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Abstract.

Let g : [0,1] — R be a left-continuous nondecreasing function and u, the
Lebesgue-Stieltjes measure generated by ¢ on [0, 1].

We prove a viability result for the following Initial Value Problem which
corresponds to a Stieltjes differential inclusion:

(uy(t) € F(t,u(t)), pg —a.e. t € [0,1)

7\

u(t) € K(t), Vtelo,1]

| u(0) = zo € K(0)
where

K :[0,1] = Pee(RY), F:[0,1] x R? = P(RY) (d>1)
are convex compact set valued maps.

Based on the above result, we obtain a Filippov type lemma for Stieltjes
inclusions.



Preliminaries.

Let g : [0,1] — R be a left-continuous nondecreasing function.

The measurability with respect to the o-algebra (containing Borel sets)
defined by g on [0, 1] will be called g-measurability.

1y Stands for the Lebesgue-Stieltjes measure generated by g on [0, 1].
In particular, for 0 <a <b<1, we have

pg([a,8)) = g(b) — g(a), pg({a}) = gla™) — g(a).

The Lebesgue-Stieltjes (LS) integrability w.r.t. ¢ means the abstract
Lebesgue integrability w.r.t. the Stieltjes measure p,.

Let L;([O, 1], ug) be the space of LS-integrable functions w : [0,1] —
RI(deN, d>1) w.r.t. u,.

The g— topology on [0, 1] is the topology with basis the class of all sets
Vys() ={t' € [0,1] : |g(¢") — g(¥)| <&}, 6 >0, te[0,1].



Stieltjes derivative

e R. Lopez Pouso, A. Rodriguez, A new unification of continuous, discrete
and impulsive calculus through Stieltjes derivatives. Real Anal. Exch., 2015.

e Young, W.H., On integrals and derivatives with respect to a function, Proc.
London Math. Soc., 1(1917), s2-15 35 —63.

Definition: The derivative with respect to g (the g—derivative) of f: [0,1] —
R? at a point t € [0,1] is

fo(®) = lim fgsi — f((f)) if g is continuous at ¢,
st g(s) — g
fo(&) = lim f(s) = (1) if g is discontinuous at t,

s—tt g(s) — g(t)
provided the limit exists.

Remark: If ¢t is a point of discontinuity of g, the g-derivative f/(t) exists if
and only if the sided limit f(t+) exists, and in this case

f+) — F@)

o) = P =)




The definition has no meaning in the parts of the domain in which g is
constant; denote such a region by C, (this doesn’t provoke problems since
,ug(cg) — O)-

However, it has been generalized so as to include the points of C, as well.

o [.J. Fernandez, I. Marquez Albés, F.A.F. Tojo, On first and second order

linear Stieltjes differential equations, J. Math. Anal. Appl. 511(2022), No.
1, 126010.

Let
Ny = {un, vy : n € N} \ Dy,
where C, = UneN(un,vn) with (un, vn)n pairwise disjoint.

Let Ny = {u,:n €N} \ Dy and Njf = {v, : n € N} \ D.



The derivative with respect to g of f:[0,1] — R¢ at ¢ € [0, 1] is defined by

N OO

WO = m e TEPV
I (O (O

f,(8) = t'_lgl o(0) — (D if t € Dy,

fo@) = lim f(t) = £(vn) if t € (up,vn) C Cy,

t—v.+ g(t) — g(vn)

if the limits exist.
The points of N, must be approached in the following manner:

N O Rl § (O B
WO = M= TN
i) = lim J(t) = 7 () ifte N, .

t—i— g(t) — g(t)



Classical Viability Theory.

Let K be a closed subset of R? (d > 1).

Definition 2.1. (G. Bouligand (1932)). Let x € K. The contingent cone
of K at z is defined as follows:

. d(z+ hy, K)
— d . ) _
TK(:U)—{yER .}Jg&mf ; =0;.

o yc Tx(x) iff there there exist sequences
(hi)k CRy, (zp)r C K
such that
T — I

lim hp = 0O, = |lim
k—o0 K Y k— 00 hk:

o Tx(x) is a closed cone. If K is convex, Tx(x) is convex too.

o for x € intK, Tk(x) =R



Definition 2.2. A function u : [0,1] — R¢ is called K—viable iff u(t) € K, Vt €
[0, 1].

