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Abstract.

Let g : [0,1] → R be a left-continuous nondecreasing function and µg the
Lebesgue-Stieltjes measure generated by g on [0,1].

We prove a viability result for the following Initial Value Problem which
corresponds to a Stieltjes differential inclusion:


u′g(t) ∈ F (t, u(t)), µg − a.e. t ∈ [0,1)

u(t) ∈ K(t), ∀ t ∈ [0,1]

u(0) = x0 ∈ K(0)

where

K : [0,1]→ Pcc(Rd), F : [0,1]× Rd → Pcc(Rd) (d ≥ 1)

are convex compact set valued maps.

Based on the above result, we obtain a Filippov type lemma for Stieltjes
inclusions.

2



Preliminaries.

Let g : [0,1]→ R be a left-continuous nondecreasing function.

• The measurability with respect to the σ-algebra (containing Borel sets)
defined by g on [0,1] will be called g-measurability.

• µg stands for the Lebesgue-Stieltjes measure generated by g on [0,1].

In particular, for 0 ≤ a < b ≤ 1, we have

µg([a, b)) = g(b)− g(a), µg({a}) = g(a+)− g(a).

• The Lebesgue-Stieltjes (LS) integrability w.r.t. g means the abstract
Lebesgue integrability w.r.t. the Stieltjes measure µg.

• Let L1
g([0,1], µg) be the space of LS-integrable functions u : [0,1] →

Rd (d ∈ N, d ≥ 1) w.r.t. µg.

• The g− topology on [0,1] is the topology with basis the class of all sets

Vg,δ(t) = {t′ ∈ [0,1] : |g(t′)− g(t)| < δ}, δ > 0, t ∈ [0,1].
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Stieltjes derivative

• R. López Pouso, A. Rodriguez, A new unification of continuous, discrete
and impulsive calculus through Stieltjes derivatives. Real Anal. Exch., 2015.

• Young, W.H., On integrals and derivatives with respect to a function, Proc.
London Math. Soc., 1(1917), s2-15 35 –63.

Definition: The derivative with respect to g (the g–derivative) of f : [0,1]→
Rd at a point t ∈ [0,1] is

f ′g(t) = lim
s→t

f(s)− f(t)

g(s)− g(t)
if g is continuous at t,

f ′g(t) = lim
s→t+

f(s)− f(t)

g(s)− g(t)
if g is discontinuous at t,

provided the limit exists.

Remark: If t is a point of discontinuity of g, the g-derivative f ′g(t) exists if
and only if the sided limit f(t+) exists, and in this case

f ′g(t) =
f(t+)− f(t)

g(t+)− g(t)
.
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The definition has no meaning in the parts of the domain in which g is
constant; denote such a region by Cg (this doesn’t provoke problems since
µg(Cg) = 0).

However, it has been generalized so as to include the points of Cg as well.

• F.J. Fernández, I. Márquez Albés, F.A.F. Tojo, On first and second order
linear Stieltjes differential equations, J. Math. Anal. Appl. 511(2022), No.
1, 126010.

Let

Ng = {un, vn : n ∈ N} \Dg,

where Cg =
⋃
n∈N(un, vn) with (un, vn)n pairwise disjoint.

Let N−g = {un : n ∈ N} \Dg and N+
g = {vn : n ∈ N} \Dg.



The derivative with respect to g of f : [0,1]→ Rd at t ∈ [0,1] is defined by

f ′g(t) = lim
t→t

f(t)− f(t)

g(t)− g(t)
if t /∈ Dg ∪ Cg,

f ′g(t) = lim
t→t+

f(t)− f(t)

g(t)− g(t)
if t ∈ Dg,

f ′g(t) = lim
t→vn+

f(t)− f(vn)

g(t)− g(vn)
if t ∈ (un, vn) ⊆ Cg,

if the limits exist.
The points of Ng must be approached in the following manner:

f ′g(t) = lim
t→t+

f(t)− f(t)

g(t)− g(t)
if t ∈ N+

g ,

f ′g(t) = lim
t→t−

f(t)− f(t)

g(t)− g(t)
if t ∈ N−g .



Classical Viability Theory.

Let K be a closed subset of Rd (d ≥ 1).

Definition 2.1. (G. Bouligand (1932)). Let x ∈ K. The contingent cone
of K at x is defined as follows:

TK(x) =

{
y ∈ Rd : lim

h→0+
inf

d(x+ hy,K)

h
= 0

}
.

