On a viability result for differential inclusions with Stieltjes derivative

by

Bianca Satco

Stefan cel Mare University of Suceava (Romania) with George Smyrlis

NTUA Athens (Greece)

IMDETA
5th November 2025

Abstract.

Let $g:[0,1] \to \mathbb{R}$ be a left-continuous nondecreasing function and μ_g the **Lebesgue-Stieltjes measure** generated by g on [0,1].

We prove a **viability result** for the following Initial Value Problem which corresponds to a **Stieltjes differential inclusion:**

$$\begin{cases} u'_g(t) \in F(t, u(t)), \ \mu_g - a.e. \ t \in [0, 1) \\ \\ u(t) \in K(t), \quad \forall \ t \in [0, 1] \\ \\ u(0) = x_0 \in K(0) \end{cases}$$

where

$$K: [0,1]
ightarrow \mathcal{P}_{cc}(\mathbb{R}^d), \quad F: [0,1] imes \mathbb{R}^d
ightarrow \mathcal{P}_{cc}(\mathbb{R}^d) \ \ (d \geq 1)$$

are convex compact set valued maps.

Based on the above result, we obtain a **Filippov type lemma** for Stieltjes inclusions.

Preliminaries.

Let $g:[0,1] \to \mathbb{R}$ be a left-continuous nondecreasing function.

- The measurability with respect to the σ -algebra (containing Borel sets) defined by g on [0,1] will be called g-measurability.
- μ_g stands for the **Lebesgue-Stieltjes measure** generated by g on [0,1]. In particular, for $0 \le a < b \le 1$, we have

$$\mu_g([a,b)) = g(b) - g(a), \ \mu_g(\{a\}) = g(a^+) - g(a).$$

- The Lebesgue-Stieltjes (LS) integrability w.r.t. g means the abstract Lebesgue integrability w.r.t. the Stieltjes measure μ_q .
- Let $L_g^1([0,1],\mu_g)$ be the space of LS-integrable functions $u:[0,1]\to \mathbb{R}^d$ $(d\in\mathbb{N},\ d\geq 1)$ w.r.t. μ_g .
- The g- **topology** on [0,1] is the topology with basis the class of all sets $V_{q,\delta}(t)=\{t'\in[0,1]:|g(t')-g(t)|<\delta\},\ \delta>0,\ t\in[0,1].$

Stieltjes derivative

- R. López Pouso, A. Rodriguez, A new unification of continuous, discrete and impulsive calculus through Stieltjes derivatives. Real Anal. Exch., 2015.
- Young, W.H., On integrals and derivatives with respect to a function, Proc. London Math. Soc., 1(1917), s2-15 35 -63.

Definition: The derivative with respect to g (the g-derivative) of $f:[0,1] \to \mathbb{R}^d$ at a point $t \in [0,1]$ is

$$f'_g(t) = \lim_{s \to t} \frac{f(s) - f(t)}{g(s) - g(t)}$$
 if g is continuous at t ,

$$f'_g(t) = \lim_{s \to t^+} \frac{f(s) - f(t)}{g(s) - g(t)}$$
 if g is discontinuous at t ,

provided the limit exists.

Remark: If t is a point of discontinuity of g, the g-derivative $f'_g(t)$ exists if and only if the sided limit f(t+) exists, and in this case

$$f'_g(t) = \frac{f(t+) - f(t)}{g(t+) - g(t)}.$$

The definition has no meaning in the parts of the domain in which g is constant; denote such a region by C_g (this doesn't provoke problems since $\mu_g(C_g) = 0$).

However, it has been generalized so as to include the points of C_g as well.

• F.J. Fernández, I. Márquez Albés, F.A.F. Tojo, On first and second order linear Stieltjes differential equations, J. Math. Anal. Appl. **511**(2022), No. 1, 126010.

Let

$$N_g = \{u_n, v_n : n \in \mathbb{N}\} \setminus D_g,$$

where $C_g = \bigcup_{n \in \mathbb{N}} (u_n, v_n)$ with $(u_n, v_n)_n$ pairwise disjoint.

Let
$$N_g^- = \{u_n : n \in \mathbb{N}\} \setminus D_g$$
 and $N_g^+ = \{v_n : n \in \mathbb{N}\} \setminus D_g$.

The derivative with respect to g of $f:[0,1] \to \mathbb{R}^d$ at $\overline{t} \in [0,1]$ is defined by

$$f'_g(\overline{t}) = \lim_{t \to \overline{t}} rac{f(t) - f(\overline{t})}{g(t) - g(\overline{t})} \quad ext{if } \overline{t} \notin D_g \cup C_g,$$
 $f'_g(\overline{t}) = \lim_{t \to \overline{t} +} rac{f(t) - f(\overline{t})}{g(t) - g(\overline{t})} \quad ext{if } \overline{t} \in D_g,$
 $f'_g(\overline{t}) = \lim_{t \to v_s +} rac{f(t) - f(v_s)}{g(t) - g(v_s)} \quad ext{if } \overline{t} \in (u_s, v_s) \subseteq C_g,$

if the limits exist.

The points of N_g must be approached in the following manner:

$$f'_g(\overline{t}) = \lim_{t \to \overline{t}+} \frac{f(t) - f(\overline{t})}{g(t) - g(\overline{t})} \quad \text{if } \overline{t} \in N_g^+,$$

$$f'_g(\overline{t}) = \lim_{t \to \overline{t}-} \frac{f(t) - f(\overline{t})}{g(t) - g(\overline{t})} \quad \text{if } \overline{t} \in N_g^-.$$

Classical Viability Theory.

Let K be a closed subset of \mathbb{R}^d $(d \ge 1)$.

