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Setting of the problem

Consider the following two equations

[ϕ
(
λ, x(t), x ′(t)

)
]′ = λf

(
t, x(t), x ′(t), λ

)
, λ ≥ 0, (1)

and

[ϕ
(
λ, x(t), x ′(t)

)
]′ = g

(
x(t), x ′(t)

)
+ λf

(
t, x(t), x ′(t), λ

)
, (2)

where
• g : U × Rn → Rn continuous, U ⊆ Rn open;
• f : R×U ×Rn × [0,∞) → Rn Carathéodory (or continuous) and
T -periodic in t;
• ϕ : [0,∞)× U × Rn → Rn continuous (generalized Φ-Laplacian):
recall the p-Laplacian operator Φ(y) := y |y |p−2.
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Carathéodory assumption

Recall that f : R× U × Rn × [0,∞) → Rn as in (1) and (2) is said
to be T -periodic Carathéodory if:

(F1) f (t + T , p, q, λ) = f (t, p, q, λ), ∀(p, q, λ) ∈ U × Rn × [0,∞)
and for a.e. t ∈ R;

(F2) t 7→ f (t, p, q, λ) is measurable, ∀(p, q, λ) ∈ U × Rn × [0,∞);

(F3) (p, q, λ) 7→ f (t, p, q, λ) is continuous, for a.e. t ∈ R;
(F4) for any compact set K ⊆ U × Rn × [0,∞), there exists a

nonnegative function σK ∈ L1T (R) such that
|f (t, p, q, λ)| ≤ σK (t), ∀(p, q, λ) ∈ K and for a.e. t ∈ R.

L1T (R) denote the Banach space, isomorphic to L1((0,T ),R), of
the L1loc maps ξ : R → R that are T -periodic, in the sense that
ξ(t) = ξ(t + T ) for a.e. t ∈ R.
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Goal:

to study the structure of the set of T -periodic solutions of
equations (1) and (2) and to prove global continuation results.
Atypical bifurcation results in the sense of Prodi-Ambrosetti.

Usually called forced oscillations in the case of second order
equations.
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Tools: topological methods

• We write equations (1) and (2) as equivalent systems in R2n.
• We use earlier results, obtained by the authors with M. Furi,
about periodically perturbed ODEs on differentiable manifolds in
the Carathéodory setting.
• We are able to state our results in terms of the well-known
Brouwer degree.
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Why the Φ-Laplacian? Applications in:

- non-Newtonian fluid theory

- diffusion of flows in porous media

- nonlinear elasticity

- theory of capillary surfaces

- models in glaciology

- models in fluid dynamics
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Part I: Continuation results for equations on manifolds and
the degree of a tangent vector field
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Continuation results for equations on manifolds

In a series of papers, Furi, Pera and collaborators investigated the
set of harmonic solutions of parametrized periodic ODEs on a
smooth constraining manifold.
See in particular:

Furi, M.; Pera, M.P., Carathéodory periodic perturbations of
the zero vector field on manifolds, Topological methods in
nonlinear analysis 10 (1997), n. 1, 79–92.

Spadini, M., Harmonic solutions of periodic Carathéodory
perturbations of autonomous ODE’s on manifolds, Nonlinear
Analysis 41A (2000), 477–487.
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In (C.-Spadini, EJDE 2024) we unified the previous results, and
extended them to the Carathéodory setting.

Let M ⊆ Rk be a smooth manifold.
We consider

ẋ = G (x) + λF (t, x), λ ≥ 0,

where G : M → Rk and F : R×M → Rk are tangent vector fields
on M. That is, G (p) ∈ TpM and F (t, p) ∈ TpM for all
(t, p) ∈ R×M. Here TpM denotes the tangent space to M at p.

Moreover, G is continuous and the perturbing term F is
Carathéodory and T -periodic in t for some given T > 0.

Crucial Remark: G−1(0) need not be compact.
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We aim to study the structure of the set of the pairs (λ, x), where
x : R → M is an absolutely continuous T -periodic function such
that

ẋ(t) = G (x(t)) + λF (t, x(t)) for a.e. t ∈ R.

