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M. Al Janaideha, P. Krejč́ıb, Giselle A. Monteirob

a School of Engineering, University of Guelf, Canada
b Institute of Mathematics of the Czech Academy of Sciences

F U N D E D  B Y

International Meetings on Differential Equations
and Their Applications

- June 2025 -

Rate-dependent PI model and its application 1 / 20



Overview

1 Hysteresis operators

2 Prandtl-Ishlinskii model and rate dependency

3 Inversion formula for rate-dependent Prandtl-Ishlinskii operator

4 Application in hysteresis compensation

Rate-dependent PI model and its application 2 / 20



Overview

1 Hysteresis operators

2 Prandtl-Ishlinskii model and rate dependency

3 Inversion formula for rate-dependent Prandtl-Ishlinskii operator

4 Application in hysteresis compensation

Rate-dependent PI model and its application 2 / 20



Overview

1 Hysteresis operators

2 Prandtl-Ishlinskii model and rate dependency

3 Inversion formula for rate-dependent Prandtl-Ishlinskii operator

4 Application in hysteresis compensation

Rate-dependent PI model and its application 2 / 20



Overview

1 Hysteresis operators

2 Prandtl-Ishlinskii model and rate dependency

3 Inversion formula for rate-dependent Prandtl-Ishlinskii operator

4 Application in hysteresis compensation

Rate-dependent PI model and its application 2 / 20



Hysteresis operators

“A property of a system such that an output value is not a strict
function of the corresponding input, but also incorporates some
lag, delay, or history dependence” (Wiktionary)

Examples: ferromagnetism, elastoplasticity, smart materials, economics...

rate-independent: T [v ◦ φ](t) = T [v ](φ(t)) for φ increasing

causal: u(s) = v(s) for s ≤ t ⇒ T [u](t) = T [v ](t)
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Hysteresis operators

Play operator: u 7→ Φr [u]

Fig.1: mechanical play
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Hysteresis operators

Play operator: u 7→ Φr [u] := ξ

Fig.1: mechanical play

Fig.2: input-output diagram

Variational inequality: (absolutely continuous inputs)
ξ(0) = u(0)− x0, ,

|u(t)− ξ(t)| ≤ r , t ∈ [0,T ],

ξ̇(t)(u(t)− ξ(t)− z) ≥ 0 a.e. in [0,T ], ∀ z ∈ [−r , r ]
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Hysteresis operators

Play operator: u 7→ Φr [u] := ξ

Fig.1: mechanical play

Fig.2: input-output diagram

Variational integral inequality: (inputs regulated and left continuous)
ξ(0) = u(0)− x0, ,

|u(t)− ξ(t)| ≤ r , t ∈ [0,T ],∫ T

0

(
u(t+)− ξ(t+)− z(t)

)
dξ(t) ≥ 0 ∀ z ∈ G(0,T ; [−r , r ])

where the integral is understood as the Kurzweil-Stieltjes integral
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Prandtl–Ishlinskii model

Original construction by Prandtl (1928) and Ishlinskii (1944):

P[v ](t) =
m∑
j=1

aj prj [v ](t), t ∈ [0,T ],

where 0 < r1 < r2 < · · · < rm and aj ∈ R

where pr [v ] denotes the play operator with threshold r ≥ 0 and input function v
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j=1

aj prj [v ](t), t ∈ [0,T ],

where 0 < r1 < r2 < · · · < rm and aj ∈ R

where pr [v ] denotes the play operator with threshold r ≥ 0 and input function v

[Krasnosel’skii, Pokrovskii (1983)]

P[v ](t) = a0v(t) +

∫ ∞

0

h(r) pr [v ](t)dr = −
∫ ∞

0

ψ′(r)
∂

∂r
pr [v ](t)dr ,

where ψ(ρ) = a0ρ+
∫ ρ
0
h(s)(ρ− s)ds is the initial loading curve
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Prandtl–Ishlinskii model

PI operator with initial loading curve ψ:

Pψ[v ](t) = −
∫ ∞

0

ψ′(r)
∂

∂r
pr [v ](t) dr ,

Fig.3: Hysteresis loop of the PI model

1 superposition property:

Pψ[Pφ[v ]] = Pψ◦φ[v ]

2 inverse operator: P−1 = Pφ−1
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Fig.3: Hysteresis loop of the PI model

1 superposition property:
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Prandtl-Ishlinskii model and rate dependency