Definition 2.1. (G. Bouligand (1932)). Let $x \in K$. The **contingent cone** of K at x is defined as follows:

$$T_K(x) = \left\{ y \in \mathbb{R}^d : \lim_{h \to 0^+} \inf \frac{d(x+hy,K)}{h} = 0 \right\}.$$

• $y \in T_K(x)$ iff there there exist sequences

$$(h_k)_k \subseteq \mathbb{R}_+, \quad (x_k)_k \subseteq K$$

such that

$$\lim_{k \to \infty} h_k = 0, \quad y = \lim_{k \to \infty} \frac{x_k - x}{h_k}.$$

- $T_K(x)$ is a closed cone. If K is convex, $T_K(x)$ is convex too.
- for $x \in \text{int}K$, $T_K(x) = \mathbb{R}^d$.

Definition 2.2. A function $u:[0,1] \to \mathbb{R}^d$ is called K-viable iff $u(t) \in K, \ \forall \ t \in [0,1]$.

Proposition 2.1. Let $u:[0,1] \to K$ be K- viable and differentiable. Then $u'(t) \in T_K(u(t)), \quad \forall \ t \in [0,1).$

Theorem 2.1.(M. Nagumo (1942)). Let $f: K \to \mathbb{R}^d$ be a bounded continuous map. Then the following are equivalent:

(i) for each $x_0 \in K$, the Initial Value Problem

$$u'(t) = f(u(t)), \quad t \in [0, 1], \quad u(0) = x_0$$

has at least one K- viable solution.

(ii) $f(x) \in T_K(x), \forall x \in K$.

The above theorem is extended to the case of differential inclusions as follows:

Theorem 2.2. (J.-P. Aubin - A. Cellina (1984)). Let $F: K \to \mathcal{P}(\mathbb{R}^d)$ be upper semicontinuous with compact convex values . Then the following are equivalent:

(i) for each $x_0 \in K$, the Initial Value Problem

$$u'(t) \in F(u(t)), \quad t \in [0, 1], \quad u(0) = x_0$$

has at least one K- viable solution.

(ii)
$$F(x) \cap T_K(x) \neq \emptyset$$
, $\forall x \in K$.

Next, we consider the more general case where K depends on the time $t \in [0,1]$.

Namely, let $K:[0,1]\to \mathcal{P}(\mathbb{R}^d)$ be a set-valued map with closed graph.

Definition 2.3. A function $u:[0,1]\to\mathbb{R}^d$ is called $K(\cdot)$ -viable iff $u(t)\in K(t), \ \forall \ t\in[0,1].$

Definition 2.4. Let $t \in [0,1)$, $x \in K(t)$. The **contingent derivative** of the map K at (t,x) is defined as follows:

$$DK(t,x) = \left\{ y \in \mathbb{R}^d : \lim_{h \to 0^+} \inf \frac{d(x+hy,K(t+h))}{h} = 0 \right\}.$$

Remark 2.1: $y \in DK(t,x)$ iff there exist sequences

$$(h_k)_k \subseteq \mathbb{R}_+$$
, $(x_k)_k \subseteq \mathbb{R}^d$

such that

$$\lim_{k\to\infty} h_k = 0, \ x_k \in K(t+h_k), \ k \in \mathbb{N}, \quad y = \lim_{k\to\infty} \frac{x_k - x}{h_k}.$$

Remark 2.2: Assume that K is upper semicontinuous. Then for all $t \in [0,1), x \in K(t),$

$$y \in DK(t,x) \iff (1,y) \in T_{GraphK}(t,x).$$

In particular, if K(t) = K, $t \in [0, 1]$, then

$$DK(t,x) = T_K(x)$$
, for all $t \in [0,1)$, $x \in K$.

Proposition 2.2. Let $u:[0,1] \to \mathbb{R}^d$ be $K(\cdot)-$ viable and differentiable. Then $u'(t) \in DK(t,u(t)), \quad \forall \ t \in [0,1).$

Theorem 2.3. (J.-P. Aubin - A. Cellina (1984)). Let $F : Graph K \to \mathcal{P}(\mathbb{R}^d)$ be upper semicontinuous with compact convex values. The following are equivalent:

(i) for each $x_0 \in K$, the Initial Value Problem

$$u'(t) \in F(t, u(t)), \quad t \in [0, 1], \quad u(0) = x_0$$

has at least one $K(\cdot)$ – viable AC solution.

(ii) $F(t,x) \cap DK(t,x) \neq \emptyset$, $\forall t \in [0,1), \forall x \in K(t)$.

Now we consider the much more demanding case of **measurable viability** problems.

Theorem 2.4.(H. Frankowska - S. Plaszkacz - T. Tzezuchowski (1995)).

Assume that K is absolutely continuous from the left $\ \$ in the following sense :

for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ satisfying, for any set $\{(t'_{\gamma}, t''_{\gamma})\}_{\gamma \in \Gamma}$ of non-overlapping subintervals of [0,1] with Γ at most countable index set,

$$\sum_{\gamma \in \Gamma} (t_{\gamma}'' - t_{\gamma}') < \delta_{\varepsilon} \implies \sum_{\gamma \in \Gamma} e(K(t_{\gamma}'), K(t_{\gamma}'')) < \varepsilon.$$

Moreover, let $F:[0,1]\times\mathbb{R}^d\to\mathcal{P}_{kc}(\mathbb{R}^d)$ be such that

- F is of Carathéodory type, i.e.,
 - for μ a.e. $t \in [0,1], x \mapsto F(t,x)$ is continuous.
 - -for each $x \in \mathbb{R}^d$, $t \mapsto F(t,x)$ is measurable.
- for μ a.e. $t \in [0,1]$ and all $x \in \mathbb{R}^d$,

where $h \in L^1([0,1], \mu), h \ge 0$.