For this purpose we follow a topological approach, based on the
concept of topological degree of a tangent vector field (also called
Euler characteristic).
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The degree of a tangent vector field

Let M ⊆ Rk be a manifold, and w a tangent vector field on M,
that is a map w : M → Rk s.t. w(p) ∈ TpM, ∀p ∈ M.
Let V ⊆ M be open. If {p ∈ V : w(p) = 0} is compact, then the
pair (w ,V ) is called admissible for the degree:
→ degree (or characteristic) of the vector field w in V

deg(w ,V ) ∈ Z

Sometimes this degree is called index, or Euler characteristic, or rotation

number.

For the construction see, e.g., Milnor, Hirsch, Guillemin-Pollack,
Furi-Pera.
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The regular case

If w is of class C 1, a zero p ∈ M of w is said to be nondegenerate
if the differential dw(p) : TpM → Rk is one-to-one.
In this case the index of w at p is

i (w , p) = sign det dw(p)

If (w ,V ) is regular (i.e. w is C 1 with only nondegenerate zeros):

deg(w ,V ) =
∑

p∈w−1(0)∩V

i (w , p).
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Properties

• When M = Rk , i.e. w : Rk → Rk and V ⊆ Rk open,
→ deg(w ,V ) is just the classical Brouwer degree

degB(w ,V , 0)

of the map w on V with respect to zero.

All the standard properties of the Brouwer degree for continuous
maps on open subsets of Euclidean spaces still hold in the more
general context of differentiable manifolds
(Homotopy invariance, Excision, Additivity, Existence, ...)
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Remark

By the Poincaré-Hopf Theorem, when M is a compact manifold,
deg(w ,M) coincides with the Euler-Poincaré characteristic of M,
so it is independent of w .

Observe, in particular, that when M = {p} is a singleton, one has

deg(0,M) = 1

where 0 denotes the zero vector field.
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A unified approach

Let M = M × N, x = (x , y), G (x) = (0, g(x , y)) and
F (t, x , λ) = (f

(
t, x , y , λ

)
, h
(
t, x , y , λ

)
).

Equation

ẋ = G (x) + λF (t, x , λ)

becomes the following system of coupled equations:{
ẋ = λf

(
t, x , y , λ

)
,

ẏ = g(x , y) + λh
(
t, x , y , λ

)
,

(3)

depending on the parameter λ ≥ 0, on the product manifold
M × N, where M ⊆ Rk and N ⊆ Rs are (smooth, boundaryless)
differentiable manifolds.
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System {
ẋ = λf

(
t, x , y , λ

)
,

ẏ = g(x , y) + λh
(
t, x , y , λ

) (3)

includes, as particular cases, the problems studies in [FuPe97] and [Sp00].

Assumptions:
• the map f : R×M × N × [0,∞) → Rk is a Carathéodory,
T -periodic vector field tangent to M;
• the map h : R×M × N × [0,∞) → Rs is a Carathéodory,
T -periodic vector field tangent to N;
• the map g : M × N → Rs is a continuous, autonomous vector
field tangent to N; that is, g(p, q) ∈ TqN, ∀(p, q) ∈ M × N.
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ẏ = g(x , y) + λh
(
t, x , y , λ

) (3)

includes, as particular cases, the problems studies in [FuPe97] and [Sp00].

Assumptions:
• the map f : R×M × N × [0,∞) → Rk is a Carathéodory,
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Carathéodory assumption
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(F2) t 7→ f (t, p, q, λ) is measurable, ∀(p, q, λ) ∈ M × N × [0,∞);
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By a solution of system (3) we mean a pair (x , y) of absolutely
continuous functions such that the equalities{

ẋ(t) = λf
(
t, x(t), y(t), λ

)
,

ẏ(t) = g(x(t), y(t)) + λh
(
t, x(t), y(t), λ

)
hold for a.e. t ∈ R.

• It is convenient to investigate the properties of the T -periodic
solutions of (3) in the metric space of the continuous functions.

Notation

We denote by CT (M × N) the set of the M × N-valued,
T -periodic, continuous functions with the topology induced by the
Banach space CT (Rk+s).
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Definition

A triple (λ, x , y) ∈ [0,∞)× CT (M ×N) is called a T-triple for (3)
if the pair (x , y) is a T -periodic solution of (3). A T-triple
(λ, x , y) is called trivial if (x , y) is constant and λ = 0.