For r > 0 and x ∈ [−r , r ], the play operator

pr : v ∈ W 1,1(0,T ) 7−→ ξ ∈ W 1,1(0,T )

whose output ξ(t) = pr [x , v ](t) is the solution to the variational inequality
ξ(0) = v(0)− x , ,

|v(t)− ξ(t)| ≤ r , t ∈ [0,T ],

ξ̇(t)(v(t)− ξ(t)− z) ≥ 0 a.e. in [0,T ], ∀ z ∈ [−r , r ].
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Rate dependent Prandtl-Ishlinskii operator

For m ∈ N and v ∈ AC [0,T ] define

P[v ](t) =
m∑
j=1

aj prj (t)[xj , v ](t), t ∈ [0,T ] (1)

where aj > 0, rj ∈ W 1,1(0,T ), j = 1, . . . ,m, are such that

0 ≤ r1(t) < r2 < · · · < rm(t) ∀t ∈ [0,T ],

and prj [xj , v ] denotes the time-dependent play operator with threshold
function rj , input function v and the initial conditions xj ∈ R satisfying

|x1| ≤ r1(0), |xj+1 − xj | ≤ rj+1(0)− rj(0), j = 1, . . . ,m − 1.

M. Al Janaideh, P. Krejč́ı, An inversion formula for a Prandtl–Ishlinskii operator
with time dependent thresholds, Physica B 406 (2011)
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Rate dependent Prandtl-Ishlinskii operator

P[x , v ](t) = a0v(t) +
m+1∑
i=1

aipr̃i (t)[x̃i , v ](t) (1)

Inversion formula [M. Al Janaideh, P. Krejč́ı (2011)]

Assume 0 ≤ r̃1(t) < · · · < r̃m(t) and r̃ ′i+1(t)− r̃ ′i (t) ≥ 0.

Then the inverse of P is given by

P−1[x ,w ](t) = b0w(t) +
m+1∑
i=1

bips̃i (t)[ỹi ,w ](t) (2)

where b0 =
1
a0
, bi =

1
Ai

− 1
Ai−1

, with Ai =
∑i

j=0 aj , and

s̃1(t) = a0 r̃1(t), s̃i+1(t)− s̃i (t) = Ai (r̃i+1(t)− r̃i (t)),

ỹ1 = a0x̃1, ỹi+1 − ỹi = Ai (x̃i+1 − x̃i )
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Rate dependent Prandtl-Ishlinskii operator

Discrete case

Pm[v ](t) =
m∑
j=1

aj prj (t)[xj , v ](t), t ∈ [0,T ] (1)

The classical PI operator (with initial loading curve ψ):

P[v ](t) = −
∫ ∞

0

ψ′(r)
∂

∂r
pr [v ](t) dr
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Rate dependent Prandtl-Ishlinskii operator

Pφ[x , v ](t) = a0v(t)−
∫ ∞

0

φ′(r)
∂

∂r
pr+z(t)[x(r), v ](t)dr (3)

Given a division 0 < ρ̃1 < · · · < ρ̃m, let φ be so that

φ′(r) =
m∑
i=1

φ̂∗
i−1χ[ri−1,ri )(r), φ̂∗

i−1 ∈ R

The corresponding PI operator can be written as

Pφ∗ [x , v ](t) = (a0 + φ̂∗
0)v(t) +

m∑
i=1

a∗i pri+z(t)[x(ri ), v ](t)

with a∗i = φ̂∗
i − φ̂∗

i−1

Rate-dependent PI model and its application 13 / 20



Rate dependent Prandtl-Ishlinskii operator

Given R > 0, for an input v ∈ W 1,1(0,T ), |v(t)| ≤ R, let

Pφ[x , v ](t) = a0v(t)−
∫ ∞

0

φ′(r)
∂

∂r
pr+z(t)[x(r), v ](t)dr (3)

Basic hypothesis:

1 z ∈ C(0,T ) with z(t) ≥ 0

2 initial value function x ∈ W 1,∞(0,∞) such that

|x(0)| ≤ z(0), |x ′(r)| ≤ 1 a. e., x(r) = v(0) for r ≥ R,

3 φ ∈ W 1,∞(0,∞) such that φ′ ∈ BVloc(0,∞),

φ(0) = φ′(0) = φ′(0+) = 0, sup
r>0

|φ′(r)| =: φ̄ < a0

M. Al Janaideh, P. Krejč́ı, G. A. Monteiro, Approximation error bounds for
rate-dependent Prandtl-Ishlinskii compensators, Appl. Math. (2023)
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Rate dependent Prandtl-Ishlinskii operator

Consider the PI operator with shape function a0I + φ and initial value function
x ∈ W 1,∞(0,∞) satisfying the basic hypothesis