Then the following are equivalent:

(i) for each $x_0 \in K(0)$, the Initial Value Problem

$$\begin{cases} u'(t) \in F(t, u(t)), \ \mu - a.e. \ t \in [0, 1] \\ u(0) = x_0 \in K(0), \end{cases}$$

has at least one $K(\cdot)$ – viable absolutely continuous (AC) solution.

(ii) there exists $E \subset [0,1]$ with $\mu(E) = 0$ such that for every $t \in [0,1] \setminus E$ and every $x \in K(t)$,

$$F(t,x) \cap DK(t,x) \neq \emptyset$$
.

A viability result for Stieltjes differential inclusions.

We will need the notion of **contingent** g- **derivative** which extends the notion of contingent derivative mentioned above and it is naturally used in studying viability problems for **Stieltjes differential inclusions**.

Definition 3.1 (R. López Pouso - I. Márquez Albés - J. Rodriguez-Lopez (2020)). Let $t \in [0,1), x \in K(t)$. The **contingent** g- **derivative** of K at (t,x) is the set $D_qK(t,x)$ containing all $y \in \mathbb{R}^d$ with the property

$$\liminf_{h \to 0^+} \frac{d(x + (g(t+h) - g(t))y, K(t+h))}{g(t+h) - g(t)} = 0.$$

It is easily checked that $y \in D_gK(t,x)$ iff there exist sequences

$$(h_k)_k \subseteq \mathbb{R}_+$$
, $(x_k)_k \subseteq \mathbb{R}^d$

such that

$$\lim_{k\to\infty} h_k = 0, \quad x_k \in K(t+h_k), \quad k \in \mathbb{N}, \quad y = \lim_{k\to\infty} \frac{x_k - x}{g(t+h_k) - g(t)}.$$

Let $g:[0,1] \to \mathbb{R}$ be a left-continuous nondecreasing function and μ_g the Lebesgue-Stieltjes measure generated by g on [0,1].

We aim to prove a **viability result** for the following Initial Value Problem which corresponds to a **Stieltjes differential inclusion:**

$$\begin{cases} u'_g(t) \in F(t, u(t)), \ \mu_g - a.e. \ t \in [0, 1) \\ u(t) \in K(t), \quad \forall \ t \in [0, 1] \\ u(0) = x_0 \in K(0). \end{cases}$$
 (1)

Hypotheses:

1). $K:[0,1]\to \mathcal{P}_{cc}(\mathbb{R}^d)$ is g-absolutely continuous from the left w.r.t. the g--topology in the following sense :

for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ satisfying, for any set $\{(t'_{\gamma}, t''_{\gamma})\}_{\gamma \in \Gamma}$ of non-overlapping subintervals of [0,1] with Γ at most countable index set,

$$\sum_{\gamma \in \Gamma} (g(t''_{\gamma}) - g(t'_{\gamma})) < \delta_{\varepsilon} \implies \sum_{\gamma \in \Gamma} e(K(t'_{\gamma}), K(t''_{\gamma})) < \varepsilon.$$

Moreover, we assume that at every discontinuity point $t_1 \in [0,1)$ of g, K has limit at the right for the usual topology in the sense of Hausdorff distance:

there exists $K(t_1^+) \in \mathcal{P}_{cc}(\mathbb{R}^d)$ such that for every $\varepsilon > 0$ there exists $\delta_{t_1,\varepsilon} > 0$ satisfying, for any $t \in [0,1]$ with $t_1 < t < t_1 + \delta_{t_1,\varepsilon}$,

$$K(t) \subset K(t_1^+) + B_{\varepsilon}(0)$$
 and $K(t_1^+) \subset K(t) + B_{\varepsilon}(0)$.

2). The map $F:[0,1]\times\mathbb{R}^d\to\mathcal{P}_{cc}(\mathbb{R}^d)$ is **upper semicontinuous** for the product of the g-topology of [0,1] with the usual topology of \mathbb{R}^d , i.e.,

for each (t,x) and $\varepsilon > 0$ there is $\delta_{\varepsilon} > 0$ such that for all (t',x'),

if $|g(t)-g(t')|<\delta_{arepsilon}$ and $||x'-x||<\delta_{arepsilon},$ then

$$F(t',x')\subset F(t,x)+B_{\varepsilon}(0).$$

- **3).** There is M > 0 such that for every $(t, x) \in GraphK$, $|F(t, x)| \leq M$.
- **4).** There exists $E \subset [0,1]$ with $\mu_g(E) = 0$ such that for every $t \in [0,1] \setminus E$ and every $x \in K(t)$,

$$F(t,x) \cap D_g K(t,x) \neq \emptyset.$$

The first key auxiliary result is the following

Lemma 3.1. Let $t_0 \in [0,1) \setminus E$ and $\overline{x_0} \in K(t_0)$. Then for each $\varepsilon > 0$, there exist $\delta > 0$ and $v : [t_0, t_0 + \delta] \to \mathbb{R}^d$ a g-absolutely continuous function with

$$v(t_0) = \overline{x_0}$$
;

$$v(t) \in K(V_{q,\varepsilon}^l(t)) + B_{(2+M)\varepsilon}(0), \forall t \in [t_0, t_0 + \delta];$$

$$v(t_0 + \delta) \in K(t_0 + \delta);$$

$$v'_q(t) \in F((V_{g,\varepsilon}(t) \times (v(t) + B_{(2+M)\varepsilon}(0))) \cap GraphK) + B_{\varepsilon}(0),$$

$$\mu_g - a.e. \text{ on } [t_0, t_0 + \delta).$$

Here

$$V_{g,\varepsilon}^l(t) = \{ t' \in [0,t] : g(t) - g(t') < \varepsilon \}$$

and

$$V_{g,\varepsilon}(t) = \{t' \in [0,1] : |g(t) - g(t')| < \varepsilon\}.$$

Sketch of the proof:

We will present the proof only in the case where

- t_0 is a discontinuity point of g
- g is not constant at the right of t_0 .