Notation: Given (p, q) ∈ M × N, by p and q we denote the
functions constantly equal to p and q, respectively.
Note that a T -triple is trivial if and only if it is of the form
(0, p, q) with (p, q) ∈ g−1(0).
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Let w : M × N → Rk be the mean value vector field defined by

w(p, q) =
1

T

∫ T

0
f (t, p, q, 0)dt

and observe that this is a continuous, autonomous vector field
tangent to M; that is, w(p, q) ∈ TpM, ∀(p, q) ∈ M × N.

Let now ν : M × N → Rk+s be defined as

ν(p, q) = (w(p, q) , g(p, q)) . (4)

Note that ν is a vector field tangent to the product manifold
M ×N ⊆ Rk+s . In fact, w and g are tangent, respectively, to M and N.
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Let Ω be an open subset of [0,∞)× CT (M × N).
Theorem 1 establishes a topological condition in terms of the
degree of ν in Ω for the existence of a connected set of nontrivial
T -triples that in a sense “emanates” from the set of zeros of ν in
Ω and is not contained in any compact subset of Ω.

Notation

ΩM×N =
{
(p, q) ∈ M × N : (0, p, q) ∈ Ω

}
.
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Considering system (3), we have the following:

Theorem 1 (EJDE 2024)

Let f , g and h be as in system (3), let ν be as in (4), and let Ω be
an open subset of [0,∞)× CT (M × N). Assume that

deg
(
ν,ΩM×N

)
is well-defined and nonzero. Then there exists a connected set Γ of
nontrivial T -triples in Ω of (3) whose closure in
[0,∞)× CT (M × N) intersects{

(0, p, q) ∈ [0,∞)× CT (M × N) : (p, q) ∈ ν−1(0) ∩ ΩM×N

}
and is not contained in any compact subset of Ω. In particular, if
M × N is closed in Rk+s and Ω = [0,∞)× CT (M × N), then Γ is
unbounded.
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Tools in the proof:

Poincaré translation operator on differentiable manifolds

topological degree of a tangent vector field

a formula relating the fixed point index of the Poincaré
translation operator to the degree of a suitable tangent vector
field (in the spirit of a result due to Krasnosel’skii)

a point-set topological lemma (Whyburn’s type) due to
Furi-Pera (deduced from general results by Kuratowski)
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Lemma (Furi-Pera, 1993)

Let Y0 be a compact subset of a locally compact metric space Y .
Assume that every compact subset of Y containing Y0 has
nonempty boundary.
Then Y \ Y0 contains a connected set whose closure in Y is
noncompact and intersects Y0.
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By taking M = {p} and N = {q} and comparing the notions of
T -triple with that of T -pairs in [Sp00] and [FuPe97], respectively,
by our Theorem we recover the main results of these papers.
That is, for equations equivalent to system (3) when N, resp. M, is a

singleton.

In [FuPe97]

ẋ = λf (t, x) → degree of w(p) =
1

T

∫ T

0
f (t, p) dt

In [Sp00]

ẋ = g(x) + λf (t, x) → degree of g(q)

In particular, the vector field (p, q) 7→
(
0, g(q)

)
is not admissible for the

degree, unless M is compact.
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Part II: Application to equations with generalized
Φ-Laplacian type term
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Equations with generalized Φ-Laplacian type term

Back to equations (1) and (2):

[ϕ
(
λ, x(t), x ′(t)

)
]′ = λf

(
t, x(t), x ′(t), λ

)
, λ ≥ 0, (1)

[ϕ
(
λ, x(t), x ′(t)

)
]′ = g

(
x(t), x ′(t)

)
+ λf

(
t, x(t), x ′(t), λ

)
, λ ≥ 0,

(2)

Similar equations but to be handled separately.
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Equations with generalized Φ-Laplacian type term

Assumptions on the map ϕ : [0,∞)× U × Rn → Rn

• ϕ(λ, p, ·) is one-to-one and onto, ∀λ ∈ [0,∞), p ∈ U.

u = ϕ(λ, p, q) ↔ q = ψ(λ, p, u)

• The “partial inverse” ψ(λ, p, u) is continuous and
λ 7→ ∂1ψ(λ, p, u) is continuous too.

Moreover:

• ϕ(0, ·, ·) depends only on the third variable, i.e.

