for
P = R

n+1 × G where G is an arbitrary Lie group with the Lie algebra g. A connection

σ : T
.

R
n+1
→ A induces a connection H ⊂ T (

.

R
n+1
×G) in the principal bundle

.

R
n+1
×G,

and the flatness of σ means the integrability of H. Assume a leaf L of the foliation H is

the graph of some function f :
.

R
n+1
→ G. (If n ≥ 2, then such a function always exists

which follows from the simple connectedness of
.

R
n+1

and the reduction theorem [ K-N]).
Therefore σ̂ (v) = R−1

f(x)⋆ (f⋆v) , Rf (x) which is the right translation on G by f(x), and

f⋆ (∆R) = 'ϕo, 1n! (σ̂ ∧ . . . ∧ σ̂)( for the right-invariant n-form ∆R ∈ Ωn
R (G) equalling ϕo at

the unity e of G.

(A) If G is compact, n-dimensional, oriented by ∆R and the Lie algebra of G is spherical,
then as a consequence of (5.5.1) and (5.5.2) we have

j0 (σ) =

�

Sn

�
f|Sn
�⋆

∆R = deg
�
f|Sn
�
·
�

G

∆R . (5.5.3)

As a corollary (taking any mapping f :
.

R
n+1
→ Sn such that f|Sn = idSn), we

obtain the existence of a local, flat singular connection having a nonzero index at the
singularity.

Formula (5.5.3) yields that the set of real numbers being the indexes at a given point
of singular local, flat connections coming from functions is discrete (more exactly, is
equal to the set of multiples of

�
G

∆R). Such a situation takes place, for example,
for all flat connections in any sk (3,R)-Lie algebroid over M4 (since we can take
G = SO(3)).

(B) If G is not compact, then ∆R = d (Θ) for some Θ and

j0 (σ) =

�

Sn

�
f|Sn
�⋆

∆R =

�

Sn
d
�
f∗|SnΘ
�

= 0.

Such a situation takes place, for example, in any sl (2,R)-Lie algebroid overM4 (since
we can take G = SL (2,R)). Clearly, this fact can be noticed immediately by using a
base e, f, g of sl (2,R) such that [e, f ] = g, [f, g] = 2f, [g, e] = 2e.

For an R-Lie algebroid, not every local, singular and flat connection comes from a
function, see the below example.

Example 5.5. In any R-Lie algebroid over M2 we can construct a local, flat and singular
connection whose index is a preassigned real number. Indeed, since R is abelian, therefore
the flatness of σ is equivalent to the closedness of the 1-form σ̂ on M2. In this case, the

product k · σ̂, k ∈ R, also gives a flat connection. Therefore, if σ : T
.

R
2
→ T

.

R
2
× R, v �→

(v, σ̂ (v)) , is a flat connection with a nonzero index at 0, j0 (σ) �= 0, then, for an arbitrary
real number k ∈ R, the mapping

τ : T
.

R
2
−→ T

.

R
2
×R, v �−→

�
v,

k

j0 (σ)
· σ̂ (v)

�
,
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is a flat connection with j0 (τ) = k. Except for a discrete set of real numbers, this connection
does not come from a function. More implicitly, considering ε0 = 1 ∈ R and taking

τ̂ = k
2π

�
x

x2+y2
dy − y

x2+y2
dx
�
, k ∈ R, we have j0 (τ) =

�
S1
τ̂ = k.

Example 5.6. In the Hopf S1-bundle P = (S3 → S2), for two different points p1, p2 ∈ S2
and for any real number k ∈ R, there exists a global flat connection σk with two singularities
at {p1, p2} , such that the index jp1 (σk) is equal to k. Indeed, since the Euler class of P is
equal to the orientation class of S2, any flat connection λ with a singularity at {p1} has
the index at p1 equal to 1 (assuming

�
G

∆R = 1). Take p2 �= p1 and M = S2 \ {p2}.
Since M is contractible, P|M is trivial P|M ∼= M × S1. The connection λ determines a
connection λ̄ : T (M\ {p1}) → A

�
(M\ {p1})× S1

�
= T (M\ {p1})× R. Take σ̂ = pr2 ◦ λ̄ :

T (M\ {p1})→ R. For an arbitrary real number k ∈ R,

σ̄k : T (M\ {p1}) −→ T (M\ {p1})× R, v �−→ (v, k · σ̂ (v)),

is a flat connection. σ̄k determines a flat connection σk in P with a singularity at {p1, p2} ,
such that jp1 (σk) = k.

In the end we give some remarks concerning the existence of a connection with a finite
number of singularities. We start with the case g = R.

Proposition 5.7. In each invariantly oriented R-Lie algebroid over an arbitrary mani-
fold M for which H2 (M) = 0 there exists a flat connection, in particular, when M is
2-dimensional non-compact.

Proof. According to [ K7], each invariantly oriented R-Lie algebroid A over M is iso-
morphic to (M × R)

(
TM with pr2 : (M ×R)

(
TM → TM as the anchor and the

bracket [[·, ·]] defined via some closed real 2-form Ω in the following way: [[(f,X) , (g, Y )]] =
(−Ω (X,Y ) + ∂Xg − ∂Y f, [X,Y ]) ,X, Y ∈ X (M) , f, g ∈ C∞ (M). Each connection λ :
TM → (M ×R)

(
TM has the form λ (v) =

�
λ̄ (v) , v

�
for a 1-differential form λ̄ ∈ Ω1 (M).

A simple calculation shows that λ is flat if and only if d
�
λ̄
�

= Ω. If H2 (M) = 0, such a
1-form exists.

As a corollary we get

Corollary 5.8. In each s-Lie algebroid of rank 1 over a compact 2-manifold M there exists
a flat connection with a beforehand finite non-empty set of isolated singularities.

If a sk (3, R)-Lie algebroid over a compact 4-manifold comes from a Spin (3)-principal
bundle, then - of course - it possesses a flat connection with one singularity (since such a
cross-section of the sphere bundle exists [1, Vol. I]). In the general case, the problem is
open.

The problem for sl (2,R)-Lie algebroids looks differently. Namely, by the main theorem
(4.3) and Example 5.4 (B) we have that χ(A,ε) = 0 for any invariantly oriented sl (2,R)-Lie
algebroid (A, ε) over a compact connected oriented manifoldM4, admitting a flat connection
with a finite number of isolated singularities. Really, such a Lie algebroid is flat since locally

we can remove a singularity: if σ is a flat connection in T
.

R
4
× sl (2,R) then σ is given by a

function f :
.

R
4
→ SL (2,R). Using the fact that the third group of homotopy of SL (2,R)

is zero, π3 (SL (2,R)) = 0, we can find f̄ : R4 → SL (2,R) such that f (x) = f̄ (x) for
)x) ≥ ε for a given small ε. This implies that we may remove the singularity at 0.
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CONFIGURATION SPACES AND ALGEBROIDS

VITALY KUSHNIREVITCH and ROMAN KADOBIANSKI

Abstract

Let M be complete, connected, oriented, C∞ (noncompact) Riemannian manifold of
dimension d. The configuration space ΓM over M is the set of locally finite subsets in M :

ΓM := {γ ⊂M : card (γ ∩K) <∞ for each compact K ⊂M}.

Any γ ∈ ΓM is identified with positive integer-valued Radon measure. The tangent space
to ΓM at a point γ is defined as Hilbert space TγΓM := L2(M → TM ; γ) (or, equivalently,
TγΓM :=

(
x∈γ

TxM). (See S.Albeverio, Yu.G.Kondratiev, M.Röckner, JFA 157 (1998).)

High order differential forms and de Rham cohomology on configuration spaces can also be
considered (see S.Albeverio, A.Daletskii, E.Lytvynov, JGeomPhys, to appear). The main
topic of discussion is to consider these objects from the Lie algebriods theory point of view.
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EXTENDED FINITE CALCULUS — AN EXAMPLE OF

ALGEGRAIZATION OF ANALYSIS

ANDRZEJ KRZYSZTOF KWAŚNIEWSKI

Institute of Computer Science, BiaTlystok University

PL — 15-887 BiaTlystok, ul. Sosnowa 64, Poland
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Abstract

“A Calculus of Sequences” started in 1936 by Ward constitutes the general scheme
for extensions of classical operator calculus of Rota - Mullin considered by many af-
terwards and after Ward. Because of the notation we shall call the Wards calculus of
sequences in its afterwards elaborated form - a ψ-calculus.

The ψ-calculus in parts appears to be almost automatic, natural extension of clas-
sical operator calculus of Rota - Mullin or equivalently - of umbral calculus of Roman
and Rota.

At the same time this calculus is an example of the algebraization of the analysis -
here restricted to the algebra of polynomials. Many of the results of ψ-calculus may be
extended to Markowsky Q-umbral calculus where Q stands for a generalized difference
operator i.e. the one lowering the degree of any polynomial by one.

The article is supplemented by the short indicatory glossaries of terms and notation
used by Ward, Viskov, Markowsky, Roman on one side and the Rota-oriented notation
on the other side.

KEY WORDS: extended umbral calculus , Graves-Heisenberg-Weyl algebra

MCS (2000) : 05A40 , 81S99

1 Introduction

We shall call the Wards calculus of sequences [1] in its afterwards last century elaborated form

- a ψ-calculus because of the notation [2]-[7]. The efficiency of the Rota oriented language and

our notation used has been already exemplified by easy proving of ψ-extended counterparts of all

representation independent statements of ψ-calculus [2]. Here these are ψ-labelled representations of

Graves-Heisenberg-Weyl (GHW) algebra of linear operators acting on the algebra P of polynomials.

As a matter of fact ψ-calculus becomes in parts almost automatic extension of Rota - Mullin

calculus or equivalently - of umbral calculus of Roman and Rota [8, 9, 10]. The ψ-extension relies on

the notion of ∂ψ-shift invariance of operators with ψ-derivatives ∂ψ staying for equivalence classes

representatives of special differential operators lowering degree of polynomials by one [6, 7, 11].

Many of the results of ψ-calculus may be extended to Markowsky Q-umbral calculus [11] where Q

stands for arbitrary generalized difference operator i.e. the one lowering the degree of any polynomial

by one. Q-umbral calculus [11] - as we call it - includes also those generalized difference operators,

which are not series in ψ-derivative ∂ψ whatever an admissible ψ sequence would be.

The note is at the same time the operator formulation of “A Calculus of Sequences” started in

1936 by Ward [1] with the indication of the role the ψ-representations of Graves-Heisenberg-Weyl

(GHW) algebra in formulation and derivation of principal statements of the ψ-extension of finite

operator calculus of Rota.

Restating what was said above we observe that all statements of standard finite operator calculus

of Rota are valid also in the case of ψ-extension under the almost automatic replacement of {D, x̂, id}
generators of GHW by their ψ-representation correspondents {∂ψ, x̂ψ , id} - see definitions 2.1 and
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2.5. Naturally any specification of admissible ψ - for example the famous one defining q-calculus -

has its own characteristic properties not pertaining to the standard case of Rota calculus realisation.