Due to hypothesis 4), we may find

$$y \in F(t_0, \overline{x}_0) \cap D_q K(t_0, \overline{x}_0),$$

i.e.,

$$y = \lim_{k \to \infty} \frac{x_k - \overline{x_0}}{g(t_0 + h_k) - g(t_0)},$$

for some $h_k \downarrow 0$ and $x_k \in K(t_0 + h_k)$ for all $k \in \mathbb{N}$.

It follows that there exists the limit $\lim_{k \to \infty} x_k$ and

$$y = \frac{\lim_{k \to \infty} x_k - \overline{x_0}}{g(t_0^+) - g(t_0)}.$$

Moreover, **hypothesis 1)** implies that $\lim_{k\to\infty} x_k \in K(t_0^+)$.

Choose $y_k \in F(t_0 + h_k, x_k), k \in \mathbb{N}$ and k_{ε} such that

$$g(t_0+h_{k_{arepsilon}})-g(t_0^+) $\|x_{k_{arepsilon}}-\lim_{k o\infty}x_k\|$$$

where M > 0 is as postulated in **hypothesis 3)**, i.e.,

$$|F(t,x)| \leq M$$
, for all $(t,x) \in GraphK$.

Define $v:[t_0,t_0+h_{k_{\varepsilon}}]\to\mathbb{R}^d$ as follows:

$$v(t) = \left\{egin{array}{l} \overline{x_0}, \ \mathrm{if} \ t = t_0 \ \\ x_{k_{arepsilon}} + y_{k_{arepsilon}}(g(t) - g(t_0 + h_{k_{arepsilon}})), \ \mathrm{if} \ t \in (t_0, t_0 + h_{k_{arepsilon}}]. \end{array}
ight.$$

Fix $t \in (t_0, t_0 + h_{k_{\varepsilon}}]$. Then

$$\|v(t) - \lim_{k \to \infty} x_k\| \le \varepsilon + \|v(t) - x_{k_{\varepsilon}}\| \le$$
 $\le \epsilon + \|(g(t) - g(t_0 + h_{k_{\varepsilon}}))y_{k_{\varepsilon}}\| \le \varepsilon + \varepsilon M.$

Besides, hypothesis 1) implies that

$$K(t_0^+) \subset K(V_{g,\varepsilon}^l(t)) + B_{\varepsilon}(0).$$

Consequently,

$$v(t) \in K(t_0^+) + B_{\varepsilon + \varepsilon M}(0) \subset K(V_{g,\varepsilon}^l(t)) + B_{2\varepsilon + \varepsilon M}(0).$$

Moreover, $v(t_0 + h_{k_{\varepsilon}}) = x_{k_{\varepsilon}} \in K(t_0 + h_{k_{\varepsilon}}).$

To check the last assertion for $t = t_0$ we may write

$$v_g'(t_0) = \frac{v(t_0+) - v(t_0)}{g(t_0+) - g(t_0)} = \frac{x_{k_{\varepsilon}} - \overline{x_0} + y_{k_{\varepsilon}}(g(t_0+) - g(t_0+h_{k_{\varepsilon}}))}{g(t_0+) - g(t_0)},$$

whence

$$||v'_{g}(t_{0}) - y|| = \left\| \frac{x_{k_{\varepsilon}} - \lim_{k \to \infty} x_{k} + y_{k_{\varepsilon}}(g(t_{0} +) - g(t_{0} + h_{k_{\varepsilon}}))}{g(t_{0} +) - g(t_{0})} \right\|$$

$$\leq \frac{||x_{k_{\varepsilon}} - \lim_{k \to \infty} x_{k}||}{g(t_{0} +) - g(t_{0})} + \frac{||y_{k_{\varepsilon}}||(g(t_{0} + h_{k_{\varepsilon}}) - g(t_{0} +))}{g(t_{0} +) - g(t_{0})}$$

$$< \frac{\varepsilon}{1 + M} + \frac{\varepsilon M}{1 + M} = \varepsilon.$$

Since $y \in F(t_0, \overline{x_0}) = F(t_0, v(t_0))$, the assertion is proved.

Finally, for $t \in (t_0, t_0 + h_{k_{\varepsilon}})$, we have

 $||v(t)-x_{k_\varepsilon}||\leq \varepsilon M,\quad 0\leq g(t_0+h_{k_\varepsilon})-g(t)\leq g(t_0+h_{k_\varepsilon})-g(t_0^+)<\varepsilon$ and thus,

$$v'_g(t) = y_{k_{\varepsilon}} \in F(t_0 + h_{k_{\varepsilon}}, x_{k_{\varepsilon}}) \subset$$

$$\subset F((V_{g,\varepsilon}(t) \times (v(t) + B_{(2+M)\varepsilon}(0))) \cap GraphK).$$

Now fix $\varepsilon > 0$.