Proposition 2.1. Let v : [0,1] — K be K— viable and differentiable. Then
u'(t) € Tx(u(t)), V te][0,1).

Theorem 2.1.(M. Nagumo (1942)). Let f: K — R% be a bounded contin-
uous map. Then the following are equivalent:

(i) for each xo € K, the Initial Value Problem

u'(t) = f(u(t)), tel[0,1], u(0) = xo
has at least one K— viable solution.

(ii) f(x) € Tk(x), Vx € K.



The above theorem is extended to the case of differential inclusions as follows:

Theorem 2.2. (J.-P. Aubin - A. Cellina (1984)). Let F: K — P(R%) be
upper semicontinuous with compact convex values . Then the following are
equivalent:

(i) for each xo € K, the Initial Value Problem
u'(t) € F(u(t)), tel[0,1], u(0) =0

has at least one K— viable solution.

(i) F(x) NTg(z) # D, V€ K.

Next, we consider the more general case where K depends on the time
t € [0, 1].

Namely, let K : [0,1] — P(R%) be a set-valued map with closed graph.

Definition 2.3. A function u : [0,1] — R? is called K(-)—viable iff u(t) €
K(t), Vte[0,1].



Definition 2.4. Let t € [0,1), z € K(t). The contingent derivative of the
map K at (¢,x) is defined as follows:

DK (t,z) = {y eR': lim inf d(x + hy’}f{(t+ ) _ o} |

Remark 2.1: y € DK(t,z) iff there exist sequences
(hi)e CR4,  (zp)p CRY

such that
T — I

im hy =0, € K(t+hy), kEN, y= lim

k—o0 k—o0 hk:

Remark 2.2: Assume that K is upper semicontinuous. Then for all ¢t &€
[0,1), x € K(t),

(TAS DK(t,CB) <~ (lay) S TGTath(tax)°
In particular, if K(t) = K, t € [0,1], then

DK(t,z) = Tk(x), forall te[0,1), z € K.



Proposition 2.2. Letu: [0,1] = R? be K(-)— viable and differentiable. Then
u'(t) € DK(t,u(t)), V te]0,1).
Theorem 2.3. (J.-P. Aubin - A. Cellina (1984)). Let F : GraphK — P(R9)

be upper semicontinuous with compact convex values. The following are
equivalent:

(i) for each xo € K, the Initial Value Problem
u'(t) € F(t,u(t)), tel[0,1], wu(0) =0

has at least one K(-)— viable AC solution.

(ii) F(t,x) "NDK(t,z) # D, Vte [0,1), Vo e K(t).

Now we consider the much more demanding case of measurable viability
problems.



Theorem 2.4.(H. Frankowska - S. Plaszkacz -T. Tzezuchowski (1995)).

Assume that K is absolutely continuous from the left in the following
sense :

for every € > 0 there exists 6. > O satisfying, for any set {(t.,t7)},er of non-
overlapping subintervals of [0,1] with ' at most countable index set,

d M —t) <o = Y e(K(t),K(t)) <e.

yel yel
Moreover, let F : [0,1] x R? — P.(R?) be such that

e [' js of Carathéodory type, i.e.,
— for u— a.e. t€[0,1], x+— F(t,x) is continuous.
—for each © € R?, t+— F(t,z) is measurable.

o foru—a.e.tc[0,1] and allx € RY,

[F'(t, )] < h(t),
where h € L*([0,1],u), h > 0.

10



Then the following are equivalent:

(i) for each o € K(0), the Initial Value Problem
u(t) € F(t,u(t)), u —a.e. t € [0, 1]
u(0) = xo € K(0),
has at least one K(-)— viable absolutely continuous (AC) solution.

(ii) there exists E C [0, 1] with u(E) = 0 such that for every t € [0,1] \ E and
every € K(t),

F(t,x) "NDK(t,z) # OD.

11



A viability result for Stieltjes differential inclusions.