• y ∈ TK(x) iff there there exist sequences

(hk)k ⊆ R+ , (xk)k ⊆ K
such that

lim
k→∞

hk = 0, y = lim
k→∞

xk − x
hk

.

• TK(x) is a closed cone. If K is convex, TK(x) is convex too.

• for x ∈ intK, TK(x) = Rd.
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Definition 2.2. A function u : [0,1]→ Rd is called K−viable iff u(t) ∈ K, ∀ t ∈
[0,1].

Proposition 2.1. Let u : [0,1]→ K be K− viable and differentiable. Then

u′(t) ∈ TK(u(t)), ∀ t ∈ [0,1).

Theorem 2.1.(M. Nagumo (1942)). Let f : K → Rd be a bounded contin-
uous map. Then the following are equivalent:

(i) for each x0 ∈ K, the Initial Value Problem

u′(t) = f(u(t)), t ∈ [0,1], u(0) = x0

has at least one K− viable solution.

(ii) f(x) ∈ TK(x), ∀ x ∈ K.
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The above theorem is extended to the case of differential inclusions as follows:

Theorem 2.2. (J.-P. Aubin - A. Cellina (1984)). Let F : K → P(Rd) be
upper semicontinuous with compact convex values . Then the following are
equivalent:

(i) for each x0 ∈ K, the Initial Value Problem

u′(t) ∈ F (u(t)), t ∈ [0,1], u(0) = x0

has at least one K− viable solution.

(ii) F (x) ∩ TK(x) 6= Ø, ∀ x ∈ K.

Next, we consider the more general case where K depends on the time
t ∈ [0,1].

Namely, let K : [0,1]→ P(Rd) be a set-valued map with closed graph.

Definition 2.3. A function u : [0,1] → Rd is called K(·)−viable iff u(t) ∈
K(t), ∀ t ∈ [0,1].
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Definition 2.4. Let t ∈ [0,1), x ∈ K(t). The contingent derivative of the
map K at (t, x) is defined as follows:

DK(t, x) =

{
y ∈ Rd : lim

h→0+
inf

d(x+ hy,K(t+ h))

h
= 0

}
.

Remark 2.1: y ∈ DK(t, x) iff there exist sequences

(hk)k ⊆ R+ , (xk)k ⊆ Rd

such that

lim
k→∞

hk = 0, xk ∈ K(t+ hk), k ∈ N, y = lim
k→∞

xk − x
hk

.

Remark 2.2: Assume that K is upper semicontinuous. Then for all t ∈
[0,1), x ∈ K(t),

y ∈ DK(t, x) ⇐⇒ (1, y) ∈ TGraphK(t, x).

In particular, if K(t) = K, t ∈ [0,1], then

DK(t, x) = TK(x), for all t ∈ [0,1), x ∈ K.
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Proposition 2.2. Let u : [0,1]→ Rd be K(·)− viable and differentiable. Then

u′(t) ∈ DK(t, u(t)), ∀ t ∈ [0,1).

Theorem 2.3. (J.-P. Aubin - A. Cellina (1984)). Let F : GraphK → P(Rd)
be upper semicontinuous with compact convex values. The following are
equivalent:

(i) for each x0 ∈ K, the Initial Value Problem

u′(t) ∈ F (t, u(t)), t ∈ [0,1], u(0) = x0

has at least one K(·)− viable AC solution.

(ii) F (t, x) ∩DK(t, x) 6= Ø, ∀ t ∈ [0,1), ∀ x ∈ K(t).

Now we consider the much more demanding case of measurable viability
problems.
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Theorem 2.4.(H. Frankowska - S. Plaszkacz -T. Tzezuchowski (1995)).

Assume that K is absolutely continuous from the left in the following
sense :

for every ε > 0 there exists δε > 0 satisfying, for any set {(t′γ, t′′γ)}γ∈Γ of non-
overlapping subintervals of [0,1] with Γ at most countable index set,

∑
γ∈Γ

(t′′γ − t′γ) < δε ⇒
∑
γ∈Γ

e(K(t′γ),K(t′′γ)) < ε.

Moreover, let F : [0,1]× Rd → Pkc(Rd) be such that

• F is of Carathéodory type, i.e.,

– for µ− a.e. t ∈ [0,1], x 7→ F (t, x) is continuous.