Since K is g- **AC** from the left (see hypothesis 1), we may choose $r_{\varepsilon} \in (0, \varepsilon)$ s.t.

for any set $\{(t'_{\gamma}, t''_{\gamma})\}_{\gamma \in \Gamma}$ of non-overlapping subintervals of [0, 1] with Γ at most countable index set,

$$\sum_{\gamma \in \Gamma} (g(t_{\gamma}'') - g(t_{\gamma}')) < r_{\varepsilon} \implies \sum_{\gamma \in \Gamma} e(K(t_{\gamma}'), K(t_{\gamma}'')) < \varepsilon.$$
 (2)

Moreover, since $\mu_g(E) = 0$ (see hypothesis 4), the **regularity** of the measure μ_g implies that there exists E_{ε} **open** with

$$E \subset E_{\varepsilon}, \quad \mu_g(E_{\varepsilon}) < r_{\varepsilon}.$$
 (3)

Under the above circumstances, the **second key auxiliary result** is:

Theorem 3.1. Let ε , r_{ε} , E_{ε} be as in (2), (3). Then $\exists v : [0,1] \to \mathbb{R}^d$ a g-AC function satisfying:

$$v(0) = x_0;$$

 $v(t) \in K(V_{q,\varepsilon}^l(t)) + B_{(2+M)\varepsilon}(0), \ \forall t \in [0,1];$

 $[0,1) = \bigcup_{i \in I} [\alpha_i, \beta_i), \ [\alpha_i, \beta_i), \ i \in I$ being pairwise disjoint,

where I is at most countable such that for each $i \in I$,

• if $\alpha_i \in E$, then $[\alpha_i, \beta_i) \subset E_{\varepsilon}$ and either

g is constant on $[\alpha_i, \beta_i)$ or

$$\int_{[\alpha_i,\beta_i)} \|v_g'(t)\| dg(t) \le e(K(\alpha_i),K(\beta_i));$$

• otherwise, $\mu_g - a.e.$ on $[\alpha_i, \beta_i)$

$$v'_g(t) \in F((V_{g,\varepsilon}(t) \times (v(t) + B_{(2+M)\varepsilon}(0))) \cap GraphK) + B_{\varepsilon}(0).$$

Steps of the proof:

Step 1: We consider the set \mathcal{M} of all triplets $(v, \delta, \{[\alpha_i, \beta_i) : i \in I\})$ with the following properties:

```
\begin{split} \delta &\in (0,1] \text{ and } v:[0,\delta] \to \mathbb{R}^d \text{ is } g-\text{AC with } v(0)=x_0; \\ v(t) &\in K(V_{g,\varepsilon}^l(t)) + B_{(2+M)\varepsilon}(0), \ \forall t \in [0,\delta]; \\ v(\delta) &\in K(\delta); \\ [0,\delta) &= \cup_{i \in I} [\alpha_i,\beta_i), \ [\alpha_i,\beta_i), \ i \in I \text{ being pairwise disjoint }, \\ \text{where } I \text{ is at most countable such that for each } i \in I, \\ \bullet \text{ if } \alpha_i &\in E, \text{ then } [\alpha_i,\beta_i) \subset E_\varepsilon \text{ and either } \\ g \text{ is constant on } [\alpha_i,\beta_i) \text{ or } \\ \int_{[\alpha_i,\beta_i)} \|v_g'(t)\| dg(t) \leq e(K(\alpha_i),K(\beta_i)); \\ \bullet \text{ if } \alpha_i \not\in E, \quad \mu_g-a.e. \text{ on } [\alpha_i,\beta_i) \\ v_g'(t) &\in F((V_{g,\varepsilon}(t)\times(v(t)+B_{(2+M)\varepsilon}(0))) \cap GraphK) + B_\varepsilon(0). \end{split}
```

By using (2) combined with **Lemma 3.1** we may prove that the set \mathcal{M} defined above is **nonempty.**

Step 2: We consider on \mathcal{M} a **partial ordering** (\preceq) in the following way:

$$(v_1, \delta_1, \{ [\alpha_i^1, \beta_i^1) : i \in I_1 \}) \leq (v_2, \delta_2, \{ [\alpha_i^2, \beta_i^2) : i \in I_2 \})$$

iff

- $\delta_1 \leq \delta_2$ and $v_2|_{[0,\delta_1]} = v_1$.
- $\{[\alpha_i^1, \beta_i^1) : i \in I_1\} \subset \{[\alpha_i^2, \beta_i^2) : i \in I_2\}.$

By using **Zorn's Lemma** combined with the g - **absolute continuity of** K **from the left**, we prove that the set \mathcal{M} admits a **maximal element**

$$(\overline{v}, \overline{\delta}, \{[\alpha_i, \beta_i) : i \in I\}).$$

<u>Step 3</u>: Arguing by contradiction and exploiting Lemma 3.1, we prove that $\overline{\delta} = 1$.

In the proof of our main result we will also need the following

Lemma 3.2. (R. López Pouso - I. Márquez Albés - J. Rodriguez-Lopez (2020)).

Let

$$v_n: [0,1] \to \mathbb{R}^d, \quad n \in \mathbb{N},$$

be a sequence of g-AC functions, pointwisely convergent to some $v:[0,1]\to \mathbb{R}^d$.

Assume that $\exists C > 0$ s.t. $\forall n \in \mathbb{N}$,

$$\|(v_n)'_g(t)\| \le C$$
, μ_g – a.e. on $[0,1)$.

Then v is g-AC and

$$v_g'(t)\inigcap_{p\in\mathbb{N}}\overline{co}igcup_{n=p}^\infty\{(v_n)_g'(t)\},\quad \mu_g ext{ - a.e. on } [0,1).$$

Moreover, the sequence $(v_n)_n$ has a subsequence uniformly convergent to v.

Now our main viability existence result is the following

Theorem 3.2. Under assumptions 1) - 4, the problem (1) has g-absolutely continuous solutions on [0,1].

Steps of the proof:

Step 1: Choose $(\varepsilon_n)_n$ be a sequence of positive numbers convergent to 0.