We will need the notion of contingent g— derivative which extends the
notion of contingent derivative mentioned above and it is naturally used in
studying viability problems for Stieltjes differential inclusions.

Definition 3.1 (R. Lopez Pouso - I. Marquez Albés - J. Rodriguez-
Lopez (2020)). Let t €[0,1), x € K(t). The contingent g— derivative of
K at (t,z) is the set D,K(t,xz) containing all y € RY with the property

im ing 4@+ (gt +h) —g(t))y, K+ 1)) _

AT g+ 1) — 9(t) O

It is easily checked that y € D,K(t,z) iff there exist sequences

(hi)r TRy, (xp)r CRY
such that

. . L — I
im hy, =0, z,€ K(t+hy), k€N, y= lim .
k— o0 k— o0 g(t‘l‘hk:) —g(t)

12



Let g : [0,1] — R be a left-continuous nondecreasing function and p, the
Lebesgue-Stieltjes measure generated by ¢ on [0, 1].

We aim to prove a viability result for the following Initial Value Problem
which corresponds to a Stieltjes differential inclusion:

(u,(t) € F(t,u(t)), pg —a.e. t €[0,1)

u(t) € K(t), Vtel0,1] (1)

N\

L u(0) =z € K(0).

Hypotheses:
1). K : [0,1] = P.(R?) is g-absolutely continuous from the left w.r.t.
the g— topology in the following sense :

for every € > 0 there exists d. > O satisfying, for any set {(t%,tg)}yer of non-
overlapping subintervals of [0, 1] with I at most countable index set,

Y () —g(t)) < 6. = Y e(K(t), K{)) <e.

yel yel
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Moreover, we assume that at every discontinuity point ¢; € [0,1) of g,
K has limit at the right for the usual topology in the sense of Hausdorff
distance:

there exists K(t) € P..(R?%) such that for every ¢ > 0 there exists &, . > O
satisfying, for any t € [0, 1] with 1 <t < t1 + dt,¢,

K(t) C K(tf) 4+ B-(0) and K() c K(t) + B-(0).
2). The map F : [0,1] x RY — P.(R?) is upper semicontinuous for the
product of the g-topology of [0, 1] with the usual topology of R¢, i.e.,
for each (¢t,x) and € > 0 there is 4. > 0 such that for all (¢,z'),
if |g(t) —g(t)| <. and ||/ — z|| < é., then
F(t',2) c F(t,xz) + B:(0).

3). There is M > 0 such that for every (t,z) € GraphK, |F(t,z)| < M.

4). There exists F C [0, 1] with u,(E) = 0 such that for every ¢t € [0,1] \ E
and every x € K(t),

F(t,x) N DK (t,z) # D.

14



The first key auxiliary result is the following

Lemma 3.1. Lettp € [0,1)\ E and zg € K(to). Then for each € > 0, there
exist § > 0 and v : [to, to + 6] — R?¢ a g-absolutely continuous function with

v(to) = To ;

v(t) € K(V}.(¢)) + Botan:(0), Vt € [to, to + 8]

v(to+6) € K(to + 9);

vg(t) € F((Vge(t) x (v(t) + Ba+an:(0))) N GraphK) + B:(0),
lg — a.e. ON [to, to + ).

Here

Vi(8) = {t' €[0,8] - g(t) — g(t') < ¢}
and

Voe(t) ={t' € [0,1] : [g(t) — g(¥)] < e}.

15



Sketch of the proof:

We will present the proof only in the case where

e ip IS a discontinuity point of g
e g is not constant at the right of o .

Due to hypothesis 4), we may find
y € F'(to, 7o) N DyK (to, o),

lim Tk — 0

Yy — 3
k—oo g(to + hi) — g(to)
for some hy | 0 and x, € K(to + hy) for all k € N.

It follows that there exists the limit klim x and
—00

lim xp — o
__ k—o

YT D —gto)

16



Moreover, hypothesis 1) implies that lim z; € K(t]).
— 00

Choose vy, € F(to + hi,x1), k€ N and k. such that

g(td) — g(to)
14+ M ’

g(to + hi.) — g(tg) < e-min <1,

g(tg) — g(to)
14+ M ’

|zp. — lim x| < e-min (1,
k—oo
where M > 0 is as postulated in hypothesis 3), i.e.,

|F(t,z)| < M, forall (t,z) € GraphK.