–for each x ∈ Rd, t 7→ F (t, x) is measurable.

• for µ− a.e. t ∈ [0,1] and all x ∈ Rd,

|F (t, x)| ≤ h(t),

where h ∈ L1([0,1], µ), h ≥ 0.
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Then the following are equivalent:

(i) for each x0 ∈ K(0), the Initial Value Problem u′(t) ∈ F (t, u(t)), µ− a.e. t ∈ [0,1]

u(0) = x0 ∈ K(0),

has at least one K(·)− viable absolutely continuous (AC) solution.

(ii) there exists E ⊂ [0,1] with µ(E) = 0 such that for every t ∈ [0,1] \E and
every x ∈ K(t),

F (t, x) ∩DK(t, x) 6= Ø.

11



A viability result for Stieltjes differential inclusions.

We will need the notion of contingent g− derivative which extends the
notion of contingent derivative mentioned above and it is naturally used in
studying viability problems for Stieltjes differential inclusions.

Definition 3.1 (R. López Pouso - I. Márquez Albés - J. Rodriguez-
Lopez (2020)). Let t ∈ [0,1), x ∈ K(t). The contingent g− derivative of
K at (t, x) is the set DgK(t, x) containing all y ∈ Rd with the property

lim inf
h→0+

d(x+ (g(t+ h)− g(t))y, K(t+ h))

g(t+ h)− g(t)
= 0.

It is easily checked that y ∈ DgK(t, x) iff there exist sequences

(hk)k ⊆ R+ , (xk)k ⊆ Rd

such that

lim
k→∞

hk = 0, xk ∈ K(t+ hk), k ∈ N, y = lim
k→∞

xk − x
g(t+ hk)− g(t)

.
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Let g : [0,1] → R be a left-continuous nondecreasing function and µg the
Lebesgue-Stieltjes measure generated by g on [0,1].

We aim to prove a viability result for the following Initial Value Problem
which corresponds to a Stieltjes differential inclusion:


u′g(t) ∈ F (t, u(t)), µg − a.e. t ∈ [0,1)

u(t) ∈ K(t), ∀ t ∈ [0,1]

u(0) = x0 ∈ K(0).

(1)

Hypotheses:

1). K : [0,1] → Pcc(Rd) is g-absolutely continuous from the left w.r.t.
the g− topology in the following sense :

for every ε > 0 there exists δε > 0 satisfying, for any set {(t′γ, t′′γ)}γ∈Γ of non-
overlapping subintervals of [0,1] with Γ at most countable index set,

∑
γ∈Γ

(g(t′′γ)− g(t′γ)) < δε ⇒
∑
γ∈Γ

e(K(t′γ),K(t′′γ)) < ε.
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Moreover, we assume that at every discontinuity point t1 ∈ [0,1) of g,
K has limit at the right for the usual topology in the sense of Hausdorff
distance:

there exists K(t+1 ) ∈ Pcc(Rd) such that for every ε > 0 there exists δt1,ε > 0
satisfying, for any t ∈ [0,1] with t1 < t < t1 + δt1,ε ,

K(t) ⊂ K(t+1 ) +Bε(0) and K(t+1 ) ⊂ K(t) +Bε(0).

2). The map F : [0,1] × Rd → Pcc(Rd) is upper semicontinuous for the
product of the g-topology of [0,1] with the usual topology of Rd, i.e.,

for each (t, x) and ε > 0 there is δε > 0 such that for all (t′, x′),

if |g(t)− g(t′)| < δε and ||x′ − x|| < δε, then

F (t′, x′) ⊂ F (t, x) +Bε(0).

3). There is M > 0 such that for every (t, x) ∈ GraphK, |F (t, x)| ≤M .

4). There exists E ⊂ [0,1] with µg(E) = 0 such that for every t ∈ [0,1] \ E
and every x ∈ K(t),

F (t, x) ∩DgK(t, x) 6= Ø.
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The first key auxiliary result is the following

Lemma 3.1. Let t0 ∈ [0,1) \ E and x0 ∈ K(t0). Then for each ε > 0, there
exist δ > 0 and v : [t0, t0 + δ]→ Rd a g-absolutely continuous function with

v(t0) = x0 ;

v(t) ∈ K(V l
g,ε(t)) +B(2+M)ε(0), ∀t ∈ [t0, t0 + δ];

v(t0 + δ) ∈ K(t0 + δ);

v′g(t) ∈ F ((Vg,ε(t)× (v(t) +B(2+M)ε(0))) ∩GraphK) +Bε(0),

µg − a.e. on [t0, t0 + δ).

