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In single-celled organisms, regulatory 
networks respond to the external 
environment, optimizing the cell at a 
given time for survival in this 
environment.
Wikipedia
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Xi (t) Gene expression of protein

t time

vi
Degradation coefficient

X’i (t) Derivative

f Sigmoidal function

𝑥′
1 = 𝑓1(𝑥1,  𝑥2 , ⋯ , 𝑥𝑛) − 𝑣1𝑥1,

𝑥′
2 = 𝑓2 𝑥1,  𝑥2 , ⋯ , 𝑥𝑛 − 𝑣2𝑥2,

⋯
𝑥′

𝑛 = 𝑓𝑛 𝑥1,  𝑥2 , ⋯ , 𝑥𝑛 − 𝑣𝑛𝑥𝑛.



SYSTEM

μ

θ

f (z) – sigmoidal function.

Logistic function      f(z)=1/(1+exp{-μ (z – θ)})

Hill’s function          f(z)=
𝑧𝜇

𝑧𝜇+𝜃𝜇

Gompertz function   f(z) =𝑒−𝑒−𝜇(𝑧−𝜃)



SYSTEM

Proposition 1. The parallelepiped 𝑄𝑛 = ൜

ൠ

𝑥ϵ𝑅𝑛 ∶  0 <

𝑥𝑖 <
1

𝑣𝑖
, 𝑖 = 1, … , 𝑛  is an invariant set.



SYSTEM

Nullclines

0 = 𝑓1(𝑥1,  𝑥2 , ⋯ , 𝑥𝑛) − 𝑣1𝑥1,

0 = 𝑓2 𝑥1,  𝑥2 , ⋯ , 𝑥𝑛 − 𝑣2𝑥2,
⋯

0 = 𝑓𝑛 𝑥1,  𝑥2 , ⋯ , 𝑥𝑛 − 𝑣𝑛𝑥𝑛.

(2)
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Second order systems

The Wilson–Cowan system primarily was invented for the study of two interacting populations
of neurons. Its simplified version

is known to have rich dynamics. The higher dimensional versions of system (1) were adapted to
model genetic networks, and similar networks in other fields. The three-dimensional version of
system (1) contains 18 parameter and the number of parameters increases along with the 
dimensionality. The central point in the study of this system is to gather information about 
attractors in the phase space. The dynamics of solutions and evolution of the system heavily 
depends on the number, locations and properties of attractors. In the proposed talk recent 
contributions to the theory are reported concerning types, properties and forms of attractors in 
of the system (1). In particular, a collection of attractors of different shapes is presented.
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Third order system: attractors
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Third order system: regulatory matrix

x1 x2 … xn

x1 1 6

x2 -2

….

… -4.3

xn 0.5
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Fourth order system: chaotic attractor
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60-th order system

Figure: T-cell survival signalling network governing the 
development of T-LGL leukemia.

Sean P. Cornelius, William L. Kath & Adilson E. 
Motter. Realistic control of network dynamics. 
Nature Communications  4, Article number: 1942 
(2013)



60-th order system

Wang, LZ., Su, RQ., Grebogi, C. et al. A geometrical approach to control and controllability 
of nonlinear dynamical networks. Nat Commun 7, 11323 (2016). 
https://doi.org/10.1038/ncomms11323



60-th order system: regulatory matrix



𝑥′
1 =

1

1 + 𝑒−𝜇1 w11𝑥1+w12𝑥2+w13𝑥3−𝜃1
− 𝑥1,

𝑥′
2 =

1

1 + 𝑒−𝜇2 w21𝑥1+w22𝑥2+w23𝑥3−𝜃2
− 𝑥2,

𝑥′
3 =

1

1 + 𝑒−𝜇3 w31𝑥1+w32𝑥2+w33𝑥3−𝜃3
− 𝑥3.

Variable regulatory matrix

Elements wij are dependent on time, wij(t)



𝑾 =  
1 𝟎 −𝟏
−1 𝟏 𝟎
𝟎 −1 1

  

Example (basic). Inhibitory cycle



𝑾 =  

(1+m Sin[t]) 𝟎 −(p Sin[q t+1])

−(p Sin[q t+1]) (1+m Sin[t]) 𝟎
𝟎 −(p Sin[q t+1])… (1+m Sin[t])

 

 

Example 1. Shell

p=1; q=1; m=1;

Frequencies of activation and 
inhibition terms are the same 
but phases are different



𝑾 =  

(1+m Sin[t]) 𝟎 −(1+p Sin[q t])

−(1+p Sin[q t]) (1+m Sin[t]) 𝟎
𝟎 −(1+p Sin[q t])… (1+m Sin[t])

 

 

Example 2. Belt

p=0.5; q=1; m=1;

The amplitude of oscillation in 
inhibition terms is less than 1



𝑾 =  

(1+m Sin[t]) 𝟎 −(1+p Sin[q t])

−(1+p Sin[q t]) (1+m Sin[t]) 𝟎
𝟎 −(1+p Sin[q t])… (1+m Sin[t])

 

 

Example 3. Star

p=1; q=3; m=1;

The frequency of oscillation in  
inhibition terms is 3 against 
previous 1

p=1;q=3;m=1;



𝑾 =  

(1+m Sin[n t]) 𝟎 −(1+p Sin[q t])

−(1+p Sin[q t]) (1+m Sin[n t]) 𝟎
𝟎 −(1+p Sin[q t])… (1+m Sin[n t])
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p=1; q=0.1; n=0.1; m=1;

Example 4. Flower



𝑾 =  
(1+m Sin[t]) 𝟎 −(Sin[t]×Sin[t])

−(Sin[t]×Sin[t]) (1+m Sin[t]) 𝟎
𝟎 −(Sin[t]×Sin[t]) (1+m Sin[t])

 

 

Example 5. Sharp star

The frequency of oscillation in  
inhibition terms is 2 against 
previous 1

m=1

Networks with periodic interactions. WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Volume 24, 2025 
Felix Sadyrbaev1,2, Valentin Sengileyev1
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1. Periodic attractors for uncoupled systems;
2. Perturbation of periodic attractors for uncoupled systems;
3. Conditions for guaranteed chaotic behavior under perturbation;
4. Reconstruction of attractor by graphs of a set f solutions;
5. Coexistence of attractors; which are incompatible;
6. When low dimensional projections guarantee the unique reconstruction of attractor;
7. Which attractors have realization in realistic gene networks;
8. Which are possible mathematically, but impossible in reality;
9. Which attractors are undetectable by simple computation of a limited number of 

solutions;
10. Which are detectable and how many projections are needed for that?
11. What is the lowest dimension of projections needed to uniquely reconstruct an 

attractor;
12. Can attractors be detected by an algorithm, and how many steps are necessary;
13. There are theorems for existence of periodic solutions; are there theoretical results 

for the existence of solutions that relate to complicated attractors;
14. If the math model is assumed to be adequate, what is the biological interpretation of 

them;
15. Applications of any kind. 

Conclusions and problems



Thank you for your attention
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