Nevertheless the overall picture and system of statements depending only on GHW algebra is the

same modulo some automatic replacements in formulas demonstrated in the sequel. The large part

of that kind of job was already done in [2, 3].

The aim of this presentation is to give a general picture of the algebra of linear operators on

polynomial algebra. The picture that emerges discloses the fact that any ψ-representation of finite

operator calculus or equivalently - any ψ-representation of GHW algebra makes up an example of

the algebraization of the analysis - naturally when constrained to the algebra of polynomials.

We shall delimit all our considerations to the algebra P of polynomials or sometimes to the

algebra of formal series. Therefore the distinction in-between difference and differentiation operators

disappears. All linear operators on P are both difference and differentiation operators if the degree

of differentiation or difference operator is unlimited.

If all this is extended to MarkowskyQ-umbral calculus then many of the results of ψ-calculus may

be extended to Q-umbral calculus [11]. This is achieved under the almost automatic replacement

of {D, x̂, id} generators of GHW or their ψ-representation {∂ψ, x̂ψ , id} by their Q-representation

correspondents {Q, x̂Q, id} - see definition 2.5.

The article is supplemented by the short indicatory glossaries of terms and notation used by

Ward, Viskov, Markowsky, Roman on one side and the Rota-oriented notation on the other side.

2 Primary definitions, notation and general observations

In the following we shall consider the algebra P of polynomials P =F[x] over the field F of charac-

teristic zero. All operators or functionals studied here are to be understood as linear operators on

P . It shall be easy to see that they are always well defined.

Throughout the note while saying “polynomial sequence {pn}∞o ” we mean

deg pn = n; n ≥ 0 and we adopt also the convention that deg pn < 0 iff p ≡ 0.
Consider ℑ - the family of functions‘ sequences (in conformity with Viskov notation ) such that:

ℑ = {ψ;R ⊃ [a, b] ; q ∈ [a, b] ; ψ (q) : Z → F ; ψ0 (q) = 1 ; ψn (q) �= 0; ψ−n (q) = 0; n ∈ N}.
We shall call ψ = {ψn (q)}n≥0 ; ψn (q) �= 0; n ≥ 0 and ψ0 (q) = 1 an admissible sequence. Let now
nψ denotes [2, 3]

nψ ≡ ψn−1 (q)ψ−1n (q) .

Then

nψ! ≡ ψ−1n (q) ≡ nψ (n− 1)ψ (n− 2)ψ (n− 3)ψ ....2ψ1ψ; 0ψ ! = 1

n
k

ψ = nψ (n− 1)ψ ... (n− k + 1)ψ and

�
n
k

�

ψ

≡ n
k

ψ

kψ!
and expψ{y} =

∞$
k=0

yk

kψ!
.

Definition 2.1. Let ψ be admissible. Let ∂ψ be the linear operator lowering degree of polynomials

by one defined according to ∂ψx
n = nψx

n−1 ; n ≥ 0. Then ∂ψ is called the ψ-derivative.

Remark 2.1. The choice ψn (q)=[R (qn)!]
−1

and R (x) = 1−x
1−q results in the well known q-factorial

nq! = nq (n− 1)q!; 1q! = 0q ! = 1 while the ψ-derivative ∂ψ becomes now (nψ = nq) the Jackson’s

derivative [2, 3] ∂q :

(∂qϕ) (x) = ϕ(x)−ϕ(qx)
(1−q)x

.

Note also that that if ψ = {ψn (q)}n≥0 and ϕ = {ϕn (q)}n≥0 are two admissible sequences then

[∂ψ , ∂ϕ]= 0 iff ψ = ϕ.

Definition 2.2. Let Ey (∂ψ) ≡ expψ{y∂ψ} =
∞$
k=0

yk∂kψ
kψ !

. Ey (∂ψ) is called the generalized transla-

tion operator.
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Note 2.1. [2, 3]

Ea (∂ψ) f(x) ≡ f(x+ψ a) ; (x+ψ a)n ≡ Ea (∂ψ)xn ; Ea (∂ψ) f =
$
n≥0

an

nψ!
∂nψf ;

and in general (x+ψ a)n �= (x+ψ a)n−1(x+ψ a).

Note also that in general (1 +ψ (−1))2n+1 �= 0 ; n ≥ 0 though (1 +ψ (−1))2n = 0 ; n ≥ 1.

Note 2.2. [1]

expψ (x+ψ y) ≡ expψ{x} expψ{y} - while in general expψ{x+ y} �= expψ{x} expψ{y}.

Possible consequent utilisation of the identity expψ (x+ψ y) ≡ expψ{x} expψ{y} is quite encour-
aging. It leads among others to “ψ-trigonometry” either ψ-elliptic or ψ-hyperbolic via introducing

cosψ, sinψ [1], coshψ , sinhψ or in general ψ-hyperbolic functions of m-th order
)
h
(ψ)
j (α)
*
j∈Zm

defined

according to [12]

R ∋ α→ hj (α) =
1

m

�

k∈Zm

ω−kj expψ
�
ωkα
�
; j ∈ Zm, ω = exp

�
i
2π

m

�
.

where 1 < m ∈ N and Zm = {0, 1, ...,m− 1}.

Definition 2.3. A polynomial sequence {pn}∞o is of ψ-binomial type if it satisfies the recurrence

Ey (∂ψ) pn (x) ≡ pn (x+ψ y) ≡
�

k≥0

�
n
k

�

ψ

pk (x) pn−k (y) .

Polynomial sequences of ψ-binomial type [2, 3] are known to correspond in one-to-one manner

to special generalized differential operators Q, namely to those Q = Q (∂ψ) which are ∂ψ-shift

invariant operators [2, 3]. We shall deal in this note mostly with this special case i.e. with ψ-umbral

calculus. However before to proceed let us supply a basic information referring to this general case

of Q-umbral calculus.

Definition 2.4. Let P = F[x]. Let Q be a linear map Q : P → P such that:

∀p∈P deg (Qp) = (deg p) − 1 (with the convention deg p = −1 means p = const = 0). Q is then

called a generalized difference-tial operator [11] or Gel‘fond-Leontiev [7] operator.

Right from the above definitions we infer that the following holds.

Observation 2.1. Let Q be as in Definition 2.4. Let Qxn =
n$
k=1

bn,kxn−k where bn,1 �= 0 of

course. Without loose of generality take b1,1 = 1. Then ∃ {qk}q≥2 ⊂ F and ∃ admissible ψ such
that

Q = ∂ψ +
�

k≥2

qk∂
k
ψ (2.2.1)

if and only if

bn,k =

�
n
k

�

ψ

bk,k; n ≥ k ≥ 1; bn,1 �= 0; b1,1 = 1. (2.2.2)

If {qk}q≥2 and an admissible ψ exist then these are unique.

Notation 2.1. In the case (2.2.2) is true we shall write : Q = Q (∂ψ).

Remark 2.2. Note that operators of the (2.2.1) form constitute a group under superposition of

formal power series (compare with the formula (S) in [13]). Of course not all generalized difference-

tial operators satisfy (2.2.1) i.e. are series just only in corresponding ψ-derivative ∂ψ (see Proposi-

tion 3.1 ). For example [14] let Q = 1
2
Dx̂D − 1

3
D3. Then Qxn = 1

2
n2xn−1 − 1

3
n3xn−3 so according

to Observation 2.1 nψ = 1
2n

2 and there exists no admissible ψ such that Q = Q (∂ψ).
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Observation 2.2. From theorem 3.1 in [11] we infer that generalized differential operators give

rise to subalgebras
$
Q of linear maps (plus zero map of course) commuting with a given generalized

difference-tial operator Q. The intersection of two different algebras
$
Q1

and
$
Q2

is just zero map

added.

The importance of the above Observation 2.2 as well as the definition below may be further

fully appreciated in the context of the Theorem 2.1 and the Proposition 3.1 to come.

Definition 2.5. Let {pn}n≥0 be the normal polynomial sequence [11] i.e. p0 (x) = 1 and pn (0) =

0 ; n ≥ 1. Then we call it the ψ-basic sequence of the generalized difference-tial operator Q if

in addition Qpn = nψpn−1. Parallely we define a linear map x̂Q: P → P such that x̂Qpn =
(n+1)
(n+1)ψ

pn+1; n ≥ 0. We call the operator x̂Q the dual to Q operator.

When Q = Q (∂ψ) = ∂ψ we write for short: x̂Q(∂ψ) ≡ x̂∂ψ ≡ x̂ψ (see: Definition 2.9).

Of course [Q, x̂Q]= id therefore {Q, x̂Q, id} provide us with a continuous family of generators of

GHW in - as we call it - Q-representation of Graves-Heisenberg-Weyl algebra.

In the following we shall restrict to special case of generalized differential operators Q, namely to

those Q = Q (∂ψ) which are ∂ψ-shift invariant operators [2, 3] (see: Definition 2.6).

At first let us start with appropriate ψ-Leibnitz rules for corresponding ψ-derivatives.

ψ-Leibnitz rules:
It is easy to see that the following hold for any formal series f and g:

for ∂q: ∂q (f · g) = (∂qf) · g +
�
Q̂f
�
· (∂qg), where

�
Q̂f
�
(x) = f (qx);

for ∂R = R
�
qQ̂
�
∂o: ∂R(f • g)(z) = R

�
qQ̂
�
{(∂of)(z) • g(z) + f(0)(∂og)(z)}

where - note - R
�
qQ̂
�
xn−1 = nRxn−1 ; (nψ = nR = nR(q) = R (qn)) and finally

for ∂ψ = n̂ψ∂o:

∂ψ(f • g)(z) = n̂ψ{(∂of)(z) • g(z) + f(0)(∂og)(z)}

where n̂ψx
n−1 = nψx

n−1 ; n ≥ 1.

Example 2.1. LetQ (∂ψ) = Dx̂D, where x̂f(x) = xf(x) andD = d
dx

. Then ψ =
)"�

n2
�
!
#−1*

n≥0

and Q = ∂ψ. Let Q (∂ψ)R(qQ̂)∂0 ≡ ∂R. Then ψ =
)
[R (qn)!]

−1
*

n≥0
and Q = ∂ψ ≡ ∂R. Here R(z)

is any formal Laurent series; Q̂f(x) = f(qx) and nψ = R(qn). ∂0 is q = 0 Jackson derivative which
as a matter of fact - being a difference operator is the differential operator of infinite order at the
same time:

∂o =
∞�

n=1

( −1)
n+1 x

n−1

n!

dn

dxn
. (2.2.3)

Naturally with the choice ψn (q) = [R (qn)!]
−1 and R (x) = 1−x

1−q the ψ-derivative ∂ψ becomes the

Jackson’s derivative [2, 3] ∂q:

(∂qϕ) (x) =
1− qQ̂
(1− q)∂0ϕ (x) .

The equivalent to (2.2.3) form of Bernoulli-Taylor expansion one may find [15] in Acta Erudito-

rum from November 1694 under the name “series univeralissima”.