Pφ[x , v ](t) = a0v(t)−
∫ ∞

0

φ′(r)
∂

∂r
pr+z(t)[x(r), v ](t)dr (3)

Inversion formula [M. Al Janaideh, P. Krejč́ı, G. A. Monteiro]
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For an input w ∈ W 1,1(0,T ), let

Pψ[y ,w ](t) =
1

a0
w(t)−

∫ ∞

0

ψ′(s)
∂

∂s
ps+a0z(t)[y(s),w ](t)ds (4)

where
ψ(s) = (a0I + φ)−1(s)− s

a0
for s ≥ 0.

y(s) = a0x(0) +

∫ 1
a0
s+ψ(s)

0

x ′(r)(a0 + φ′(r))dr

Then the operators Pφ and Pψ are mutually inverse.

Rate-dependent PI model and its application 15 / 20



Overview

1 Hysteresis operators

2 Prandtl-Ishlinskii model and rate dependency

3 Inversion formula for rate-dependent Prandtl-Ishlinskii operator

4 Application in hysteresis compensation

Rate-dependent PI model and its application 16 / 20



Application in hysteresis compensation

Wafer Scanner illustration

Rate-dependent PI model and its application 17 / 20

https://en.wikipedia.org/wiki/Stepper


Application in hysteresis compensation

Wafer Scanner illustration

micropositioning issues ⇝ smart actuators

Rate-dependent PI model and its application 17 / 20

https://en.wikipedia.org/wiki/Stepper


Application in hysteresis compensation

Wafer Scanner illustration

micropositioning issues ⇝ smart actuators

challenge: hysteresis effects

Rate-dependent PI model and its application 17 / 20

https://en.wikipedia.org/wiki/Stepper


Application in hysteresis compensation

micropositioning issues ⇝ smart actuators

challenge: hysteresis effects

Fig.5: The experimental setup of the dual-stage positioning system

M. Al Janaideh, P. Krejč́ı, G. A. Monteiro, Memory reduction of rate-dependent
Prandtl-Ishlinskii compensators in applications on high-precision motion systems,
Physica B (2024) - HMM proceedings
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Application in hysteresis compensation

micropositioning issues ⇝ smart actuators

challenge: hysteresis effects

Fig.5: The experimental setup of the dual-stage positioning system

⇝ Short-stroke: piezoelectric actuator & Nano-OP30
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For an initial loading curve φ and a division 0 = r0 < · · · < rm = R, let φ∗
i be

the approximate value of φ(ri ) with a measurement error ε: |φ(ri )− φ∗
i | ≤ ε

Consider the piecewise linear (‘error’ approximation) function φ∗ and the
corresponding PI operator for an input function v

Pφ∗ [x , v ](t) = a0v(t)−
∫ ∞

0

(φ∗)′(r)
∂

∂r
pr+z(t)[x(r), v ](t) dr

where

(φ∗)′(r) =
m∑
i=1

φ̂∗
i−1χ[ri−1,ri )

(r), with φ̂∗
i−1 =

φ∗
i − φ∗

i−1

ri − ri−1
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φ̂∗
i−1χ[ri−1,ri )

(r), with φ̂∗
i−1 =

φ∗
i − φ∗

i−1

ri − ri−1

Hysteresis compensation (in practice): P−1
φ∗ [Pφ[u]] ≈ u
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Application in hysteresis compensation

Hysteresis compensation diagram:

Approximate compensation error

E = sup |u − P−1
φ∗

[
x ,Pφ[x , u]

]
|

where the supremum is taken over u ∈ W 1,1(0,T ) with |u| ≤ R

Rate-dependent PI model and its application 19 / 20



Application in hysteresis compensation

Hysteresis compensation diagram:

Approximate compensation error

E = sup |u − P−1
φ∗

[
x ,Pφ[x , u]

]
|

where the supremum is taken over u ∈ W 1,1(0,T ) with |u| ≤ R

Error bound [M. Al Janaideh, P. Krejč́ı, G. A. Monteiro (2023)]

The approximate inversion error, when the operator with continuous thresholds
Pφ is replaced with an operator with discrete thresholds P∗

φ, is bounded.

E ≤
(

2εR

mini=1,...,m |ri − ri−1|
+ max

i=1,...,m
|ri − ri−1| Var

[0,∞)
φ′
) m+1∑

i=0

|b∗
i | (4)

where b∗0 = 1
a0
, b∗i = 1

a0+φ̂
∗
i−1

− 1
a0+φ̂

∗
i−2

, and φ̂∗
i−1 =

φ∗
i −φ

∗
i−1

ri−ri−1
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