Here

V l
g,ε(t) = {t′ ∈ [0, t] : g(t)− g(t′) < ε}

and

Vg,ε(t) = {t′ ∈ [0,1] : |g(t)− g(t′)| < ε}.
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Sketch of the proof:

We will present the proof only in the case where

• t0 is a discontinuity point of g

• g is not constant at the right of t0 .

Due to hypothesis 4), we may find

y ∈ F (t0, x0) ∩DgK(t0, x0),

i.e.,

y = lim
k→∞

xk − x0

g(t0 + hk)− g(t0)
,

for some hk ↓ 0 and xk ∈ K(t0 + hk) for all k ∈ N.

It follows that there exists the limit lim
k→∞

xk and

y =
lim
k→∞

xk − x0

g(t+0 )− g(t0)
.
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Moreover, hypothesis 1) implies that lim
k→∞

xk ∈ K(t+0 ).

Choose yk ∈ F (t0 + hk, xk), k ∈ N and kε such that

g(t0 + hkε)− g(t+0 ) < ε ·min

(
1,
g(t+0 )− g(t0)

1 +M

)
,

‖xkε − lim
k→∞

xk‖ < ε ·min

(
1,
g(t+0 )− g(t0)

1 +M

)
,

where M > 0 is as postulated in hypothesis 3), i.e.,

|F (t, x)| ≤M, for all (t, x) ∈ GraphK.

Define v : [t0, t0 + hkε]→ Rd as follows:

v(t) =

 x0, if t = t0

xkε + ykε(g(t)− g(t0 + hkε)), if t ∈ (t0, t0 + hkε].



Fix t ∈ (t0, t0 + hkε]. Then

‖v(t)− lim
k→∞

xk‖ ≤ ε+ ‖v(t)− xkε‖ ≤

≤ ε+ ‖(g(t)− g(t0 + hkε))ykε‖ ≤ ε+ εM.

Besides, hypothesis 1) implies that

K(t+0 ) ⊂ K(V l
g,ε(t)) +Bε(0).

Consequently,

v(t) ∈ K(t+0 ) +Bε+εM(0) ⊂ K(V l
g,ε(t)) +B2ε+εM(0).



Moreover, v(t0 + hkε) = xkε ∈ K(t0 + hkε).

To check the last assertion for t = t0 we may write

v′g(t0) =
v(t0+)− v(t0)

g(t0+)− g(t0)
=
xkε − x0 + ykε(g(t0+)− g(t0 + hkε))

g(t0+)− g(t0)
,

whence

‖v′g(t0)− y‖ =

∥∥∥∥∥xkε − lim
k→∞

xk + ykε(g(t0+)− g(t0 + hkε))

g(t0+)− g(t0)

∥∥∥∥∥
≤
||xkε − lim

k→∞
xk||

g(t0+)− g(t0)
+
||ykε||(g(t0 + hkε)− g(t0+))

g(t0+)− g(t0)

<
ε

1 +M
+

εM

1 +M
= ε.

Since y ∈ F (t0, x0) = F (t0, v(t0)), the assertion is proved.
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Finally, for t ∈ (t0, t0 + hkε), we have

||v(t)− xkε|| ≤ εM, 0 ≤ g(t0 + hkε)− g(t) ≤ g(t0 + hkε)− g(t+0 ) < ε

and thus,

v′g(t) = ykε ∈ F (t0 + hkε, xkε) ⊂

⊂ F ((Vg,ε(t)× (v(t) +B(2+M)ε(0))) ∩GraphK).
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Now fix ε > 0.