The **left** g- **AC** of K gives rise to a sequence

$$r_{\varepsilon_n} \in (0, \varepsilon_n), n \in \mathbb{N}$$

satisfying:

for any set $\{(t'_{\gamma}, t''_{\gamma})\}_{\gamma \in \Gamma}$ of non-overlapping subintervals of [0, 1] with Γ at most countable,

$$\sum_{\gamma \in \Gamma} (g(t''_{\gamma}) - g(t'_{\gamma})) < r_{\varepsilon_n} \implies \sum_{\gamma \in \Gamma} e(K(t'_{\gamma}), K(t''_{\gamma})) < \varepsilon_n.$$

For each $n \in \mathbb{N}$, choose an **open set** E_n with

$$E \subset E_n$$
, $\mu_g(E_n) < r_{\varepsilon_n}$.

We may suppose that $(E_n)_n$ is a decreasing sequence.

By virtue of Theorem 3.1, there exists a sequence $v_n:[0,1]\to\mathbb{R}^d,\ n\in\mathbb{N}$ of g- AC functions satisfying the following conditions:

$$v_n(0) = x_0;$$

 $v_n(t) \in K(V_{g,\varepsilon_n}^l(t)) + B_{(2+M)\varepsilon_n}(0), \ \forall t \in [0,1];$
 $[0,1) = \bigcup_{i \in I^n} [\alpha_i^n, \beta_i^n),$

where I^n is at most countable such that for each $i \in I^n$,

• if $\alpha_i^n \in E$, then $[\alpha_i^n, \beta_i^n) \subset E_n$ and either g is constant on $[\alpha_i^n, \beta_i^n)$ or

$$\int_{[\alpha_i^n,\beta_i^n)} \|(v_n)_g'(t)\|dg(t) \le e(K(\alpha_i^n),K(\beta_i^n))$$

• if $\alpha_i^n \not\in E$, $(v_n)'_q(t) \in$

$$\in F((V_{g,\varepsilon_n}(t)\times(v_n(t)+B_{(2+M)\varepsilon_n}(0)))\cap GraphK)+B_{\varepsilon_n}(0),$$

 $\mu_g-a.e.\ on\ [\alpha_i^n,\beta_i^n).$

Due to hypothesis 3), the last one implies

$$||(v_n)'_q(t)|| \leq M + \varepsilon_n, \quad \mu_g - a.e. \text{ on } [\alpha_i^n, \beta_i^n).$$

Step 2: By using the properties of the sequence $((v_n)'_g)_n$ we prove that

$$\sup_{n} \int_{0}^{1} ||(v_{n})_{g}'(t)||d\mu_{g}(t) < \infty$$

and that the sequence $((v_n)'_g)_n$ is μ_g – uniformly integrable, i.e.,

for each $\eta > 0$, $\exists \theta_{\eta} > 0$ s.t. for each g— measurable set $A \subset [0,1]$,

$$\mu_g(A) < \theta_\eta \Longrightarrow \int_A ||(v_n)_g'(t)||d\mu_g(t) < \eta, \quad \forall \ n \in \mathbb{N}.$$

It follows that the sequence $((v_n)'_g)_n$ is weakly $L_g^1([0,1])$ relatively compact.

On a subsequence (not relabelled) it **weakly converges** in $L_g^1([0,1])$ to some function $w \in L_g^1([0,1])$.

By the fundamental theorem of calculus we infer that

$$v_n(t) \to v(t) = x_0 + \int_{[0,t)} w(t) d\mu_g(t), \quad \forall \ t \in [0,1].$$

Clearly, v is g-AC.

Step 3: By using the properties of the sequence $(v_n)_n$ combined with the **left** g- **AC** of K, we prove that

$$v(t) \in K(t)$$
, for every $t \in [0, 1]$.

Step 4: By using the properties of the sequence $((v_n)'_g)_n$, we prove that $\exists \tilde{C} > 0$ such that for each $N \in \mathbb{N}$,

$$||(v_n)_g'(t)|| \leq \tilde{C}, \quad \mu_g - \text{a.e. in} \quad [0,1) \setminus E_N, \quad \text{for all } n \geq N.$$

Step 5: Fix $N \in \mathbb{N}$.

Step 4 combined with Lemma 3.2 imply that

$$v_g'(t)\in \bigcap_{p\in\mathbb{N}}\overline{co}\bigcup_{n=p}^\infty\{(v_n)_g'(t)\},\; \mu_g- ext{a.e. on } [0,1)\setminus E_N.$$

Moreover, by passing to subsequences, we may assume that

$$v_n o v$$
, uniformly on $[0,1] \setminus E_N$.

Step 6: We prove that for each $N \in \mathbb{N}$,

$$v_g'(t) \in F(t,v(t)), \quad \mu_g$$
 – a.e. on $[0,1) \setminus E_N$.

The proof is based on Step 5,

- the last assertion satisfied by $((v_n)'_q)_n$.
- the fact that $F:[0,1]\times\mathbb{R}^d\to\mathcal{P}(\mathbb{R}^d)$ is g- upper semicontinuous with compact convex values (hypothesis 2).

Step 7: We prove that

$$v_q'(t) \in F(t, v(t)), \quad \mu_g$$
 – a.e. on $[0, 1)$.

This follows easily from Step 6 combined with the fact that

$$\mu_g\left(\bigcap_n E_n\right) = \lim_n \mu_g(E_n) = 0.$$

4. A Filippov-type result.

First, we recall two classical results from the theory of ODEs.

Let $f:[0,1]\times\mathbb{R}^d\to\mathbb{R}^d$ be continuous satisfying

$$||f(t,x) - f(t,y)|| \le L(t)||x - y||, \quad \forall (t,x), (t,y) \in [0,1] \times \mathbb{R}^d,$$

where $L(\cdot) \in L^1_+([0,1])$.