(Taylor‘s expansion was presented in his “Methodus incrementorum directa et inversa” in 1715

- edited in London).
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Definition 2.6. Let us denote by End(P ) the algebra of all linear operators acting on the algebra
P of polynomials. Let

�
ψ

= {T ∈ End(P ); ∀ α ∈ F ; [T ;Eα (∂ψ)] = 0}.

Then
$
ψ is a commutative subalgebra of End(P ) of F -linear operators. We shall call these operators

T : ∂ψ-shift invariant operators.

We are now in a position to define further basic objects of “ψ-umbral calculus” [2, 3].

Definition 2.7. Let Q (∂ψ) : P → P ; the linear operator Q (∂ψ) is a ∂ψ-delta operator iff

1. Q (∂ψ) is ∂ψ - shift invariant;

2. Q (∂ψ) (id) = const �= 0

The strictly related notion is that of the ∂ψ-basic polynomial sequence:

Definition 2.8. Let Q (∂ψ) : P → P ; be the ∂ψ-delta operator. A polynomial sequence {pn}n≥0;
deg pn= n such that:

1. po (x) = 1;

2. pn (0) = 0; n > 0;

3. Q (∂ψ) pn = nψpn−1 is called the ∂ψ-basic polynomial sequence of the ∂ψ-delta operatorQ (∂ψ).

Identification 2.1. It is easy to see that the following identification takes place: ∂ψ-delta opera-

tor Q (∂ψ) = ∂ψ-shift invariant generalized differential operator Q. Of course not every generalized

differential operator might be considered to be such.

Note: Let Φ (x;λ) =
$
n≥0

λn

nψ !
pn (x) denotes the ψ-exponential generating function of the ∂ψ-

basic polynomial sequence {pn}n≥0 of the ∂ψ-delta operator Q ≡ Q (∂ψ) and let Φ (0;λ) = 1.

Then QΦ(x;λ) = λΦ(x;λ) and Φ is the unique solution of this eigenvalue problem. In view of

Observation 2.2 we affirm that then exists such an admissible sequence ϕ that Φ (x;λ) = expϕ [λx].

The notation and naming established by Definitions 2.7 and 2.8 serve the target to preserve

and to broaden simplicity of Rota‘s finite operator calculus also in its extended “ψ-umbral calculus”

case [2, 3]. As a matter of illustration of such notation efficiency let us quote after [2] the important

Theorem 2.1 which might be proved using the fact that ∀ Q (∂ψ) ∃! invertible S ∈ Σψ such

that Q (∂ψ) = ∂ψS. ( For Theorem 2.1 see also Theorem 4.3. in [11], which holds for operators,

introduced by the Definition 2.5).

Theorem 2.1. (ψ-Lagrange and ψ-Rodrigues formulas)

Let {pn (x)}∞n=0 be ∂ψ-basic polynomial sequence of the ∂ψ-delta operator Q (∂ψ).

Let Q (∂ψ) = ∂ψS∂ψ . Then for n > 0:

1. pn(x) = Q (∂ψ)’ S
−n−1
∂ψ

xn ;

2. pn(x) = S−n∂ψ xn − nψ
n

(S−n∂ψ )’xn−1;

3. pn(x) = nψ
n
x̂ψS

−n
∂ψ

xn−1;

4. pn(x) = nψ
n
x̂ψ(Q (∂ψ)’ )

−1pn−1(x) (← Rodrigues ψ-formula ).

For the proof one uses typical properties of the Pincherle ψ-derivative defined bellow as well as

x̂ψ operator.
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Definition 2.9. (compare with (17) in [7] )

The Pincherle ψ-derivative i.e. the linear map ’ : Σψ → Σψ;

T ’ = T x̂ψ - x̂ψT ≡[T∂ψ , x̂ψ]
where the linear map x̂ψ : P → P ; is defined in the basis {xn}n≥0 as follows

x̂ψx
n =

ψn+1 (q) (n+ 1)

ψn (q)
xn+1 =

(n+ 1)

(n+ 1)ψ
xn+1; n ≥ 0

Observation 2.3. [2,3]

The triples {∂ψ, x̂ψ, id} for any admissible ψ-constitute the set of generators of the ψ-labelled rep-

resentations of Graves-Heisenberg-Weyl (GHW) algebra [16, 17, 18]. Namely, as easily seen [∂ψ, x̂ψ]

= id. (compare with Definition 2.5)

Observation 2.4. In view of the Observation 2.3 the general Leibnitz rule in ψ-representation of
Graves-Heisenberg-Weyl algebra may be written (compare with 2.2.2 Proposition in [17]) as follows

∂nψ x̂mψ =
�

k≥0

�
n
k

��
m
k

�
k! x̂m−kψ ∂n−kψ . (2.2.4)

One derives the above ψ-Leibnitz rule from ψ-Heisenberg-Weyl exponential commutation rules ex-
actly the same way as in {D, x̂, id} GHW representation - (compare with 2.2.1 Proposition in [17]
). ψ-Heisenberg-Weyl exponential commutation relations read:

exp{t∂ψ}exp{ax̂ψ} = exp{at}exp{ax̂ψ}exp{t∂ψ}. (2.2.5)

To this end let us introduce a pertinent ψ-multiplication ∗ψ of functions as specified below.

Notation 2.2.
x ∗ψ xn = x̂ψ(xn) = (n+1)

(n+1)ψ
xn+1; n ≥ 0 hence x ∗ψ1 = 1ψ x �≡ x

xn∗ψ x = x̂nψ( x ) = (n+1)!
(n+1)

ψ
!x
n+1; n ≥ 0 hence 1∗ψ x = 1ψ x �≡ x therefore

x ∗ψα1 = α1∗ψ x = x ∗ψα = α∗ψ x = α1ψ x and ∀ x,α ∈ ; f(x)∗ψ xn = f(x̂ψ)xn.

For k �= n xn∗ψ xk �= xk∗ψ xn as well as xn∗ψ xk �= xn+k - in general i.e. for arbitrary

admissible ψ; compare this with (x +ψa)n �= ( x +ψa)n−1(x +ψa).

In order to facilitate in the future formulation of observations accounted for on the basis of ψ-calculus

representation of GHW algebra we shall use what follows.

Definition 2.10. With Notation 2.2 adopted let us define the ∗ψ powers of x according to

xn∗ψ ≡ x ∗ψx(n−1)∗ψ = x̂ψ(x
(n−1)∗ψ) = x ∗ψ x ∗ψ ... ∗ψ x = n!

nψ!
xn; n ≥ 0.

Note that xn∗ψ ∗ψ xk∗ψ = n!
nψ!
x(n+k)∗ψ �= xk∗ψ ∗ψ xn∗ψ = k!

kψ!
x(n+k)∗ψ for k �= n and x0∗ψ = 1.

This noncommutative ψ-product ∗ψ is deviced so as to ensure the following observations:

Observation 2.5.

1. ∂ψxn∗ψ = nx(n−1)∗ψ ; n ≥ 0

2. expψ[αx ] ≡exp {αx̂ψ}1

3. exp [αx] ∗ψ expψ{βx̂ψ}=expψ{[α+ β]x̂ψ}

4. ∂ψ(xk ∗ψ xn∗ψ) = (Dxk) ∗ψ xn∗ψ + xk ∗ψ (∂ψx
n∗ψ ) hence

5. ∂ψ(f ∗ψ g) = (Df) ∗ψ g + f ∗ψ (∂ψg) ; f, g - formal series
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6. f(x̂ψ)g(x̂ψ) 1 = f(x) ∗ψ g̃(x) ; g̃(x) = g(x̂ψ)1.

Now the consequences of Leibnitz rule (e) for difference-ization of the product are easily feasible.
For example the ψ-Poisson process distribution pm(x);$
m≥0

pm(x) = 1;

pm(x) =
(λx)m

m!
∗ψ expψ[−λx] (2.2.6)

is the unique solution of its corresponding ∂ψ-difference equation

∂ψpm(x) + λpm(x) = λpm−1(x)m > 0 ; ∂ψp0(x) = −λp0(x) (2.2.7)

As announced - the rules of ψ -product ∗ψ are accounted for - as a matter of fact - on the basis

of ψ-calculus representation of GHW algebra. Indeed; it is enough to consult Observation 2.5 and

to introduce ψ-Pincherle derivation ∂̂ψ of series in powers of the symbol x̂ψ as below. Then the

correspondence between generic relative formulas turns out evident.

Observation 2.6. Let ∂̂ψ ≡ ∂
∂x̂ψ

be defined according to ∂̂ψf(x̂ψ) = [∂ψ, f(x̂ψ)]. Then ∂̂ψx̂nψ =

nx̂n−1ψ ; n ≥ 0 and ∂̂ψx̂nψ 1 = ∂ψxn∗ψ hence [∂̂ψf(x̂ψ)]1 = ∂ψf(x) where f is a formal series in

powers of x̂ψ or equivalently in ∗ψ powers of x.

As an example of application note how the solution of 2.2.7 is obtained from the obvious solution

m(x̂ψ) of the ∂̂ψ-Pincherle differential equation 2.2.8 formulated within G-H-W algebra generated
by {∂ψ, x̂ψ, id}

∂̂ψm(x̂ψ) + λm(x̂ψ) = λm−1(x̂ψ)m > 0 ; ∂ψ0(x̂ψ) = −λ0(x̂ψ) (2.2.8)

Namely : due to Observation 2.5 (f) pm(x) = m(x̂ψ)1, where

m(x̂ψ) =
(λx̂ψ)

m

m!
expψ [−λx̂ψ]. (2.2.9)

3 The general picture

The general picture from the title above relates to the general picture of the algebra End(P ) of

operators on P as in the following we shall consider the algebra P of polynomials P = F[x] over the

field F of characteristic zero.

We shall draw an over view picture of the situation distinguished by possibility to develop umbral

calculus for any polynomial sequences {pn}∞o instead of those of traditional binomial type only.

In 1901 it was proved [19] that every linear operator mapping P into P may be represented as

infinite series in operators x̂ and D. In 1986 the authors of [20] supplied the explicit expression for

such series in most general case of polynomials in one variable ( for many variables see: [21] ). Thus

according to Proposition 1 from [20] one has:

Proposition 3.1. LetQ be a linear operator that reduces by one each polynomial. Let {qn (x̂)}n≥0
be an arbitrary sequence of polynomials in the operator x̂. Then T̂ =

$
n≥0

qn (x̂)Qn defines a linear

operator that maps polynomials into polynomials. Conversely, if T̂ is linear operator that maps
polynomials into polynomials then there exists a unique expansion of the form

T̂ =
�

n≥0

qn (x̂)Qn.
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It is also a rather matter of an easy exercise to prove the Proposition 2 from [20]:

Proposition 3.2. “ Let Q be a linear operator that reduces by one each polynomial. Let {qn (x̂)}n≥0be
an arbitrary sequence of polynomials in the operator x̂. Let a linear operator that maps polynomials

into polynomials be given by

T̂ =
$
n≥0

qn (x̂)Qn.