Define v : [to, to + hi] — R? as follows:

To, Ift =to

v(t) =
zr, + yr.(g(t) — g(to + hi.)), if t € (to,to + hil.



Fix t € (to,to + hx]. Then

|lv(t) — IJI_?QO il <e+|lv(t) — x| <
< e+ |[(g(®) —glto+ hi )yl <e4eM.

Besides, hypothesis 1) implies that
K(tf) C K(V;.(t)) + B=(0).

Consequently,

’U(t) S K(ta_) + Bs—l—sM(O) C K(V:ql,g(t)) + BQE—'—EM(O)'



Moreover, v(to + hi ) = zr. € K(to + hi.).

To check the last assertion for ¢t = tg we may write

v(to+) —v(to) = — To + yr.(g(to+) — g(to + hi.))

U5l10) = o) — g(to) o(tot+) — g(to)
whence
/ . — M 2y, + yr.(g(to+) — g(to + hz.))
[vgCto) = | = g(to+) — g(to) H
e = im @l iy 1o 4 hi) = g(to))
g(to+) — g(to) g(to+) — g(to)
€ eM

AL

Since y € F(to,To) = F(to,v(to)), the assertion is proved.

17



Finally, for t € (to,to + hr. ), we have

Jo(t) — zp|| <eM, 0<g(to+ hr)—g(t) < glto+ i) —gtd) <e
and thus,

ve(t) = yr € F(to+ hi,xr) C

C  F((Vge(t) x (v(t) + Ba+m)=(0))) N GraphK).



Now fix € > 0.

Since K is g— AC from the left (see hypothesis 1), we may choose r. €
(0,e) s.t.

for any set {(t.,t7)},er of non-overlapping subintervals of [0, 1] with I" at most
countable index set,

> (g —g(tl)) <re = > e(K(t),K(t)) <e. (2)
yel yel

Moreover, since u,(E) = 0 (see hypothesis 4), the regularity of the measure
L implies that there exists E. open with

E C E., Ug(Es) < Te. (3)

Under the above circumstances, the second key auxiliary result is:

18



Theorem 3.1. Let ¢, r., E. be asin (2), (3). Then3v:[0,1] - R? a g—
AC function satisfying:

v(0) = zo;
v(t) € K(V!.(t)) + Basan:(0), Vt € [0, 1];

[0,1) = Ujerlai, Bi), [ai,Bi), i € I being pairwise disjoint ,
where I is at most countable such that for each 1 € I,
e ifay, € ¥, then [w;, ;) C E. and either

g is constant on [«;, 8;) or

/[ 10 0lldg(®) < eCK ) K(5));
o otherwise, g — a.e. on [ay, B;)

vg(t) € F((Vge(t) X (v(t) + Ba4an<(0))) N GraphK) + B:(0).

19



Steps of the proof:

Step 1: We consider the set M of all triplets (v, 6, {[ai,B:) 11 € I} ) with the
following properties:

§€(0,1] andv: [0,8] = R? is g — AC with v(0) = zo;

v(t) € K(V,.(8)) + Bagan:(0), Vt € [0,4];

v(d) € K(9);

[0,0) = Ujerla, Bi), [ai,Bi), 1 € I being pairwise disjoint ,

where I is at most countable such that for each 1 € I,

o ifa; € E, then [ay, 8;) C E: and either

g is constant on [«4, 8;) or

[ I@Ids® < (o, K5

o ifa, ¢ E, pug—a.e. onla;Bi)
vy (t) € F((Vge(t) x (v(t) + Bo4m)=(0))) N GraphK) + B:(0).

By using (2) combined with Lemma 3.1 we may prove that the set M defined
above is nonempty.

20



Step 2: We consider on M a partial ordering (<) in the following way:

(v1, 61, {[e;,B8}) i€ i}) =< (v, &2, {[ef,B7) i€ o})
iff

° 51 S 52 and wvo |[O,61] = v1 .

o {[o},8}) ien}c{la?,p?):ich}.