ϕ0(q) := ϕ(0, p, q) and thus ψ(0, p, u) = ϕ−1
0 (u)

In other words,

ϕ(λ, p, q) = ϕ0(q) + λδ(λ, p, q),

with ϕ0 a homeomorphism and δ a perturbation satisfying the
above assumptions.
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Some examples of a map ϕ as above in the scalar case n = 1

Example (1)

ϕ(λ, x , q) = (q + λ)|q + λ|p−2, p = 2, 3, . . .

a perturbation of the p-Laplacian, s.t. the “inverse” ψ is

ψ(λ, x , u) =

{
u − λ if p = 2

sign(u)|u|1/(p−1) − λ, if p > 2

Thus, ∂1ψ(λ, x , u) = −1 and the above assumptions are satisfied.

Example (2)

ϕ(λ, p, q) = Φ(q) + λ(q − p),

where Φ : R → R, a Φ-Laplacian type operator, is a
diffeomorphism such that Φ′(q) > 0 for any q ∈ R. Even in this
case one can check that the above assumptions are satisfied.

Alessandro Calamai



Some examples of a map ϕ as above in the scalar case n = 1

Example (1)

ϕ(λ, x , q) = (q + λ)|q + λ|p−2, p = 2, 3, . . .

a perturbation of the p-Laplacian, s.t. the “inverse” ψ is

ψ(λ, x , u) =

{
u − λ if p = 2

sign(u)|u|1/(p−1) − λ, if p > 2

Thus, ∂1ψ(λ, x , u) = −1 and the above assumptions are satisfied.

Example (2)

ϕ(λ, p, q) = Φ(q) + λ(q − p),

where Φ : R → R, a Φ-Laplacian type operator, is a
diffeomorphism such that Φ′(q) > 0 for any q ∈ R. Even in this
case one can check that the above assumptions are satisfied.

Alessandro Calamai



The set of assumptions on ϕ may seem complicated but in case of
more regularity they are quite straightforward

Remark

When the map ϕ is of class C 1, then, by the Implicit Function
Theorem, the above conditions are satisfied if, for any
(λ, p, q) ∈ [0,∞)× U × Rn, the partial derivative ∂3ϕ(λ, p, q) is
invertible.
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Solutions of the equation

Let us now clarify the meaning of solution of (1) and (2).

Definition

Let I ⊆ R be an interval, and λ ≥ 0 be given. A function
x ∈ W 1,1

loc (I ) is said to be a solution of (1) or (2) if the function

y : I → Rn, y(t) = ϕ
(
λ, x(t), x ′(t)

)
belongs to W 1,1

loc (I ) as well and

y ′(t)=λf
(
t, x(t), x ′(t), λ

)
for a.e. t ∈ I , in case (1),

or
y ′(t)=g

(
x(t), x ′(t)

)
+ λf

(
t, x(t), x ′(t), λ

)
a.e. t ∈ I , in case (2).
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T -forced pairs of the equation

Remark

When x is a solution of (1) or (2), the function y ∈ W 1,1
loc (I )

introduced above is, in particular, continuous. Thus, recalling that
we have x ′(t) = ψ

(
λ, x(t), y(t)

)
for all t ∈ I and that ψ is

continuous, it follows that x is actually C 1.

The above Remark justifies the following definition.

Definition

A pair (λ, x) ∈ [0,∞)× C 1
T (U), such that x is a T -periodic

solution of (1) (resp. (2)), is said to be a T-forced pair for (1)
(resp. (2)). A T-forced pair (λ, x) is called trivial if x is constant
and λ = 0.

Notation: p̄ denotes the constant function p(t) = p for all t ∈ R.
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Global bifurcation branches

Our aim is to prove the existence of bifurcation branches of
T -forced pairs of (1) and (2), i.e. connected sets of nontrivial
T -forced pairs “emanating” from the set of trivial pairs.

Definition

p ∈ U is said to be a bifurcation point for (1) or (2) if any
neighborhood of (0, p̄) in [0,+∞)× C 1

T (U) contains nontrivial
T -forced pairs (λ, x)

Notation: deg(w ,V ) is the Brouwer degree degB(w ,V , 0)

of the map w on V with respect to zero.
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Concerning equation (1), an important role is played by the map
w : U → Rn,

w(p) :=
1

T

∫ T

0
f (t, p, 0, 0) dt, “average wind”.