Proposition 4.1. If u, v are AC solutions of the ODE

$$x'(t) = f(t, x(t)),$$
 a.e. in [0,1],

then

$$||u(t)-v(t)|| \le ||u(0)-v(0)||e^{\int_0^t L(s)ds}, \quad \forall \ t \in [0,1].$$

Next proposition extends the above result to the case where v is not necessarily a solution but "differs from being a solution" by some integrable function.

Proposition 4.2. Let $u, v : [0,1] \to \mathbb{R}^d$ be AC functions s.t.

$$u'(t) = f(t, u(t)), \quad ||v'(t) - f(t, v(t))|| < \gamma(t), \quad a.e. \text{ in } [0, 1],$$

where $\gamma(\cdot) \in L^1_+([0,1])$.

Then $\forall t \in [0, 1]$,

$$||u(t)-v(t)|| \le e^{\int_0^t L(s)ds} \left[||x_0-v(0)|| + \int_0^t \gamma(s)e^{-\int_0^s L(\tau)d\tau}ds \right].$$

An extension of Prop. 4.2 to the **multi-valued case** is the celebrated **Filippov lemma**:

Theorem 4.1 (A. Filippov (1967)). Let $F:[0,1]\times\mathbb{R}^d\to\mathcal{P}_c(\mathbb{R}^d)$ be of Caratheodory type s.t.

$$D(|F(t,x),|F(t,y)|) \le |L(t)||x-y||, |\forall |(t,x), |(t,y) \in [0,1] \times \mathbb{R}^d,$$

where $L(\cdot) \in L^1_+([0,1])$. Moreover, let $v : [0,1] \to \mathbb{R}^d$ be an AC function s.t.

$$|d(v'(t), F(t, v(t))|| \le \gamma(t),$$
 a.e. in [0,1],

where $\gamma(\cdot) \in L^1_+([0,1])$. Then $\forall x_0 \in \mathbb{R}^d$, there exists an AC solution u of the IVP

$$u'(t) \in F(t, u(t)),$$
 a.e. in $[0, 1], u(0) = x_0$

s.t.

$$||u(t) - v(t)|| \le r(t), \quad \forall t \in [0, 1],$$

where

$$r(t) = e^{\int_0^t L(s)ds} \left[||x_0 - v(0)|| + \int_0^t \gamma(s)e^{-\int_0^s L(\tau)d\tau}ds \right], \quad t \in [0, 1].$$

Remark: The function $r(\cdot)$ mentioned above is the unique AC solution of the IVP

$$r'(t) = L(t)r(t) + \gamma(t)$$
, a.e. in $[0,1]$, $r(0) = ||x_0 - v(0)||$.

A characteristic Filippov -type result for Stieltjes differential inclusions is recalled below.

Theorem 4.2 (A. Fryszkowski, J. Sadowski (2021)).

Let $F:[0,1]\times\mathbb{R}^d\to\mathcal{P}(\mathbb{R}^d)$ be a compact valued map of Carathéodory-type s.t.

$$D(|F(t,x), |F(t,y)|) \le |L(t)||x-y||, |\forall |(t,x), |(t,y) \in [0,1] \times \mathbb{R}^d,$$

where $L(\cdot) \in L^1_+([0,1], \mu_g)$.

Moreover, let $v:[0,1] \to \mathbb{R}^d$ be a g- AC function s.t.

$$d(v_q'(t), F(t, v(t)) \le \gamma(t), \quad \mu_g - \text{ a.e. in } [0, 1),$$

where $\gamma(\cdot) \in L^1_+([0,1], \mu_g)$.

Then $\forall x_0 \in \mathbb{R}^d$, there exists a g- AC solution u of the IVP

$$u_g'(t) \in F(t, u(t)), \quad \mu_g - \text{ a.e. in } [0, 1), \quad u(0) = x_0$$

s.t. $\forall t \in [0, 1],$

$$||u(t)-v(t)|| \le e^{\int_{[0,t)} L(s)d\mu_g(s)} \cdot \left(||x_0-v(0)|| + \int_{[0,t)} \gamma(s)d\mu_g(s)\right).$$

We derive a **new Filippov-type lemma**, a direct extension of the original one (Th. 4.1.).

Theorem 4.3. (I. Márquez Albés (2021)). Let $L, \gamma \in L^1([0,1], \mu_g)$ such that $\forall t \in [0,1],$

$$1 + L(t)\Delta g(t) > 0$$
, where $\Delta g(t) = g(t+) - g(t)$.

Then the Stieltjes linear Cauchy problem

$$r_q'(t) = L(t)r(t) + \gamma(t), \ \mu_g$$
 - a.e. in $[0,1), \ r(0) = r_0$

has a unique g- AC solution

$$r(t) = e_L(t) \left[r_0 + \int_{[0,t)} \frac{\gamma(s)}{e_L(s)(1 + L(s)\Delta g(s))} d\mu_g(s) \right], \forall t \in [0,1]$$

where

$$e_L(t) = e^{\int_{[0,t)} \tilde{L}(s) dg(s)}$$

with

$$\tilde{L}(t) = \begin{cases} L(t), & \text{if } g \text{ is continuous at } t \\ \\ \frac{\log[\ 1 + L(t)\Delta g(t)\]}{\Delta g(t)}, & \text{otherwise.} \end{cases}$$

We consider the following problem

$$\begin{cases} u'_g(t) \in F(t, u(t)), \ \mu_g - a.e. \ t \in [0, 1), \\ u(0) = x_0, \ x_0 \in \mathbb{R}^d. \end{cases}$$
 (4)

Theorem 4.4. Let $F:[0,1]\times\mathbb{R}^d\to\mathcal{P}(\mathbb{R}^d)$ be compact-valued s.t. for all $s,t\in[0,1],\ x,y\in\mathbb{R}^d,$

$$D(F(t,x), F(s,y)) \le L(||x-y|| + |g(t) - g(s)|),$$

where L is a positive constant.