By using Zorn’s Lemma combined with the g - absolute continuity of K
from the left, we prove that the set M admits a maximal element

(0, 6, {lew,B;) 11 €1}).

Step 3: Arguing by contradiction and exploiting Lemma 3.1, we prove that
6=1.

[l
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In the proof of our main result we will also need the following

Lemma 3.2. (R. Lopez Pouso - I. Marquez Albés - J. Rodriguez-Lopez
(2020)).

Let

vn i [0,1] = RY,  neN,
be a sequence of g— AC functions, pointwisely convergent to somewv : [0,1] —

R?,
Assume that 4 C > 0 s.t. Vn €N,
||(Un)/g(t)|| <C, pg—a.e.on [0,1).
Then v is g— AC and
U;(t) € m co U {(Un)lg(t)}a Mg —a.€. on [07 1)

peEN n=p

Moreover, the sequence (v,), has a subsequence uniformly convergent to
V.

22



Now our main viability existence result is the following

Theorem 3.2. Under assumptions 1) — 4), the problem (1) has g-absolutely
continuous solutions on [0, 1].

Steps of the proof:

Step 1: Choose (e,)n be a sequence of positive numbers convergent to O.
The left g- AC of K gives rise to a sequence

€ (0,e,), neN

Te,

satisfying:

for any set {(t/,t7)},er of non-overlapping subintervals of [0, 1] with " at most
countable,

D (gt —g(t) <re, = > e(K(t,), K(t))) < en.

yel yel
For each n € N, choose an open set F, with
ECE,, p(Ey)<re,.

We may suppose that (E,), is a decreasing sequence.
23



By virtue of Theorem 3.1, there exists a sequence
v, : [0,1] = R4 n € N of g— AC functions satisfying the following conditions:
'Un(o) = Zo,
[07 1) — UiEI”[a?7 an)7
where I" is at most countable such that for each i € I"™,
o ifa; € E, then [}, 5]') C E, and either
g is constant on [o], B') or

[ @) < el (@, K5
° |1; oz? Z E,
()} () €

€ F((Vge.(t) x (vn(t) + Ba4m)e,(0))) N GraphK) + B, (0),
pg — a.e. on [al, Bi).

Due to hypothesis 3), the last one implies
() (DI < M +en,  pg—ae onaf,B).

24



Step 2: By using the properties of the sequence ((vn)fq)n we prove that

1
sup [ 1), Olldig (8) < o
n Jo
and that the sequence ((vn)})n is ug— uniformly integrable, i.e.,

for each n >0, 36, >0 s.t. for each g— measurable set A C [0, 1],

uMK%ﬁLW%W%wm,WmN

It follows that the sequence ((vn)}). is weakly L;([O, 1])— relatively com-
pact.

On a subsequence (not relabelled) it weakly converges in L;([O, 1]) to some
function w € L([0,1]).

By the fundamental theorem of calculus we infer that

vp(t) — v(t) = zo + [ )’w(t)d,ug(t), vV t e [0,1].
0.t

Clearly, v is g— AC.



Step 3: By using the properties of the sequence (v,), combined with the
left g— AC of K, we prove that

v(t) € K(t), foreveryte]lO0,1].

Step 4: By using the properties of the sequence ((vn);)n, We prove that
3C > 0 such that for each N € N,

()@ < E, pg—a.e. in [0,1)\ Ey, forall n>N.

Step 5: Fix N € N.

Step 4 combined with Lemma 3.2 imply that

vy(t) € (@ | J{(vn), (1)}, g —a.e. on [0,1)\ Ey.

peEN  n=p

Moreover, by passing to subsequences, we may assume that

v, — v, uniformly on [0,1]\ Ex .

25



Step 6: We prove that for each N € N,
’U;(t) € F(t,v(t)), wpg—a.e.onl0,1)\ Eyn.

The proof is based on Step 5,

e the last assertion satisfied by ((vn)})n

e the fact that F : [0, 1] x R? = P(R%) is g— upper semicontinuous with
compact convex values (hypothesis 2).