Let P (x;λ) =
$
n≥0

qn (x)λn denotes indicator of T̂ . Then there exists a unique formal series

Φ(x;λ); Φ (0;λ) = 1such that:

QΦ(x;λ) = λΦ(x;λ) .

Then also P (x;λ) = Φ (x;λ)−1 T̂Φ(x;λ).

Example 3.1. Note that ∂ψexpψ{λx} = λexpψ{λx}; expψ [x] |x=0 = 1. (*)

Hence for indicator of T̂ ; T̂ =
$
n≥0

qn (x̂)∂nψ we have:

P (x;λ) = [expψ{λx}]−1T̂expψ{λx}. (**)

After choosing ψn (q) = [nq!]
−1 we get expψ{x} =expq{x}. In this connection note that

expo (x) = 1
1−x

and exp(x) are mutual limit deformations for |x| < 1 due to:

expo(z)−1
z

= expo (z)⇒ expo (z) = 1
1−z

=
∞$
k=0

zk; |z| < 1 i.e.

exp (x)←−
1←q

expq (x) =
∞�

n=0

xn

nq!
−→
q→0

1

1− x.

Therefore corresponding specifications of (*) such as expo (λx) = 1
1−λx or exp(λx) lead to corre-

sponding specifications of (**) for divided difference operator ∂0 and D operator including special

cases from [20].

To be complete let us still introduce [2, 3] an important operator x̂Q(∂ψ) dual to Q (∂ψ).

Definition 3.1. (see Definition 2.5)

Let {pn}n≥0 be the ∂ψ-basic polynomial sequence of the ∂ψ-delta operator Q (∂ψ). A linear map

x̂Q(∂ψ): P → P ; x̂Q(∂ψ) = (n+1)
(n+1)ψ

pn+1; n ≥ 0 is called the operator dual to Q (∂ψ).

Comment 3.1. Dual in the above sense corresponds to adjoint in ψ-umbral calculus language of

linear functionals’ umbral algebra (compare with Proposition 1.1.21 in [22] ).

It is now obvious that the following holds.

Proposition 3.3. Let {qn
�
x̂Q(∂ψ)
�
}n≥0 be an arbitrary sequence of polynomials in the operator

x̂Q(∂ψ). Then T =
$
n≥0

qn
�
x̂Q(∂ψ)
�
Q (∂ψ)

n
defines a linear operator that maps polynomials into

polynomials. Conversely, if T is linear operator that maps polynomials into polynomials then there
exists a unique expansion of the form

T =
�

n≥0

qn
�
x̂Q(∂ψ)
�
Q (∂ψ)

n . (3.3.1)

Comment 3.2. The pair Q (∂ψ) , x̂Q(∂ψ) of dual operators is expected to play a role in the

description of quantum-like processes apart from the q-case now vastly exploited [2, 3].

Naturally the Proposition 3.2 for Q (∂ψ) and x̂Q(∂ψ) dual operators is also valid.

Summing up: we have the following picture for End(P ) - the algebra of all linear operators acting

on the algebra P of polynomials.
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Q(P ) ≡ '
Q

$
Q ⊂ End(P )

and of course Q(P ) �= End(P ) where the subfamily Q(P ) (with zero map) breaks up into sum
of subalgebras

$
Q according to commutativity of these generalized difference-tial operators Q (see

Definition 2.4 and Observation 2.2). Also to each subalgebra
$
ψ i.e. to each Q (∂ψ) operator there

corresponds its dual operator x̂Q(∂ψ)

x̂Q(∂ψ) /∈
�

ψ

and both Q (∂ψ) & x̂Q(∂ψ) operators are sufficient to build up the whole algebra End(P ) according

to unique representation given by (3.3.1) including the ∂ψ and x̂ψ case. Summarising: for any

admissible ψ we have the following general statement.

General statement:

End(P ) =[{∂ψ,x̂ψ}] = [{Q (∂ψ) , x̂Q(∂ψ)}] = [{Q , x̂Q}]

i.e. the algebra End(P ) is generated by any dual pair {Q , x̂Q} including any dual pair {Q (∂ψ)

, x̂Q(∂ψ)} or specifically by {∂ψ,x̂ψ} which in turn is determined by a choice of any admissible

sequence ψ.

As a matter of fact and in another words: we have bijective correspondences between different

commutation classes of ∂ψ-shift invariant operators from End(P ), different abelian subalgebras
$
ψ,

distinct ψ-representations of GHW algebra, different ψ-representations of the reduced incidence al-

gebra R(L(S)) - isomorphic to the algebra Φψ of ψ-exponential formal power series [2] and finally

- distinct ψ-umbral calculi [7, 11, 14, 23, 2]. These bijective correspondences may be naturally

extended to encompass also Q-umbral calculi, Q-representations of GHW algebra and abelian sub-

algebras
$
Q.

(Recall: R(L(S)) is the reduced incidence algebra of L(S) where

L(S)={A; A⊂S; |A| <∞}; S is countable and (L(S); ⊆) is partially ordered set ordered by inclusion

[10, 2] ).
This is the way the Rota‘s devise has been carried into effect. The devise “much is the iteration

of the few” [10] - much of the properties of literally all polynomial sequences - as well as GHW
algebra representations - is the application of few basic principles of the ψ-umbral difference operator
calculus [2].
ψ− Integration Remark :
Recall : ∂oxn = xn−1. ∂o is identical with divided difference operator. ∂o is identical with ∂ψ for

ψ = {ψ (q)n}n≥0 ; ψ (q)n = 1 ; n ≥ 0 . Let Q̂f(x)f(qx).

Recall also that there corresponds to the “∂q difference-ization” the q-integration [24, 25, 26] which
is a right inverse operation to “q-difference-ization”. Namely

F (z) :≡
��

q

ϕ

�
(z) := (1− q) z

∞�

k=0

ϕ
�
qkz
�
qk (3.3.2)

i.e.

F (z) ≡
��

q

ϕ

�
(z) = (1− q) z

%
∞�

k=0

qkQ̂kϕ

&
(z) =

�
(1− q) z 1

1− qQ̂
ϕ

�
(z) . (3.3.3)

Of course

∂q ◦
�

q

= id (3.3.4)

as

1− qQ̂
(1− q)∂0

�
(1− q) ẑ 1

1− qQ̂

�
= id. (3.3.5)

Naturally (3.3.5) might serve to define a right inverse operation to “q-difference-ization”
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(∂qϕ) (x) = 1−qQ̂
(1−q)∂0ϕ (x)

and consequently the “q-integration “ as represented by (3.3.2) and (3.3.3). As it is well known
the definite q-integral is an numerical approximation of the definite integral obtained in the q → 1
limit. Following the q-case example we introduce now an R-integration (consult Remark 2.1).

�

R

xn =


x̂ 1

R
�
qQ̂
�


xn =

1

R (qn+1)
xn+1; n ≥ 0 (3.3.6)

Of course ∂R ◦
�
R

= id as

R
�
qQ̂
�
∂o


x̂ 1

R
�
qQ̂
�


 = id. (3.3.7)

Let us then finally introduce the analogous representation for ∂ψ difference-ization

∂ψ = n̂ψ∂o; n̂ψx
n−1 = nψx

n−1; n ≥ 1. (3.3.8)

Then
�

ψ

xn =

�
x̂

1

n̂ψ

�
xn =

1

(n+ 1)ψ
xn+1; n ≥ 0 (3.3.9)

and of course

∂ψ ◦
�

ψ

= id (3.3.10)

Closing Remark:

The picture that emerges discloses the fact that any ψ-representation of finite operator calculus

or equivalently - any ψ-representation of GHW algebra makes up an example of the algebraization

of the analysis - naturally when constrained to the algebra of polynomials. We did restricted all our

considerations to the algebra P of polynomials. Therefore the distinction in-between difference and

differentiation operators disappears. All linear operators on P are both difference and differentiation

operators if the degree of differentiation or difference operator is unlimited. For example d
dx

=$
k≥1

dk
k!∆

k where dk =
"
d
dx
xk
#
x=0

= ( −1)k−1 (k − 1)! or ∆ =
$
n≥1

δn
n!

dn

dxn
where δn = [∆xn]x=0 = 1.

Thus the difference and differential operators and equations are treated on the same footing.

An interesting task (which seems to be still ahead) is to investigate the Q representation of finite

operator calculus as an example of the algebraization of the analysis - naturally when constrained

to the algebra of polynomials.

4 Glossary

Here now come short indicatory glossaries of terms and notation used by Ward [1], Viskov [6, 7],

Markowsky [11], Roman [27]- [31] on one side and the Rota-oriented notation on the other side.

Ward Rota - oriented (this note)

[n] ; [n]! nψ; nψ!

basic binomial coefficient [n, r] = [n]!
[r]![n−r]! ψ-binomial coefficient

�
n
k

�
ψ
≡ n

k

ψ

kψ !
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Ward Rota - oriented (this note)

D = Dx - the operator D ∂ψ - the ψ-derivative

Dxn = [n] xn−1 ∂ψ xn = nψ xn−1

(x+ y)n (x+ψ y)n

(x+ y)n ≡
n$
r=0

[n, r] xn−ryr (x+ψ y)
n =

n$
k=0

�
n
k

�
ψ
xkyn−k

basic displacement symbol generalized shift operator

Et; t ∈Z Ey (∂ψ) ≡ expψ{y∂ψ}; y ∈F

Eϕ(x) = ϕ(x+ 1) E(∂ψ)ϕ(x) = ϕ(x+ψ 1)

Etϕ(x) = ϕ
�
x+ t
�

Ey(∂ψ)xn ≡ (x+ψ y)n

basic difference operator ψ-difference delta operator

∆ = E − id ∆ψ = Ey(∂ψ)− id

∆ = ε(D)− id =
∞$
n=0

Dn

[n]! − id

Roman Rota - oriented (this note)

t; txn = nxn−1 ∂ψ - the ψ-derivative

∂ψxn = nψxn−1

'tk|p(x)( = p(k)(0) [∂kψp(x)]|x=0

evaluation functional generalized shift operator

ǫy(t) = exp {yt} Ey(∂ψ) = expψ {y∂ψ}

'tk|xn( = n!δn,k

'ǫy(t)|p(x)( = p(y) [Ey(∂ψ)pn(x)]|x=0 = pn(y)

ǫy(t)x
n =
$
k≥0

�
n
k

�
xkyn−k Ey(∂ψ)pn(x) =

$
k≥0

�
n
k

�
ψ
pk(x)pn−k(y)
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Roman Rota - oriented (this note)

formal derivative Pincherle derivative

f ′(t) ≡ d
dt
f(t) [Q(∂ψ)]‘≡ d

d∂ψ
Q(∂ψ)

f(t) compositional inverse of Q−1(∂ψ) compositional inverse of

formal power series f(t) formal power series Q(∂ψ)