Then given a g- AC function $v:[0,1] \to \mathbb{R}^d$, denoting by

$$d(v'_g(t), F(t, v(t)) = \gamma(t),$$

there exists a solution u of (4) such that

$$||u(t) - v(t)|| \le r(t), \quad \forall \ t \in [0, 1]$$

where $r:[0,1] \to \mathbb{R}$ is the unique g- AC solution of the linear g-differential problem

$$r'_g(t) = Lr(t) + \gamma(t), \ \mu_g - a.e. \ \text{on} \ [0, 1)$$

 $r(0) = ||x_0 - v(0)||.$

Now we can combine Theorems 4.3 and 4.4 to obtain

Corollary 4.1. Under the hypotheses of Th.4.4, we have that $\forall t \in [0,1]$,

$$||u(t) - v(t)|| \le r(t) =$$

$$= e_L(t) \left[\|x_0 - v(0)\| + \int_{[0,t)} \frac{\gamma(s)}{e_L(s)(1 + L\Delta g(s))} d\mu_g(s) \right],$$

where

$$e_L(t) = e^{\int_{[0,t)} ilde{L}(s) d\mu_g(s)}$$

with

$$\tilde{L}(t) = \left\{ \begin{array}{l} L, & \text{if } g \text{ is continuous at } t \\ \\ \frac{\log[\ 1 + L\Delta g(t)\]}{\Delta g(t)}, & \text{otherwise.} \end{array} \right.$$

Sketch of the proof of Th.4.4:

Let E be a g-null set such that on $[0,1)\setminus E$ the functions v and r are g-differentiable.

Define $K:[0,1] \to \mathcal{P}_{cc}(\mathbb{R}^d)$ by

$$K(t) = v(t) + r(t) \cdot \overline{B(0,1)}.$$

The idea is to prove that F, K satisfy the hypotheses of the viability result in Theorem 3.2.

Hypotheses 1), 2), 3) are easily checked.

Fix $t \in [0,1] \setminus E$ and $x \in K(t)$.

We have to prove that

$$F(t,x) \cap D_g K(t,x) \neq \emptyset.$$

Choose $u \in \overline{B(0,1)}$ such that $x = y(t) + r(t) \cdot u$.

We will present the proof only in the case where

t is a discontinuity point of
$$g$$
, $||u|| < 1$.

Based on the definition of the contingent g- derivative we may show that $z\in D_gK(t,x)$ iff

$$||z - v'_g(t)|| \le r'_g(t) \cdot ||u|| + \frac{r(t+)}{g(t+) - g(t)} \cdot (1 + ||u||).$$

Since

$$\gamma(t) = d(v_g'(t), F(t, v(t)),$$

we may find $w \in F(t, v(t))$ with

$$||w - v_g'(t)|| = \gamma(t).$$

Moreover,

$$d(w, F(t,x)) \leq D(F(t,v(t)), F(t,x)) \leq L||x-v(t)||$$

so, we can also choose $z \in F(t,x)$ such that

$$||w - z|| \le L||x - y(t)|| \le Lr(t)||u||.$$

Hence,

$$||z - v_q'(t)|| \le Lr(t)||u|| + \gamma(t).$$
 (5)

We may see that

$$\gamma(t) \leq Lr(t) + \gamma(t) + \frac{r(t)}{g(t+) - g(t)}
= r'_g(t) + \frac{r(t)}{g(t+) - g(t)}
= \frac{r(t+)}{g(t+) - g(t)} \leq \frac{r(t+)}{g(t+) - g(t)} \frac{1 + ||u||}{1 - ||u||}$$

which implies that

$$\gamma(t) \le \gamma(t)||u|| + \frac{r(t+)}{g(t+) - g(t)}(1 + ||u||). \tag{6}$$

From (5) and (6) we infer that

$$||z - v_g'(t)|| \le (Lr(t) + \gamma(t)) \cdot ||u|| + \frac{r(t+)}{g(t+) - g(t)} \cdot (1 + ||u||)$$

$$= r_g'(t) \cdot ||u|| + \frac{r(t+)}{g(t+) - g(t)} \cdot (1 + ||u||)$$

i.e.,

$$z \in F(t,x) \cap D_gK(t,x).$$

The estimation of the distance ||u(t)-v(t)|| obtained in Corollary 4.1 is **better** than the one obtained in Th.4.2.

Proposition 4.3. Let $L(\cdot)$, $\gamma(\cdot) \in L^1_+([0,1], \mu_g)$ and $v : [0,1] \to \mathbb{R}^d$ be g - AC. Set

$$q(t) = e^{\int_{[0,t)} L(s)d\mu_g(s)} \cdot \left[\|x_0 - v(0)\| + \int_{[0,t)} \gamma(s)d\mu_g(s) \right]$$

and

$$r(t) = e_L(t) \left[||x_0 - v(0)|| + \int_{[0,t)} \frac{\gamma(s)}{e_L(s)(1 + L(t)\Delta g(s))} d\mu_g(s) \right],$$

where

$$x_0 \in \mathbb{R}^d, \quad \Delta g(t) = g(t^+) - g(t), \quad e_L(t) = e^{\int_{[0,t)} \tilde{L}(s) d\mu_g(s)}$$

with

$$\tilde{L}(t) = \left\{ \begin{array}{l} L(t), & \text{if } g \text{ is continuous at } t \\ \\ \frac{\log[\ 1 + L(t)\Delta g(t)\]}{\Delta g(t)}, & \text{otherwise.} \end{array} \right.$$

Then $r(t) \leq q(t)$, $\forall t \in [0,1]$.