Step 7: We prove that
v, (t) € F(t,v(t)), pg—a.e.on]l0,1).

This follows easily from Step 6 combined with the fact that

g (ﬂ En) = Iim pg(En) = 0.

26



4. A Filippov-type result.

First, we recall two classical results from the theory of ODEs.
Let f:[0,1] x R - R¢ be continuous satisfying
1f(tx) — | < LBz —yll, V (), (t,y) € [0,1] x RY,

where L(-) € L1 ([0, 1]).

Proposition 4.1. If u, v are AC solutions of the ODE

' (t) = f(t,z(t)), a.e in [0,1],
then

t

u(t) — v(®)]] < [[u(0) — v(0)|lede X% vt e [0,1].

Next proposition extends the above result to the case where v is not necessarily
a solution but “differs from being a solution” by some integrable function.

Proposition 4.2. Let u, v:[0,1] = R? be AC functions s.t.
u'(t) = f(t,u(®)), (@) = fEGo@) <~(), ae in [0,1],

27



where v(-) € Lﬂr([O, 1]).

Then Vit e [0,1],

t t s
u(t) — ()| < els X% | |lzo — w(0)]] + / y(s)e o KD g
0

An extension of Prop. 4.2 to the multi-valued case is the celebrated Filippov
lemma:



Theorem 4.1 (A. Filippov (1967)). Let F : [0,1] x R — P.(R?) be of
Caratheodory type s.t.

D(F(t,x), F(t,y)) < LOlz—yll, ¥ ¢ 2), (t,y) €[0,1] x R,
where L(-) € L} ([0,1]). Moreover, let v :[0,1] — R? be an AC function s.t.
d(v'(t), F(t,v(t)|| <~(), a.e in [0,1],

where () € L}F([O, 1]). Then V xo € R%, there exists an AC solution u of the
IVP

u'(t) € F(t,u(t)), a.e. in [0,1], u(0) = zq
S.t.
lu®) —v(@® < r(t), Vtelo,1],
where

t t s
r(t) = ej; L(s)ds l|lxo — v(0)|| + / fy(s)e_fo L(r)dr ;. , tel0o,1].
0]

Remark: The function r(-) mentioned above is the unique AC solution of
the IVP

r'(t) = L(t)r(t) +~(t), a.e. in [0,1], 7(0)=||zo— v(0)]||.

28



A characteristic Filippov -type result for Stieltjes differential inclusions
is recalled below.

Theorem 4.2 (A. Fryszkowski, J. Sadowski (2021)).

Let F :[0,1] x RY — P(R?) be a compact valued map of Carathéodory-type
s.t.

D( F(t,z), F(t,y)) < L(®)||z—yll, ¥ (&), (t,y) € [0,1] x RY,
where L(-) € L1 ([0, 1], ug).
Moreover, let v :[0,1] = R? be a g— AC function s.t.
d(vg(t), F(t,v(t)) <~v(), ng— a.e in [0,1),
where ~v(-) € L1 ([0, 1], ug).
Then V xo € RY, there exists a g— AC solution w of the IVP

u,(t) € F(t,u(t)), pg— a.e. in [0,1), u(0)=xo
s.t. Vtelo,1],

u(®) — v(®)]] < euo PO (H:vo o + [ 'Y(S)dug(S)) .
[0,t)

29



We derive a new Filippov-type lemma, a direct extension of the original
one (Th. 4.1.).

Theorem 4.3. (I. Marquez Albés (2021)). Let L,y € L([0, 1], uy) such
that vt € [0, 1],

1+ L(t)Ag(t) >0, where Ag(t) = g(t+) — g(t).
Then the Stieltjes linear Cauchy problem
ro(t) = L(t)r(t) +~(t), ug— a.e. in [0,1), 7(0) =ro
has a unique g— AC solution
v(s)
0,0 er(s)(1 + L(s)Ag(s))

r(t) = er(t) [ro + dug(s)|, Vvt € [0,1]

where
GL(t) = eﬁo,t)L(S)dg(S)
with

( L(t), if giscontinuous at ¢

L(t) = log[ 1+ L(t)Ag(t) ]