θt; θtx
n = xn+1; n ≥ 0 x̂ψ; x̂ψx

n = n+1
(n+1)ψ

xn+1; n ≥ 0

θtt = x̂D x̂ψ∂ψ = x̂D = N̂

$
k≥0

sk(x)
kψ!

tk =
$
k≥0

sk(x)
kψ!

zk =

[g(f(z))]−1 exp {xf(t)} s(q−1(z)) expψ {xq−1(z)}

{sn(x)}n≥0 - Sheffer sequence q(t), s(t) indicators

for (g(t), f(t)) of Q(∂ψ) and S∂ψ

g(t) sn(x) = qn(x) - sequence sn(x) = S−1∂ψ qn(x) - ∂ψ - basic

associated for f(t) sequence of Q(∂ψ)

The expansion theorem: The First Expansion Theorem

h(t) =
∞$
k=0

	h(t)|pk(x)�
k! f(t)k T∂ψ =

$
n≥0

[T∂ψpn(z)]|z=0

nψ
Q(∂ψ)n

pn(x) - sequence associated for f(t) ∂ψ - basic polynomial sequence {pn}∞0

exp{yf(t)} =
∞$
k=0

pk(y)
k! t

k expψ{xQ−1(x)} =
$
k≥0

pk(y)
k! z

k

The Sheffer Identity: The Sheffer ψ-Binomial Theorem:

sn(x+ y) =
n$
k=0

�
n
k

�
pn(y)sn−k(x) sn(x+ψ y) =

$
k≥0

�
n
k

�
ψ
sk(x)qn−k(y)

Viskov Rota - oriented (this note)
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Viskov Rota - oriented (this note)

θψ - the ψ-derivative ∂ψ - the ψ-derivative

θψ xn = ψn−1
ψn

xn−1 ∂ψ xn = nψ xn−1

Ap (p = {pn}∞0 ) Q

Ap pn = pn−1 Qpn = nψpn−1

Bp (p = {pn}∞0 ) x̂Q

Bp pn = (n+ 1) pn+1 x̂Q pn = n+1
(n+1)ψ

pn+1

Eyp (p = {pn}∞0 ) Ey (∂ψ) = expψ{y∂ψ}

Eyp pn(x) =
n$
k=0

pn−k(x)pk(y) Ey (∂ψ) pn(x) =

=
$
k≥0

�
n
k

�
ψ
pk(x)pn−k(y)

T − εp-operator: Ey - shift operator:

T Ap = Ap T Eyϕ(x) = ϕ(x+ψ y)

T - ∂ψ-shift invariant operator:

∀y∈F TEyp = EypT ∀α∈F [T,Eα(∂ψ)] = 0

Q - δψ-operator: Q(∂ψ) - ∂ψ-delta-operator:

Q - ǫp-operator and Q(∂ψ) - ∂ψ-shift-invariant and

Qx = const �= 0 Q(∂ψ)(id) = const �= 0

{pn(x), n ≥ 0} - (Q,ψ)-basic {pn}n≥0 -∂ψ-basic

polynomial sequence of the polynomial sequence of the

δψ-operator Q ∂ψ-delta-operator Q(∂ψ)
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Viskov Rota - oriented (this note)

ψ-binomiality property ψ-binomiality property

Ψysn(x) = Ey(∂ψ)pn(x) =

=
n$

m=0

ψnψn−m
ψn

sm(x)pn−m(y) =
$
k≥0

�
n
k

�
ψ
pk(x)pn−k(y)

T =
$
n≥0

ψn[V Tpn(x)]Qn T =
$
n≥0

[Tpn(z)]|z=0
nψ!

Q(∂ψ)n

TΨyp(x) = Tp(x+ψ y) =

$
n≥0

ψnsn(y)Q
nSTp(x)

$
k≥0

sk(y)
kψ!

Q(∂ψ)
kS∂ψTp(x)

Markowsky Rota - oriented (this note)

L - the differential operator Q

Lpn = pn−1 Qpn = nψpn−1

M x̂Q

M pn = pn+1 x̂Q pn = n+1
(n+1)ψ

pn+1

Ly Fy (Q) =
$
k≥0

pk(y)
kψ!

Qk

Ly pn(x) = Fy (Q) pn(x) =

=
n$
k=0

�
n
k

�
pk(x)pn−k(y) =

$
k≥0

�
n
k

�
ψ
pk(x)pn−k(y)

Ea - shift-operator: Ey - ∂ψ-shift operator:

Ea f(x) = f(x+ a) Eyϕ(x) = ϕ(x+ψ y)

G - shift-invariant operator: T - ∂ψ-shift invariant operator:

EG = GE ∀α∈F [T,Eα(∂ψ)] = 0
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Markowsky Rota - oriented (this note)

G - delta-operator: Q(∂ψ) - ∂ψ-delta-operator:

G - shift-invariant and Q(∂ψ) - ∂ψ-shift-invariant and

Gx = const �= 0 Q(∂ψ)(id) = const �= 0

DL(G) G′ = [G(Q), x̂Q]

L - Pincherle derivative of G Q - Pincherle derivative

DL(G) = [G,M ]

{Q0,Q1, ...} - basic family {pn}n≥0 -ψ-basic

for differential operator L polynomial sequence of the

generalized difference operator Q

binomiality property Q - ψ-binomiali property

Pn(x+ y) = F y(Q)pn(x) =

=
n$
i=0

�
n
i

�
Pi(x)Pn−1(y) =

$
k≥0

�
n
k

�
ψ
pk(x)pn−k(y)
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GEOMETRY OF LAGRANGIAN MANIFOLDS IN

THERMODYNAMICS

V.P. MASLOV and A.S. MISCHENKO (Moscow)

Abstract

It is considered, that the classical thermodynamic properties of substance are defined
by relations connecting volume, pressure, temperature, entropy and energy of the given
substance. Generally substance is characterized by some number of magnitudes, which half
is intensive, and half – by extensive magnitudes. From this point of view pressure and
temperature are considered as intensive magnitudes, and volume and entropy - extensive
magnitudes. The modern point of view consists that in a condition of a thermodynamic
equilibrium the substance should be characterized by a point in the space R2n+1(p, q,Φ),
where coordinates q = (q1, q2, . . . , qn) are intensive magnitudes, first two of which are
pressure and temperature (q1 = P, q2 = −T ), and coordinate p1, p2, . . . , pn) are extensive
coordinates first two from which are volume and entropy (p1 = V, p2 = S). First four
coordinates (P, V, T, S) describe, so to tell, variables of a mechanical nature for homogeneous
substances. generally follows to consider heterogeneous (i.e. multicomponent) systems,
and also variables not mechanical nature (for example, electromagnetic properties). In any
case, the space R2n+1(p, q,Φ) is supplied by a contact structure, i.e. differential 1-form
ω = dΦ− pdq, and the set of thermodynamic equilibrium states of substance is represented
by a submanifold L ⊂ R2n+1(p, q,Φ), such that ω = 0. Hence tha projection L0 ⊂ R2n(p, q)
is a Lagrangian submanifold in symplectic space R2n(p, q) with the symplectic form Ω =
dp∧dq. Function Φ is function of action on Lagrangian manifold L0, dΦ = pdq. For classical
thermodynamics it coincides with a thermodynamic potential (Φ = E + PV − TS).

By Gibbs ([1]) the energy E is a function of variables (V, S), as, however, and all
remaining thermodynamic magnitudes. It hence, that Lagrangian manifold L0 bijectively
is projected on a domain in the space R2(P,S), i.e. the manifold L is defined by the graph
of function E = E(V, S).

Implicitly Gibbs actually assumed, that the surface E = E(V, S), being noncompact,
its any plane of support has by property, that touches a surface in each common point.
This condition ensures realization of the following statement: from minimization thermo-
dynamic potential at fixed P and T the positiveness of Hessian of function E = E(V, S),
Hess(V,S)E(V, S) > 0 follows. By Maslov ([3]) such condition are called essential. Then
in essential condition are fulfilled local thermodynamic inequalities ([2]). Let’s consider
function

Φ̃L(q) = min
q(x)=q;x∈L

Φ(x),

under condition of existence of the minimum in question. Consider a symplectic transfor-
mation ϕ of symplectic spaces

ϕ : R2n(p, q)−→R2n(P,Q)

and Lagrangian manifold
Γϕ ⊂ R4n(P, p,Q, q), which is the graph of transformations ϕ. Let S - be function of

action on Lagrangian manifold Γϕ, dS = PdQ − pdq. Let’s assume, that manifold Γϕ is
uniquely projected on the space R2n(Q, q). Then function S can be understood as function
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of variables (Q, q), S = S(Q, q). In this case the function S is called generating function of
transformation ϕ.

contact

˜

be defined similar to manifold L1.

Theorem 1. At an approaching choice of boundary conditions on manifold L and
transformation ϕ the following formula takes place

Φ̃L1(Q) = min
q

�
S(Q, q) + Φ̃L(q)

�
.

Similar, if ϕ1, ϕ2, . . . , ϕn is a sequence of symplectic transformations which admit gen-
erating functions

S1(Q, q1), S2(q1, q2), . . . , Sn(qn−1, qn),

and L1 = ϕ̃1ϕ̃2 · · · ϕ̃n(L), then

Φ̃L1(Q) = min
q1,q2,...,qn

�
S1(Q, q1) + S2(q1, q2) + · · ·+ Sn(qn−1, qn) + Φ̃L(qn)

�
.

The choice of boundary conditions should supply existence of a minimum at an eval-
uation of Φ̃L1 . The theorem 1 supplies the map of insignificant points of manifold L into
insignificant points of manifold L1 (compare [3]).

the Lagrangian L.

Theorem 2. Assume that the Lagrangian L(q, q̇) satisfies the conditions that the index
of inertia of Hessq,q̇L equals to (n, n). Let S(Q, q, t) be the generating function of transfor-
mation induced by Lagrangian L. Assume that there is a minimum

Φ̃L1(Q) = min
q

�
S(Q, q) + Φ̃L(q)

�
.

Then

HessQΦ̃L1(Q) < 0.

The theorem 2 ensures realization local thermodynamic inequalities in essential points
of Lagrange manifold L1.

Theorem 3. Let L be a Lagrange manifold which uniquely projected onto p—coordinates.
Then at an approaching choice of boundary conditions in essential points the local thermo-
dynamic inequalities are fulfilled, i.e.

HessqΦ
L(q) < 0.

As approaching boundary conditions for the theorem 3 the following condition can serve:
Condition 1. The function E(p), dE = −qdp, E = ΦL(p)−pq is locally convex upwards in
all domain of definition G(p) ⊂ Rn(p) behind elimination of some compact set K ⊂ G(p).

The condition 1 is fulfilled for the majority of modelling examples of gases (ideal gas,
Van der Waals gas , degenerated Fermi gas).