Since K is g− AC from the left (see hypothesis 1), we may choose rε ∈
(0, ε) s.t.

for any set {(t′γ, t′′γ)}γ∈Γ of non-overlapping subintervals of [0,1] with Γ at most
countable index set,

∑
γ∈Γ

(g(t′′γ)− g(t′γ)) < rε ⇒
∑
γ∈Γ

e(K(t′γ),K(t′′γ)) < ε. (2)

Moreover, since µg(E) = 0 (see hypothesis 4), the regularity of the measure
µg implies that there exists Eε open with

E ⊂ Eε, µg(Eε) < rε. (3)

Under the above circumstances, the second key auxiliary result is:
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Theorem 3.1. Let ε, rε, Eε be as in (2), (3). Then ∃ v : [0,1] → Rd a g−
AC function satisfying:

v(0) = x0;
v(t) ∈ K(V l

g,ε(t)) +B(2+M)ε(0), ∀t ∈ [0,1];

[0,1) = ∪i∈I[αi, βi), [αi, βi), i ∈ I being pairwise disjoint ,

where I is at most countable such that for each i ∈ I,

• if αi ∈ E, then [αi, βi) ⊂ Eε and either

g is constant on [αi, βi) or∫
[αi,βi)

‖v′g(t)‖dg(t) ≤ e(K(αi),K(βi));

• otherwise, µg − a.e. on [αi, βi)

v′g(t) ∈ F ((Vg,ε(t)× (v(t) +B(2+M)ε(0))) ∩GraphK) +Bε(0).
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Steps of the proof:

Step 1: We consider the set M of all triplets (v, δ, {[αi, βi) : i ∈ I} ) with the
following properties:

δ ∈ (0,1] and v : [0, δ]→ Rd is g −AC with v(0) = x0;
v(t) ∈ K(V l

g,ε(t)) +B(2+M)ε(0), ∀t ∈ [0, δ];

v(δ) ∈ K(δ);
[0, δ) = ∪i∈I[αi, βi), [αi, βi), i ∈ I being pairwise disjoint ,
where I is at most countable such that for each i ∈ I,
• if αi ∈ E, then [αi, βi) ⊂ Eε and either
g is constant on [αi, βi) or∫

[αi,βi)
‖v′g(t)‖dg(t) ≤ e(K(αi),K(βi));

• if αi 6∈ E, µg − a.e. on [αi, βi)
v′g(t) ∈ F ((Vg,ε(t)× (v(t) +B(2+M)ε(0))) ∩GraphK) +Bε(0).

By using (2) combined with Lemma 3.1 we may prove that the setM defined
above is nonempty.
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Step 2: We consider on M a partial ordering (�) in the following way:(
v1, δ1,

{
[α1

i , β
1
i ) : i ∈ I1

} )
�

(
v2, δ2,

{
[α2

i , β
2
i ) : i ∈ I2

} )
iff

• δ1 ≤ δ2 and v2 |[0,δ1] = v1 .

•
{

[α1
i , β

1
i ) : i ∈ I1

}
⊂
{

[α2
i , β

2
i ) : i ∈ I2

}
.

By using Zorn’s Lemma combined with the g - absolute continuity of K
from the left, we prove that the set M admits a maximal element(

v, δ, {[αi, βi) : i ∈ I}
)
.

Step 3: Arguing by contradiction and exploiting Lemma 3.1, we prove that

δ = 1.

�
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In the proof of our main result we will also need the following

Lemma 3.2. (R. López Pouso - I. Márquez Albés - J. Rodriguez-Lopez
(2020)).

Let

vn : [0,1]→ Rd, n ∈ N,
be a sequence of g− AC functions, pointwisely convergent to some v : [0,1]→
Rd.

Assume that ∃ C > 0 s.t. ∀ n ∈ N,

‖(vn)′g(t)‖ ≤ C, µg − a.e. on [0,1).

Then v is g− AC and

v′g(t) ∈
⋂
p∈N

co

∞⋃
n=p

{(vn)′g(t)}, µg − a.e. on [0,1).

Moreover, the sequence (vn)n has a subsequence uniformly convergent to
v.
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Now our main viability existence result is the following

Theorem 3.2. Under assumptions 1)− 4), the problem (1) has g-absolutely
continuous solutions on [0,1].

Steps of the proof:

Step 1: Choose (εn)n be a sequence of positive numbers convergent to 0.

The left g- AC of K gives rise to a sequence

rεn ∈ (0, εn ), n ∈ N
satisfying:

for any set {(t′γ, t′′γ)}γ∈Γ of non-overlapping subintervals of [0,1] with Γ at most
countable,

∑
γ∈Γ

(g(t′′γ)− g(t′γ)) < rεn =⇒
∑
γ∈Γ

e(K(t′γ),K(t′′γ)) < εn.

For each n ∈ N, choose an open set En with

E ⊂ En , µg(En) < rεn.