, Ootherwise.
\ Ag(t)
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We consider the following problem

uy(t) € F(t,u(t)), pg—ae. tel0,1),

(4)
u(0) = zo, z0 € R%

Theorem 4.4. Let F : [0,1] x R? — P(R?) be compact-valued s.t. for all
s,t €[0,1], z,y € RY,

D(F(t,x), F'(s,y)) < L(|lz — yl| + [g(¢) — g(s)]),
where L is a positive constant.
Then given a g— AC function v : [0, 1] — R¢, denoting by
d(vy(t), F(t,v(t)) = (1),

there exists a solution uw of (4) such that

[u(t) —v@®] <r(), V te]l0,1]



where r : [0,1] — R is the unique g— AC solution of the linear g-differential
problem

ro(t) = Lr(t) +v(t), pg —a.e.on [0,1)
r(0) = [lzo — v(0)].



Now we can combine Theorems 4.3 and 4.4 to obtain
Corollary 4.1. Under the hypotheses of Th.4.4, we have that Vt € [0, 1],
[Ju(t) —v(@®)|] < r@) =

v(s)
0.0 er(s)(1+ LAg(s))

= en(t) [nxo (O + ol

where

er (1) = e S L()dpay(s)

with

p

L, if giscontinuous att
L(t) = |
og| 14 LAg(t
gl1+ 9(t) ], otherwise.
\ Ag(t)
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Sketch of the proof of Th.4.4:

Let £ be a g-null set such that on [0,1) \ E the functions v and r are g—
differentiable.

Define K : [0,1] — P..(R%) by
K@) =v®)+r() -B(0,1).

The idea is to prove that F, K satisfy the hypotheses of the viability result
in Theorem 3.2.

Hypotheses 1), 2), 3) are easily checked.
Fix t € [0,1]\ F and z € K (t).
We have to prove that

F(t,z) N D,K(t,z) # D.
Choose u € B(0,1) such that z = y(t) 4+ r(¢t) - u.
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We will present the proof only in the case where

t is a discontinuity point of g, |u|| < 1.

Based on the definition of the contingent g— derivative we may show that
z € DyK(t,x) iff

r(t+)
g(t+) — g(t)

Iz = vy (D] < rg(t) - [lull + (1 [lul)).

Since
v(t) = d(vg(t), F(t,v(t)),
we may find w € F(t,v(t)) with
Jw — vy (D] = ~(2).

Moreover,

d(w, F(t,z)) < D(F(,0(t)), F(t,z)) < Lllz — (D)



SO, we can also choose z € F(t,x) such that

|w—z| < Lllz —y@)[| < Lr (@) [|ull.

Hence,
|z — v, ()| < Lr(t)|Jull + ~(2).

We may see that

r(t)
~(t) < Lr(t)+~() + g(t+) — g(t)

(1)
g(t+) — g(t)

= 7))+

) ) 1+

g(t+) —g(t) = gt+) —g(t) 1 —|u]

(5)



which implies that

r(t+)
v(t) < y@®llu|] + g(t—|-)—g(t)(1+||u||)' (6)
From (5) and (6) we infer that
lo— O < (@r() + @) - ull + S (1 4 )
I - g(t+) — g(t)
— N r(t+) . ”
= 0 Jull ST s (L ul)
i.e.,
z€ F(t,z) N DK (t,x).
L]

The estimation of the distance ||[u(t) —v(t)|| obtained in Corollary 4.1 is better
than the one obtained in Th.4.2.
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Proposition 4.3. Let L(-), v(-) € L1([0,1],4¢) andwv:[0,1] = R* be g— AC.
Set

0(6) = el HOMO gy — w0y + » ()i (5]
and
)= ex(0 |loo—v O+ s sy o)
where
w0 €RY, Ag(t) = g(t™) — g(t), en(t) = elon W)
with

( L(t), if giscontinuous at ¢

L(t) =4 log[ 14 L(t)Ag(t) ]

\ Ag(t)
Then r(t) <q(t), V te]0,1].

, Ootherwise.
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