The theorems 1 and 2 allow to construct such Lagrangian manifolds, which are not pro-
jected uniquely on p - coordinate, but in all essential points satisfie to local thermodynamic
inequalities..
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1 Basic geometry — geometric classes — Jean’s strata

With every Goursat distribution — a particular rank—2 subbundle D in the tangent bundle
to an n—dimensional manifold M (C∞ or analytic; n ≥ r + 2) such that the Lie square
[D, D] of D is everywhere of rank 3, the Lie square of [D, D] is everywhere of rank 4, and
so on until obtaining the full TM — associated is its flag of ascending induced subbundles
Dr = D, Dr−1 = [D, D], Dr−2 = [[D, D], [D, D]], . . . , D0 = TM indexed by their coranks
assumed to be constant independently of a point in M . The length of such a flag is r.

This is a very restrictive condition and G. germs are (excepting n = 4 and r = 2 — the
classical situation of Engel, 1889) of codimension ∞ among germs of all distributions of
fixed rank and corank. Yet, there exists an interesting trade off — the absence of functional
parameters in local preliminary normal forms.
In fact, Goursat distributions of corank r locally admit polynomial presentations of degrees
≤ r−1 of Kumpera and Ruiz [KRu], using only real parameters, in numbers not exceeding
r − 3, many of them possibly redundant. They also admit a trigonometric presentation
springing from the kinematic model of a car pulling r − 1 passive trailers, developed by
several authors in the 90s and refined to its limits by Jean [J] bringing in critical angles
a1 = π

2 , aj+1 = arctan(sin aj)). As a matter of fact, Kumpera and Ruiz discovered
singularities hidden in flags of Goursat distributions. First attempts at defining them in a
coordinate-free way were made in [BH] (p. 455), then in [CMPRe]. In [MonZ] singularities
of Goursat flags were described in a canonical way, with a consistent use of the associated
subflag of Cauchy—characteristic subdistributions.

Recalling, the basic singular features in the car’ presentation (attention: in that model,
the last trailer has number 0, while trailer hooked to the car — number r−2, the car itself has
number r−1) are possible right angles between neighbouring trailers No k−1 and k. They
correspond to coalescences, at a point, of flag’ memberDk+1 with the Cauchy—characteristic
directions of two-step bigger memberDk−1. But flags exhibit also higher order singularities,
implicitly present already in [J] (and constituting its strength), explicitly called tangent in
[MonZ].

After [J], [CM] (last chap. 6), [MonZ] it is known that germs of G. flags of length r (or:
distributions of corank r) can be stratified into F2r−3 (Fibonacci number) geometric classes
encoded by words of length r over the alphabet {G,S, T} s. t. two first letters are always
G and never a T goes directly after a G.
A letter S is written in the code when a basic geometric coalescence takes place for the
corresponding flag’ member Dk, members being indexed, we recall, backwards (or else: the
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right angle a1 occurs between two neighbouring trailers). A sequence STT. . .T inside a
code corresponds to the next (i. e., closer to the car) neighbouring trailer making angle a2
with the second in the couple having the right angle, still next making angle a3 with the first
next, and so as long as many T’s is in the sequence. This singular behaviour geometrically
means that Dk+1 is tangent at the reference point to the locus of the previous singularity
‘Dk in basic singular position’, plus Dk+2 is tangent at that point to the locus of the
singularity ‘ST’, plus Dk+3 is tangent at that point to ‘STT’, and so on.

At the one next step the angle rule, or consecutive tangencies rule, breaks down and
now the letters G are written in row until some next S (related to a new right angle in the
configuration of trailers) appears.

Jean’s strata (the materializations of geometric classes on a given manifold carrying a G.
flag) are, when non-empty, regular embedded submanifolds of codimensions that are easily
computable. Namely, the codimension of a stratum having code C is equal to the number of
letters S and T in C (cf. [M5], Sec. 1.4). The only codimension—0 stratum GGG. . .G, being
open and dense, is non-empty on any n—dimensional manifold carrying a flag; G. germs at
its points are equivalent to the classical chained model of vonWeber (1898) — Cartan (1914)
— Goursat (1922) featuring no extra parameters:

dx2 − x3dx1 = 0 ,

dx3 − x4dx1 = 0 ,

dx4 − x5dx1 = 0 ,

∗ ∗
dxr+1 − xr+2dxk+1 = 0

(it should be understood as the germ at 0 ∈ Rn(x1, x2, . . . , xn)).

The germs at points of the codimension—1 strata GG. . .GSG. . .G have been classified
(for arbitrary length) in [M2], although only in [M3] the geometric description — based
on [MonZ] — of the conditions securing the singular models was given. These singularities
are simple in the singularity theory sense; parameters of K-R can be eliminated. The
only invariant is the position 3 ≤ k ≤ r of the unique letter S in the r-letter code (the
place in the flag where the unique coalescence of linear spaces at a point occurs). As a
representative of the relevant orbit on n—dimensional manifolds can be taken the germ at
0 ∈ Rn(x1, x2, . . . , xn) of

dx2 − x3dx1 = 0 ,

dx3 − x4dx1 = 0 ,

∗ ∗
dxk − xk+1dx1 = 0 ,

dx1 − xk+2dxk+1 = 0 ,

dxk+2 − (1 + xk+3)dxk+1 = 0 ,

dxk+3 − xk+4dxk+1 = 0 ,

∗ ∗
dxr+1 − xr+2dxk+1 = 0 .

In the present report we want to itemize what is known concerning the classification question
for singularities of flags of codimension 2. That is — singularities at points in Jean’s strata
having exactly two non—G letters in the code.
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2 Strata having ST in their codes.

These strata have been recently classified in [M5] modulo one more singular (of codimension
3) feature of flags. In fact, for the whole strata GGSTG. . .G, G. . .GSTG, G. . .GST and
for each GG. . .GSTG. . .G (at least three G’s in the beginning, at least two G’s in the end)
less certain embedded submanifold of codimension 3 (not definable in the G, S,T language),
we derive unique local models, the same in either of the categories C∞ or analytic. Again,
only the position of the sequence ST in the code counts, and these singularities appear to
be simple for Goursat flags of arbitrary length. When the letter S is at the k-th place in
the code, 4 ≤ k ≤ r − 3, the only local model, on a manifold of dimension n, is the germ
at 0 ∈ Rn(x1, x2, . . . , xn) of the rank—2 distribution described by the following r Pfaffian
equations

dx2 − x3dx1 = 0 ,

dx3 − x4dx1 = 0 ,

∗ ∗
dxk − xk+1dx1 = 0 ,

dx1 − xk+2dxk+1 = 0 ,

dxk+2 − xk+3dxk+1 = 0 ,

dxk+3 − (1 + xk+4)dxk+1 = 0 ,

dxk+4 − (1 + xk+5)dxk+1 = 0 ,

dxk+5 − xk+6dxk+1 = 0 ,

∗ ∗
dxr+1 − xr+2dxk+1 = 0 .

The unique local model for the entire stratum GGSTGG. . .G is as the above for k = 3
except that its (k + 3)-th, i. e., sixth equation reads dx7 − x8dx4 = 0 instead of dx7 −
(1 + x8)dx4 = 0 . The models for G. . .GSTG and G. . .GST are the above for k = r − 2
and k = r − 1, respectively, with simplifications due to the fact that only the coordinates
up to xr+2 enter the local description.

This series of smooth, or analytic, local models consists of certain mentioned in the be-
ginning (but highly specified in the course of a long proof) polynomial presentations of
[KRu], of the G. germs in the respective geometric classes. After passing to the (dual)
vector fields’ writing, polynomials are only of degree 2, because only one flag’s member is
in a basic singular position, but there is plenty of constants in a preliminary presentation
which should either be normalized (to 1 in the occurrence) or annihilated. Among the
latter, certain are (much) more resistant. Surprisingly, the reason for that boils down to
the arithmetical fact that — only for k ≥ 4 — there exist natural i’s such that 3k − 2 + i
does not sit in the additive semigroup generated by 3 and 3k − 5. As one can easily check,
these values of i are precisely 1, 4, . . . , 1 + 3(k− 4) (for inst., i = 1 and 4 for k = 5). They
are just instances of the interesting distances put forward in [M2] (Def. 4.2 there for j = 1;
note that that-time-k is now k − 3 1).

3 Strata having SS in their codes.

The work on these singularities is in progress. There are rather strong indications that
the whole strata GGSSG. . .G are just single orbits of the local classification, with possible

1 in Thm. 4.1 in [M2] the condition ‘(i− 1 ≥ k(j + 2) and i− 1 ∈ Zjk)’ should be replaced by ‘(i− 1−
k(j + 2) ∈ Zjk)’
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representatives

dx2 − x3dx1 = 0 ,

dx3 − x4dx1 = 0 ,

dx1 − x5dx4 = 0 ,

dx4 − x6dx5 = 0 ,

dx6 − (1 + x7)dx5 = 0 ,

dx7 − x8dx5 = 0 ,

dx8 − x9dx5 = 0 ,

∗ ∗
dxr+1 − xr+2dx5 = 0 .

Concerning the strata GG. . .GSSGG. . .G with at least three G’s in the beginning and at
least three G’s in the end, when the letters S are at the k-th and (k + 1)-th places in the
code, 4 ≤ k ≤ r− 4, we conjecture that, on an n—dimensional manifold, excepting certain
embedded submanifold of codimension 3 (again, not definable in the G, S, T language)
sitting in the stratum and cutting it into two disjoint parts, the germs at points of either
part are equivalent to precisely one of the couple of germs at 0 ∈ Rn(x1, x2, . . . , xn) of

dx2 − x3dx1 = 0 ,

dx3 − x4dx1 = 0 ,

∗ ∗
dxk − xk+1dx1 = 0 ,

dx1 − xk+2dxk+1 = 0 ,

dxk+1 − xk+3dxk+2 = 0 ,

dxk+3 − (1 + xk+4)dxk+2 = 0 ,

dxk+4 − xk+5dxk+2 = 0 ,

dxk+5 − (±1 + xk+6)dxk+2 = 0 ,

dxk+6 − xk+7dxk+2 = 0 ,

∗ ∗
dxr+1 − xr+2dxk+2 = 0 .

This should hold in both categories C∞ and analytic. As of now, this is, we repeat, a
conjecture with work on it being in progress.

4 Strata having two not neighbouring S in their codes.

One should not, however, suppose that all codimension—2 singularities of Goursat flags are
simple (admit only discrete local models). It is already not so in the geometric classes
having the sequence SGS in the code, and at least three G’s in the beginning, as shown in
[M4].

Before reviewing it in more detail, we want to note that first examples of contin-
uous moduli in the Goursat world were found in geometric classes of codimension 3:
GGGSTTGGG – [PRe], length 9, and, slightly later, GGSGSGSG – [M1], length 8.2

The latter example extends naturally and easily — see [M1], Rem. 4 — to the series of ge-
ometric classes GGSGSG. . .SG (when r is even) and GGGSGSG. . .SG (when r is odd)

2 Those findings were also briefly reported in [CMPRe].
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having precisely modality m =
"
r
2

#
− 3 wrt the classification of germs by diffeos acting in

the base manifold: the orbits in these classes are exactly parametrized by m different real
parameters.
A far-reaching [but, it should be admitted, not yet sufficiently verified on various examples]
conjecture of 1997 says that

"
r
2

#
− 3 is the maximal modality of germs of Goursat flags

of length r.