We may suppose that (En)n is a decreasing sequence.
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By virtue of Theorem 3.1, there exists a sequence
vn : [0,1]→ Rd, n ∈ N of g− AC functions satisfying the following conditions:

vn(0) = x0;
vn(t) ∈ K(V l

g,εn(t)) +B(2+M)εn(0), ∀t ∈ [0,1];

[0,1) = ∪i∈In[αni , βni ),
where In is at most countable such that for each i ∈ In,
• if αni ∈ E, then [αni , β

n
i ) ⊂ En and either

g is constant on [αni , β
n
i ) or∫

[αn
i ,β

n
i )
‖(vn)′g(t)‖dg(t) ≤ e(K(αni ),K(βni ))

• if αni 6∈ E,
(vn)′g(t) ∈

∈ F ((Vg,εn(t)× (vn(t) +B(2+M)εn(0))) ∩GraphK) +Bεn(0),
µg − a.e. on [αni , β

n
i ).

Due to hypothesis 3), the last one implies

||(vn)′g(t)|| ≤M + εn, µg − a.e. on [αni , β
n
i ).
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Step 2: By using the properties of the sequence ((vn)′g)n we prove that

sup
n

∫ 1

0
||(vn)′g(t)||dµg(t) <∞

and that the sequence ((vn)′g)n is µg− uniformly integrable, i.e.,

for each η > 0, ∃ θη > 0 s.t. for each g− measurable set A ⊂ [0,1],

µg(A) < θη =⇒
∫
A

||(vn)′g(t)||dµg(t) < η, ∀ n ∈ N.

It follows that the sequence ((vn)′g)n is weakly L1
g([0,1])− relatively com-

pact.

On a subsequence (not relabelled) it weakly converges in L1
g([0,1]) to some

function w ∈ L1
g([0,1]).

By the fundamental theorem of calculus we infer that

vn(t)→ v(t) = x0 +

∫
[0,t)

w(t)dµg(t), ∀ t ∈ [0,1].

Clearly, v is g− AC.



Step 3: By using the properties of the sequence (vn)n combined with the
left g− AC of K, we prove that

v(t) ∈ K(t), for every t ∈ [0,1].

Step 4: By using the properties of the sequence ((vn)′g)n, we prove that

∃ C̃ > 0 such that for each N ∈ N,

||(vn)′g(t)|| ≤ C̃, µg − a.e. in [0,1) \ EN , for all n ≥ N.

Step 5: Fix N ∈ N.

Step 4 combined with Lemma 3.2 imply that

v′g(t) ∈
⋂
p∈N

co

∞⋃
n=p

{(vn)′g(t)}, µg − a.e. on [0,1) \ EN .

Moreover, by passing to subsequences, we may assume that

vn → v, uniformly on [0,1] \ EN .
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Step 6: We prove that for each N ∈ N,

v′g(t) ∈ F (t, v(t)), µg − a.e. on [0,1) \ EN .

The proof is based on Step 5,

• the last assertion satisfied by ((vn)′g)n .

• the fact that F : [0,1]× Rd → P(Rd) is g− upper semicontinuous with
compact convex values (hypothesis 2).

Step 7: We prove that

v′g(t) ∈ F (t, v(t)), µg − a.e. on [0,1).

This follows easily from Step 6 combined with the fact that

µg

(⋂
n

En

)
= lim

n
µg(En) = 0.

�
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4. A Filippov-type result.

First, we recall two classical results from the theory of ODEs.

Let f : [0,1]× Rd → Rd be continuous satisfying

||f(t, x)− f(t, y)|| ≤ L(t)||x− y||, ∀ (t, x), (t, y) ∈ [0,1]× Rd,

where L(·) ∈ L1
+([0,1]).

Proposition 4.1. If u, v are AC solutions of the ODE

x′(t) = f(t, x(t)), a.e. in [0,1],

then

||u(t)− v(t)|| ≤ ||u(0)− v(0)||e
∫ t

0
L(s)ds

, ∀ t ∈ [0,1].

Next proposition extends the above result to the case where v is not necessarily
a solution but “differs from being a solution” by some integrable function.

Proposition 4.2. Let u, v : [0,1]→ Rd be AC functions s.t.

u′(t) = f(t, u(t)), ||v′(t)− f(t, v(t))|| ≤ γ(t), a.e. in [0,1],
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where γ(·) ∈ L1
+([0,1]).