We have: p ∈ U bifurcation point =⇒ w(p) = 0
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Theorem 2 (global branches of the unperturbed equation)

Let Ω be an open subset of [0,∞)× C 1
T (U) and w : U → Rn the

average wind. Assume deg(w ,ΩU) ̸= 0, where ΩU denotes the
open set ΩU =

{
p ∈ U : (0, p) ∈ Ω

}
. Then, the equation

[ϕ
(
λ, x(t), x ′(t)

)
]′ = λf

(
t, x(t), x ′(t), λ

)
, λ ≥ 0,

has a global bifurcation branch Γ, i.e. a connected set of nontrivial
T -forced pairs in Ω whose closure in [0,∞)× C 1

T (U) intersects the
set

{
(0, p) ∈ [0,∞)× C 1

T (U) : p ∈ w−1(0) ∩ ΩU

}
and is not

contained in any compact subset of Ω.

Remark

In particular, when U = Rn and Ω = [0,∞)× C 1
T (Rn) then Γ is

unbounded.

Alessandro Calamai



Theorem 2 (global branches of the unperturbed equation)

Let Ω be an open subset of [0,∞)× C 1
T (U) and w : U → Rn the

average wind. Assume deg(w ,ΩU) ̸= 0, where ΩU denotes the
open set ΩU =

{
p ∈ U : (0, p) ∈ Ω

}
. Then, the equation

[ϕ
(
λ, x(t), x ′(t)

)
]′ = λf

(
t, x(t), x ′(t), λ

)
, λ ≥ 0,

has a global bifurcation branch Γ, i.e. a connected set of nontrivial
T -forced pairs in Ω whose closure in [0,∞)× C 1

T (U) intersects the
set

{
(0, p) ∈ [0,∞)× C 1

T (U) : p ∈ w−1(0) ∩ ΩU

}
and is not

contained in any compact subset of Ω.

Remark

In particular, when U = Rn and Ω = [0,∞)× C 1
T (Rn) then Γ is

unbounded.

Alessandro Calamai



Considering the perturbed equation (2), we have the following:

Theorem 3 (global branches of the perturbed equation)

Let Ω be an open subset of [0,∞)× C 1
T (U) and let γ : U → Rn be

γ(p) := g(p, 0). Assume deg
(
γ,ΩU

)
̸= 0. Then, the equation

[ϕ
(
λ, x(t), x ′(t)

)
]′ = g

(
x(t), x ′(t)

)
+λf

(
t, x(t), x ′(t), λ

)
, λ ≥ 0,

has a global bifurcation branch Γ, i.e. a connected set of nontrivial
T -forced pairs in Ω whose closure in [0,∞)× C 1

T (U) intersects the
set

{
(0, p) ∈ [0,∞)× C 1

T (U) : p ∈ γ−1(0) ∩ ΩU

}
and is not

contained in any compact subset of Ω. In particular, when U = Rn

and Ω = [0,∞)× C 1
T (Rn) then Γ is unbounded.
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Remark

Observe that the two theorems above have a similar statement and
yield similar conclusions.
Yet, it is not possible to consider one as a particular case of the
other, even in the case when g vanishes identically so that
equation (2) reduces to (1).
In fact the degree of w, that is crucial in Theorem 2, plays no role
in Theorem 3 (in principle, it could not be even defined).
Conversely, for equation (1), the degree of γ does not even make
sense.

Question:
Obtain a unifying result that provides global bifurcation of both
equations (1) and (2).
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Concluding remarks

Remark

Our results are not directly deducible from Implicit Function
Theorem:
• The Implicit Function Theorem provides information on local
properties, while our results are of global nature.
• The use of the Implicit Function Theorem requires more
regularity than that we assume here (i.e., the involved maps need
to be of class C 1).

A further line of study

Global bifurcation of T -periodic solutions of equations (1) and (2)
when a dependence on delayed arguments is introduced in ϕ and f .
Namely if one considers equations of the form

[ϕ
(
λ, x(t), x(t − r), x ′(t)

)
]′ = g

(
x(t), x ′(t)

)
+λf

(
t, x(t), x(t − r), x ′(t), x(t − r)

)
, λ ≥ 0
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