Since the previous (2nd) Krynica Conference, an extensive work has been done on the
geometric classes having the sequence SGS in their codes, and qualitatively new features,
wrt the basic geometries ST and SS, revealed. In fact, excepting the class GGSGSGGG,
a module of local C∞ or analytic classification was found not later than 3 steps after the
behaviour SGS in the flag, see Thm. 1 in [M4]. Any germ in the class GG. . .GSGSGGG,
with the first S being at the place k ≥ 4, appears equivalent to precisely one of the germs
at 0 ∈ Rn(x1, . . . , xk+7; xk+8, . . . , xn) of

dx2 − x3dx1 = 0 ,

dx3 − x4dx1 = 0 ,

∗ ∗
dxk − xk+1dx1 = 0 ,

dx1 − xk+2dxk+1 = 0 ,

dxk+2 − (1 + xk+3) dxk+1 = 0 ,

dxk+1 − xk+4dxk+3 = 0 ,

dxk+4 − (1 + xk+5) dxk+3 = 0 ,

dxk+5 − xk+6dxk+3 = 0 ,

dxk+6 − (c+ xk+7) dxk+3 = 0

parametrized by c ∈ R. This invariant parameter can be better exemplified by not reducing
to 0 the constant in the one before last Pfaffian equation above. Quoting from Rem. 1 in
[M4], in the family of KR pseudo-normal forms (for germs in the geometric class under
consideration)

dx2 − x3dx1 = 0 ,

dx3 − x4dx1 = 0 ,

∗ ∗
dxk − xk+1dx1 = 0 ,

dx1 − xk+2dxk+1 = 0 ,

dxk+2 − (1 + xk+3) dxk+1 = 0 ,

dxk+1 − xk+4dxk+3 = 0 ,

dxk+4 − (1 + xk+5) dxk+3 = 0 ,

dxk+5 − (b+ xk+6)dxk+3 = 0 ,

dxk+6 − (c+ xk+7) dxk+3 = 0 ,

the quantity c− 7b− 5
3b
2 is an invariant of the local smooth or analytic conjugacies preserving

0 ∈ Rn.
The analysis of the classes GG. . .GSGSG. . .G, but now with at least 4 letters G in the
beginning and more letters G in the end, was being continued after closing [M4].
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If the first S is at the place k ≥ 5, then (if the ambient dimension n is big enough)
in the next group of 4 letters G there hides itself a new invariant independent of the one
discussed above. Thus the modality of the SGS singularities is in many cases at least 2.
One can say that the first module is concealed, provided k ≥ 4, in the group of three generic
positions in the flag directly after the SGS behaviour, while the second module — provided
k ≥ 5 — in the group of the following four generic positions. It is plausible that, when k is
at least 6 and n is big enough, in certain next group of G’s a third module is located. And
more, it is not even excluded that in geometric classes of unbounded length 3 [GG. . .GSGS],
with l letters G in the beginning, modality can be at least l − 2.

The geometric classes with sequences SG. . .GS in their codes have been little inves-
tigated yet. Nevertheless, the arguments pinpointing moduli in generic prolongations of
the geometry SGS seem to guarantee the abundance of numeric invariants among germs
featuring the geometries SG. . .GS, too.
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KV-COHOMOLOGY OF CONTACT MANIFOLDS

MICHEL NGUIFFO BOYOM

Abstract

Given a contact manifold (M,a) the group of a-preserving diffeomorphisms is denoted
by G(a).We construct a Koszul-Vinberg chain complex C(a) on which G(a) acts by chain-
complex homomorphism. The G(a)-equivariant cohmology spaces of C(a) produce new
contact invariants.
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ON THE LEAVES OF A PREFOLIATION OF

A K—DIFFERENTIAL SPACE

ANDRZEJ PIA̧TKOWSKI

March 7, 2001

Two years ago at the conference in Krynica, prof. W. Waliszewski has presented the
definition of a K-differential space which is a generalization of the notions of a differentiable
manifold and a differential space in the sense of Sikorski.

I would like to define the notion of a prefoliation of a K-differential space and to present
theorems which describe some properties of leaves of the prefoliation.

First, I remind the definition of a K-differential space.
Let K be an arbitrary field with a non-trivial norm (we can think here about R or C).

Let M (0) = {α : α : Dα → K} be a family of functions with an arbitrary family of sets
{Dα} as domains. Define the set

.M (0) =
+

α∈M0

Dα

which will be called the set of points of M (0). In the set of points of M (0) define a topology
topM (0) as the weakest topology containing the family

{α−1(B) : B is open in K and α ∈M (0)}.

Next set

anM (0) := {ϕ ◦ (α1, ...αm) : m ∈ N and α1, ..., αm ∈M (0)

and ϕ is an analytical function defined on an open
set in Km with values in K}.

If A ⊂ .M (0) then

M (0)|A := {α|A ∩Dα : α ∈M (0)}

and

M
(0)
A := {β : ∀p∈Dβ

∃U∈topM (0)∃α∈M(0)(p ∈ U ∩A ⊂ Dβ ∧U ⊂ Dα ∧ β|U ∩A = α|U ∩A)}.

It is easy to see that M (0)|A ⊂M (0)
A .

Definition 1.1. The family M of functions with its values in K is called a K-differential
space, if the condition

anM =M =M.M

is fulfilled.

Let M (0) be an arbitrary family of functions with its values in K. One can prove the
following

Proposition 1.2. The family M := (anM (0)).M(0) is the smallest K-differential space with
the set .M (0) as the set of points, containing M (0).
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Definition 1.3. The K-differential space M defined above is called the K-differential space
generated by a family M (0).

Prof. W. Waliszewski has proved the following

Proposition 1.4. Let M be a K-differential space and A ⊂ .M . Then MA ⊂ M if and
only if A ∈ topM .

The above proposition gives

Corollary 1.5. Let M be a K-differential space and A ∈ topM . Then M |A =MA.

Let M , N be K-differential spaces.

Definition 1.6. The mapping f : .M → .N is said to be smooth if for each β ∈ N we have
β ◦ f ∈M .

If the above condition holds then we write f :M → N .
It is obvious that if f : M → N then f : topM → topN i.e. f is a continuous mapping

respective to the topologies topM and topN .
Let M be a K-differential space and p ∈ .M . Define M(p) := {α ∈M : p ∈ Dα}.

Definition 1.7. Any K-linear mapping v :M(p)→ K such that

v(α · β) = v(α) · β(p) + α(p) · v(β)

for α, β ∈ M(p) is called a vector tangent to M at p. The family of all vectors tangent
to M at p forms a vector space. This vector space is said to be tangent to M at p. It is
denoted by TpM .

It is easy to see that if v ∈ TpM , U ∈ topM and α ∈M then v(α) = v(α|U).
Let M,N be K-differential spaces and f : M → N . For each p ∈ .M , the mapping f

determines a linear mapping (f∗)p : TpM → Tf(p)N called a tangent mapping. Namely, for
v ∈ TpM and β ∈ N(f(p)) we have

((f∗)pv) (β) = v(β ◦ f).

Definition 1.8. The mapping f : M → N is called an immersion, if for each p ∈ .M the
tangent mapping (f∗)p is a monomorphism.

Now we define a prefoliation of a K-differential space. Let M = {α : α : Dα → K} be
a K-differential space.

Definition 1.9. A pair (M,F ) of K-differential spaces is called a prefoliation of M if

1) .F = .M ,
2) topF is locally connected,
3) ∀p∈.M∃U∈topF (p ∈ U ∧ FU =MU ).

Connected components of topF are called leaves of (M,F ).

It is easy to see that the notion of a prefoliation is a generalization of the notion of the
regular foliation, and of the Stefan foliation. Moreover, if (M,F ) is a prefoliation of K-
differential spaceM then (topM, topF ) is a topological foliation in the sense of Ehresmann.

It is not difficult to prove the following

Theorem 1.10. If (M,F ) is a prefoliation of a K-differential space M then for the map-
ping f = id.M we have f : F →M .
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Proof. If β ∈M then for each p ∈ .M denote by Up such a neighbourhood of p respective
to topF for which

FUp =MUp .

Thus we get an open covering {Up}p∈.M of the set .M respective to topF with

β|Up ∈M |Up ⊂MUp = FUp .

Therefore β ∈ F , since F is a K-differential space.
¿From the theorem we get

Corollary 1.11. Let (M,F ) be a prefoliation of a K-differential space M . Then topM ⊂
topF and M ⊂ F .

We also have

Theorem 1.12. If (M,F ) is a prefoliation of a K-differential space M then the mapping
f = id.M is an immersion.

Proof. Suppose that (f∗)p(v) = 0 for some v ∈ TpF . Then for each β ∈ M(p) we have
v(β ◦ f) = 0, i.e. for each G ∈ topF with p ∈ G we have

v((β ◦ f)|G) = 0 (1.1.1)

Let α ∈ F (p). There exists U ∈ topF such that p ∈ U and FU = MU by the definition
of a prefoliation. Therefore, α|Dα ∩U ∈ F |U = FU =MU by Corollary 5. Thus there exist
V ∈ topM and γ ∈ M such that p ∈ V ∩ U ⊂ Dα and V ⊂ Dγ and γ|V ∩ U = α|V ∩ U .
Obviously γ ∈M(p) and because of Corollary 11, V ∩ U ∈ topF . Consequently,

v(α) = v(α|V ∩U) = v(γ|V ∩ U) = v(γ ◦ f |V ∩U) = 0

by (1.1.1). Thus v = 0.

Corollary 1.13. If L is a leaf of a prefoliation (M,F ) and ϕ : L ∋ q �→ q ∈ .M then
ϕ : FL →M and ϕ is an immersion.

Corollary 1.14. If L is a leaf of a prefoliation (M,F ) then ML ⊂ F |L.

We show that even if id : F → M is an immersion and (topM, topF ) is a topological
foliation then (M,F ) has not to be a prefoliation.

Example 1.15. Let M be the R-differential space generated by the family of all continuous
functions defined on R with values in R and let F be the R-differential space generated by
the family of all C∞ functions defined on R with values in R. Then (topM, topF ) is the
trivial topological foliation in the sense of Ehresmann of R. Remark that f = idR : R→ R

is a smooth mapping F → M since M ⊂ F . One can prove that TpF is a vector space of
dimension 0 for each p ∈ R. Therefore, (f∗)p is a monomorphism for each p ∈ R.

It is obvious that for each U ∈ topF = topM we have MU = M |U �= F |U = FU which
means that (M,F ) is not a prefoliation of an R-differential space M .

Using the definition of a prefoliation, one can prove

Lemma 1.16. If (M,F ) is a prefoliation of a K-differential space, then for each β ∈ F and
for each p ∈ Dβ there exist U ∈ topF and α ∈M such that p ∈ U ⊂ Dβ and β|U = α|U .
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Definition 1.17. The leaf L of a prefoliation (M,F ) is said to be proper if (topF )|L =
(topM)|L.