Then ∀ t ∈ [0,1],

||u(t)− v(t)|| ≤ e
∫ t

0
L(s)ds

[
||x0 − v(0)|| +

∫ t

0
γ(s)e−

∫ s

0
L(τ)dτ

ds

]
.

An extension of Prop. 4.2 to the multi-valued case is the celebrated Filippov
lemma:



Theorem 4.1 (A. Filippov (1967)). Let F : [0,1] × Rd → Pc(Rd) be of
Caratheodory type s.t.

D( F (t, x), F (t, y) ) ≤ L(t)||x− y||, ∀ (t, x), (t, y) ∈ [0,1]× Rd,

where L(·) ∈ L1
+([0,1]). Moreover, let v : [0,1]→ Rd be an AC function s.t.

d(v′(t), F (t, v(t))|| ≤ γ(t), a.e. in [0,1],

where γ(·) ∈ L1
+([0,1]). Then ∀ x0 ∈ Rd, there exists an AC solution u of the

IVP

u′(t) ∈ F (t, u(t)), a.e. in [0,1], u(0) = x0

s.t.

||u(t)− v(t)|| ≤ r(t), ∀ t ∈ [0,1],

where

r(t) = e

∫ t

0
L(s)ds

[
||x0 − v(0)|| +

∫ t

0
γ(s)e−

∫ s

0
L(τ)dτ

ds

]
, t ∈ [0,1].

Remark: The function r(·) mentioned above is the unique AC solution of
the IVP

r′(t) = L(t)r(t) + γ(t), a.e. in [0,1], r(0) = ||x0 − v(0)||.
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A characteristic Filippov -type result for Stieltjes differential inclusions
is recalled below.

Theorem 4.2 (A. Fryszkowski, J. Sadowski (2021)).

Let F : [0,1] × Rd → P(Rd) be a compact valued map of Carathéodory-type
s.t.

D( F (t, x), F (t, y) ) ≤ L(t)||x− y||, ∀ (t, x), (t, y) ∈ [0,1]× Rd,

where L(·) ∈ L1
+([0,1], µg).

Moreover, let v : [0,1]→ Rd be a g− AC function s.t.

d(v′g(t), F (t, v(t)) ≤ γ(t), µg − a.e. in [0,1),

where γ(·) ∈ L1
+([0,1], µg).

Then ∀ x0 ∈ Rd, there exists a g− AC solution u of the IVP

u′g(t) ∈ F (t, u(t)), µg − a.e. in [0,1), u(0) = x0

s.t. ∀ t ∈ [0,1],

||u(t)− v(t)|| ≤ e
∫

[0,t)
L(s)dµg(s) ·

(
‖x0 − v(0)‖+

∫
[0,t)

γ(s)dµg(s)

)
.
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We derive a new Filippov-type lemma, a direct extension of the original
one (Th. 4.1.).

Theorem 4.3. (I. Márquez Albés (2021)). Let L, γ ∈ L1([0,1], µg) such
that ∀t ∈ [0,1],

1 + L(t)∆g(t) > 0, where ∆g(t) = g(t+)− g(t).

Then the Stieltjes linear Cauchy problem

r′g(t) = L(t)r(t) + γ(t), µg − a.e. in [0,1), r(0) = r0

has a unique g− AC solution

r(t) = eL(t)

[
r0 +

∫
[0,t)

γ(s)

eL(s)(1 + L(s)∆g(s))
dµg(s)

]
, ∀t ∈ [0,1]

where

eL(t) = e

∫
[0,t)

L̃(s)dg(s)

with

L̃(t) =


L(t), if g is continuous at t

log[ 1 + L(t)∆g(t) ]

∆g(t)
, otherwise.
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We consider the following problem

 u′g(t) ∈ F (t, u(t)), µg − a.e. t ∈ [0,1),

u(0) = x0, x0 ∈ Rd.
(4)

Theorem 4.4. Let F : [0,1] × Rd → P(Rd) be compact-valued s.t. for all
s, t ∈ [0,1], x, y ∈ Rd,

D(F (t, x), F (s, y)) ≤ L(‖x− y‖+ |g(t)− g(s)|),

where L is a positive constant.