We have the following

Theorem 1.18. Let (M,F ) be a prefoliation of a K-differential space M and L be a proper
leaf of (M,F ). Then

ML = F |L.

Proof. The inclusion ML ⊂ F |L holds for each L by Corollary 14.
Let γ ∈ F |L. By a local connectedness of topF we have L ∈ topF and consequently

γ ∈ F |L ⊂ F by Proposition 4 and Corollary 5. By Lemma 16, for each p ∈ Dγ there
exists V ∈ topF such that p ∈ V ⊂ Dγ ⊂ L and there exists α ∈M such that γ|V = α|V .
Since L is proper, there exists W ∈ topM such that V = W ∩ L. Let p ∈ Dγ and define
U :=W ∩Dα ∈ topM and α := α|U ∈M . Then

1) p ∈ U ∩L ⊂ Dγ since U ∩ L ⊂W ∩ L = V ⊂ Dγ ;
2) U ⊂ Dα (in fact, the equality holds);
3) α|U ∩L = α|U ∩L = α|W ∩L∩Dα = γ|W ∩L∩Dα = γ|U ∩L sinceW ∩L∩Dα ⊂ V .
By 1)-3) we have γ ∈ML.
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SUBMODULES OF VECTOR FIELDS AND ALGEBROIDS

PAUL POPESCU

Abstract

Algebroids and generalized algebroids defined in [3], particularly Courant algebroids
considered in [1], define involutive and finite generated submodules of vector fields. But
the most known algebroids are the Lie algebroids. They are considered by J. Pradines in
[4] in connection with Lie groupoids, giving a coherent generalization of Lie theory. The
third theorem of Lie related to the integration of Lie algebroids to Lie groupoids failed
from the global viewpoint (Almeida-Molino, 1985, see [2, Theorem 4.4]). Most of people
focused in particular to the global integration problem of Lie algebroids to Lie groupoids.
Even the integration is not always possible, some particular integrable cases or obstructions
regarding the integration were studied.

The algebroids considered in this paper are vector bundles which the module of sections
fulfills the conditions of a Lie algebroid, except the Jacobi condition. But as our knowl-
edge is, the relation between algebroids and vector fields, regarding the situation when a
submodule of vector fields can be defined by the image of an algebroid, has not been yet
studied. We prove that the necessary and sufficient condition for a submodule of vector
fields to be defined by the image of an algebroid is that the module be involutive and finite
generated. It means that the algebroid is a sufficient notion for these modules. As a first
case when this situation occurs, we prove that a singular Riemannian foliation is always
defined by an algebroid. As a second application, the canonical central anchored bundle of
regular and singular Riemannian foliations is defined and the cojecture of P. Molino which
asserts that the closures of leaves of a singular Riemannian foliation is also a singular
Riemannian foliation is proved. In fact, Molino has left to prove only that the closures of
leaves of a singular Riemannian foliation is a Stefan-Sussmann foliation [2, Chapter 6]; here
we fill up this gap.
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[4] Pradines J., Théorie de Lie pour les groupoides differentiables. Calcul différentiel
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MODULAR CLASSES OF ANCHORED MODULES

PAUL POPESCU and MARCELA POPESCU

The categories of modules with differentials and the vector bundles with differentials, are
defined by the first author in [5]. As explained in [4] or [5], they are two categories of vector
bundles and two categories of modules; they are also two functors from the each category to
the other. Some corresponding functors are induced from the categories of vector bundles
with differentials to the corresponding categories of modules with differentials.

As it is proved in [7], there are two functors (called here the derived functors) from the
two categories of anchored modules which allow linear connections to the two categories of
Lie pseudoalgebras; in the presence of linear connections, these functors can be defined on
all the categories of modules with differentials. A Lie pseudoalgebra (the derived Lie pseu-
doalgebra) can be associated with an anchored module which allows a linear connection.
The derived Lie pseudoalgebra does not depend on the linear connection, but on the anchor,
being an invariant object associated with an anchored module which allows a linear connec-
tion. Considering also the correspondences of morphisms, one define two pseudofunctors
(i.e. a functor except sending the identity in the identity) and two natural functors (called
the derived functors) respectively on the two categories of anchored modules which allow
linear connections to the corresponding two categories of Lie pseudoalgebras.

We prove in the paper that the construction of the derived functors can be also per-
formed using an other way, which is more suitable for vector bundles [6].

We show that a linear connection lifts on the derived module to a curvature free con-
nection. The Picard groups related to anchored modules as well as the modular classes
of preinfinitesimal modules and almost Lie structures are defined. The modular classes
defined here agrees in a certain sense with the modular class of a Lie pseudoalgebra defined
by J. Huebschmann [3].
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ERGODIC AND SPECTRAL PROPERITIES OF LAGRANGIAN AND

HAMILTONIAN DYNAMICAL SYSTEMS
AND THEIR ADIABATIC PERTURBATIONS

ANATOLIY K. PRYKARPATSKY

Abstract

Any Lagrangian function on a closed finite-dimensional manifold M , when depending
2π—periodically on the evolution parameter generates so called Lagrangian flow. Its related
group of diffeomorphisms on T (M )× S1 makes it possible to construct the set of normed
(probabilistic) invariant measures on T (M) × S1. The latter appears to be a convex set
completely characterized by means of so called extreme points being at the same time
due to a result of J. Mather ergodic measures of the Lagrangian flow under regard. On
the other hand, there exists a natural mapping from the space of all invariant measures
space mentioned above into the first homology group H1(M ;R) of the manifold M via a
well known Mather’s construction and some its generalizations subject to nonautonomous
Hamiltonian flows on symplectic speces, whose image is exactly the measure homology of
our Lagrangian or the corresponding Hamiltonian system. Its properties prove to be very
important for detecting the corresponding ergodic measures, making use a new tool of its
studying related with so called Legendrian transformations and Poincare -Cartan invari-
ants. Moreover in the case when our Lagrangian function depends adiabatically on a small
parameter ε↓ 0 through the expression εt ∈ R/2πZ, a suitable application of the Legen-
drian transformation together with the technique of Poincare -Cartan invariants makes it
possible to investigate the existence and properties of so called adiabatic invariants and
the corresponding limiting ergodic measures on T (M)× S1. These same properties can be
studied simultaneously making use also of the theory of spectral invariants applied to the
generator of the corresponding Hamiltonian flow on the symplectic phase space T ∗(M).
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INFINITE DIMENSIONAL LIE THEORY
BY MEANS OF THE EVOLUTION MAPPING

TOMASZ RYBICKI

Abstract

An infinite dimensional Lie theory is said to be abstract if in the definition of the smooth
structure on Lie groups charts are not required. Several abstract settings exist (Souriau,
Chen, Omori), but usually they do not correspond to each other. The necessity of them is
motivated by important examples and applications.

An infinite dimensional Lie group G with its Lie algebra g is called regular if there is a
bijective evolution mapping

evolrG : C∞(R, g)→ C∞((R, 0), (G, e))

such that its evaluation at 1 ∈ R is smooth. This notion has been introduced by Milnor. A
concept generalizing regular Lie groups is proposed. In this concept the smooth structure
is defined by means of the evolution mapping evolrG. Basic properties of Lie groups can be
derived from our definition. New interpretations of the inheritance property, the third Lie
theorem, and other facts are possible.

KEYWORDS : infinite dimensional Lie group, regularity

Department of Applied Mathematics at AGH
al. Mickiewicza 30, 30-059 Kraków
POLAND
tomasz@uci.agh.edu.pl

82



ON THE SET OF GEODESIC VECTORS OF A LEFT-INVARIANT

METRIC

JÁNOS SZENTHE

If (M,<,>) is a Riemannian manifold its geodesic γ : R→M is said to be homogeneous
if there is a 1-parameter group of isometries Φ : R×M →M of the Riemannian manifold
such that

γ(τ) = Φ(τ, γ(0)), τ ∈ R

holds. As the comprehensive paper of C. S. Gordon shows the existence of homogeneous
geodesics in homogeneous Riemannian manifolds has essential geometric consequences [G].
Several results have been obtained recently concerning the existence of homogeneous geodesics.
First it has been shown by V. V. Kajzer that if G is a Lie group and <,> a left-invariant
Riemannian metric on G then the Riemannian manifold (G,<,>) has at least 1 homoge-
neous geodesic [Ka]. Generalizing this result of Kajzer it has been shown by O. Kowalski
and J. Szenthe that if M = G/H is a homogeneous manifold and <,> an invariant metric
on G/H then the homogeneous Riemannian manifold (G/H,<,>) has at least 1 homoge-
neous geodesic [Ko-Sz]. Moreover, it has been shown by Szenthe that if G is a compact
semi-simple Lie group of rank ≥ 2 and <,> is a left-invariant Riemannian metric on G then
the Riemannian manifold has infinitely many homogeneous geodesics [Sz]. In the study of

the set of homogenous geodesics of a homogeneous Riemannian manifold (G/H,<,>) the
concept of geodesic vector proved to be convenient [Ko-V]. Let Φ : G× (G/H)→ G/H be
the canonical action, g the Lie algebra of G and Exp : g → G its exponential map. Put
o = H ∈ G/H, fix a tangent vector v ∈ To(G/H) and consider the geodesic γ : R→ G/H
defined by v = γ̇(0). It is said that v is a geodesic vector if γ is a homogeneous geodesic of
(G/H,<,>); in other words if

γ(τ) = Φ(Exp(τX), o), τ ∈ R

holds with some X ∈ g. The study of the set of homogeneous geodesics of a homogenous
Riemannian manifold is obviously reducible to the study of the set of its homogeneous
vectors. However, it seems that the set of the geodesic vectors of a homogeneous Riemannian

manifold does not admit a simple description in general. Namely, O. Kowalski, S. Nikčević
and Z. Vlašek in a joint paper have given several examples where the set of geodesic vectors
have essentially different structure. In the lecture results are presented concerning the set
of geodesic vectors of a homogeneous Riemannian manifold (G,<,>), where G is a compact
semi-simple Lie group and <,> is a left-invariant Riemannian metric on G.
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ON THE STABILITY OF

SMOOTH DYNAMICAL SYSTEMS AND DIFFEOMORPHISMS

ANDRZEJ ZAJTZ

Abstract

General methods of studying global stability problems of smooth dynamical systems
and diffeomorphisms are presented.

In particular, one proves that any complete C∞ vector field X in a Hilbert space E
satisfying 'X(x), v( ≥ δ > 0 for some constant field v and all x ∈ E (for instance, if

)X−v) ≤ 
v

2 ) is globally rectifiable to v by a C∞ diffeomorphism of E. Thus any nonzero

constant vector field in E is smoothly stable in a 0-order neighborhood.
Similarly one obtains the global stability (in a 1st-order neighborhood) of expansive

non-resonant linear systems.
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