Then given a g− AC function v : [0,1]→ Rd, denoting by

d(v′g(t), F (t, v(t)) = γ(t),

there exists a solution u of (4) such that

‖u(t)− v(t)‖ ≤ r(t), ∀ t ∈ [0,1]



where r : [0,1] → R is the unique g− AC solution of the linear g-differential
problem

r′g(t) = Lr(t) + γ(t), µg − a.e. on [0,1)

r(0) = ‖x0 − v(0)‖.



Now we can combine Theorems 4.3 and 4.4 to obtain

Corollary 4.1. Under the hypotheses of Th.4.4, we have that ∀t ∈ [0,1],

||u(t)− v(t)|| ≤ r(t) =

= eL(t)

[
‖x0 − v(0)‖+

∫
[0,t)

γ(s)

eL(s)(1 + L∆g(s))
dµg(s)

]
,

where

eL(t) = e

∫
[0,t)

L̃(s)dµg(s)

with

L̃(t) =


L, if g is continuous at t

log[ 1 + L∆g(t) ]

∆g(t)
, otherwise.
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Sketch of the proof of Th.4.4:

Let E be a g-null set such that on [0,1) \ E the functions v and r are g−
differentiable.

Define K : [0,1]→ Pcc(Rd) by

K(t) = v(t) + r(t) ·B(0,1).

The idea is to prove that F, K satisfy the hypotheses of the viability result
in Theorem 3.2.

Hypotheses 1), 2), 3) are easily checked.

Fix t ∈ [0,1] \ E and x ∈ K(t).

We have to prove that

F (t, x) ∩DgK(t, x) 6= Ø.

Choose u ∈ B(0,1) such that x = y(t) + r(t) · u.
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We will present the proof only in the case where

t is a discontinuity point of g, ||u|| < 1.

Based on the definition of the contingent g− derivative we may show that

z ∈ DgK(t, x) iff

‖z − v′g(t)‖ ≤ r′g(t) · ‖u‖+
r(t+)

g(t+)− g(t)
· (1 + ‖u‖).

Since

γ(t) = d(v′g(t), F (t, v(t)),

we may find w ∈ F (t, v(t)) with

‖w − v′g(t)‖ = γ(t).

Moreover,

d(w, F (t, x)) ≤ D( F (t, v(t)), F (t, x) ) ≤ L||x− v(t)||



so, we can also choose z ∈ F (t, x) such that

‖w − z‖ ≤ L‖x− y(t)‖ ≤ Lr(t)‖u‖.

Hence,

‖z − v′g(t)‖ ≤ Lr(t)‖u‖+ γ(t). (5)

We may see that

γ(t) ≤ Lr(t) + γ(t) +
r(t)

g(t+)− g(t)

= r′g(t) +
r(t)

g(t+)− g(t)

=
r(t+)

g(t+)− g(t)
≤

r(t+)

g(t+)− g(t)

1 + ‖u‖
1− ‖u‖



which implies that

γ(t) ≤ γ(t)||u|| +
r(t+)

g(t+)− g(t)
(1 + ||u||). (6)

From (5) and (6) we infer that

‖z − v′g(t)‖ ≤ (Lr(t) + γ(t)) · ‖u‖+
r(t+)

g(t+)− g(t)
· (1 + ‖u‖)

= r′g(t) · ‖u‖+
r(t+)

g(t+)− g(t)
· (1 + ‖u‖)

i.e.,

z ∈ F (t, x) ∩DgK(t, x).

�

The estimation of the distance ‖u(t)−v(t)‖ obtained in Corollary 4.1 is better
than the one obtained in Th.4.2.
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Proposition 4.3. Let L(·), γ(·) ∈ L1
+([0,1], µg) and v : [0,1]→ Rd be g− AC.

Set

q(t) = e

∫
[0,t)

L(s)dµg(s) ·
[
‖x0 − v(0)‖+

∫
[0,t)

γ(s)dµg(s)

]
and

r(t) = eL(t)

[
‖x0 − v(0)‖+

∫
[0,t)

γ(s)

eL(s)(1 + L(t)∆g(s))
dµg(s)

]
,

where

x0 ∈ Rd, ∆g(t) = g(t+)− g(t), eL(t) = e

∫
[0,t)

L̃(s)dµg(s)

with

L̃(t) =


L(t), if g is continuous at t

log[ 1 + L(t)∆g(t) ]

∆g(t)
, otherwise.

Then r(t) ≤ q(t), ∀ t ∈ [0,1].
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