Vector-borne plant diseases: impact of vector preferences on the spatial spreading of Infectious Diseases

#### Yves Dumont

CIRAD, Umr AMAP, Saint Pierre, La Réunion, France University of Pretoria, department of Mathematics and Applied Mathematics, South Africa SarChi Chair M<sup>3</sup>B<sup>2</sup>: Mathematical Models and Methods in Bio-engineering and Biosciences, University of Pretoria, South Africa

#### January 2025



Food Security is a Major Challenge around the World.

- Globally, it is estimated that 20-40% of crop yields are lost to pests and diseases.
- In particular, when this loss affects staple crops such as rice, wheat, maize and tubers such as potatoes and sweet potatoes, it directly threatens food security and nutrition.



Food Security is a Major Challenge around the World.

- Globally, it is estimated that 20-40% of crop yields are lost to pests and diseases.
- In particular, when this loss affects staple crops such as rice, wheat, maize and tubers such as potatoes and sweet potatoes, it directly threatens food security and nutrition.

Studying Crop-Diseases dynamics in the field is a difficult task.

That is why modeling, analysis, and numerical simulations can be helpful and bring new insights to better focus the experiments and also improve the control strategies.

# Introduction

Vector-borne diseases affect humans, animals and also plants

Sap-sucking Insects (plant hosts), like aphids: Potato virus Y, Plum pox virus,.. Mosquito (human and animal hosts) Malaria, Dengue, Yellow fever, Zika, ...



- Most models assume vectors visit hosts randomly
- However, growing evidence shows that many vectors do not visit hosts randomly

\*From Blanc & Gutiérrez (2015) Current Opinion in Virology < 🗆 🕨

3/34

AMAP

## Introduction

Vectors may be differentially attracted towards infected and uninfected hosts, depending on whether they carry the pathogen or not



\*After Gandon (2018) American Naturalist Yves Dumont

IMDETA 2025

4/34

∃ ⊳

## A model with vector preferences

Let I(x, t) be the infected host density at time t and location  $x \in \mathbb{R}$ , and V(x, t) and U(x, t) the infected (viruliferous) and uninfected vector densities, respectively:

$$I_{t} = bpV \frac{a(N-I)}{a(N-I)+I} - rI,$$
  

$$V_{t} = bqU \frac{uI}{uI + (N-I)} - (m+\delta)V + DV_{xx},$$
 (1)  

$$U_{t} = (m+\delta)V - bqU \frac{uI}{uI + (N-I)} + DU_{xx},$$

with non negative initial conditions. Biological parameters:

- N the total constant Host population.
- *m* (*r*) is the vector (host) recovery/mortality rate.
- D the diffusion rate.

## A model with vector preferences

$$I_{t} = bpV \frac{a(N-I)}{a(N-I)+I} - rI,$$
  

$$V_{t} = bqU \frac{uI}{uI + (N-I)} - (m+\delta)V + DV_{xx},$$
 (2)  

$$U_{t} = (m+\delta)V - bqU \frac{uI}{uI + (N-I)} + DU_{xx},$$

The epidemiological parameters:

- b: the biting rate
- p: probability of pathogen transmission
- *q*: probability of pathogen acquisition.
- 1/δ, the virus lifespan (related to non-persistent or semi-persistent viruses),

## A model with vector preferences

$$I_{t} = bpV \frac{a(N-I)}{a(N-I)+I} - rI,$$
  

$$V_{t} = bqU \frac{uI}{uI + (N-I)} - (m+\delta)V + DV_{xx},$$
 (3)  

$$U_{t} = (m+\delta)V - bqU \frac{uI}{uI + (N-I)} + DU_{xx},$$

The epidemiological parameters:

- a: preference/attraction of infected vectors for uninfected hosts;
- *u*: preference of uninfected vectors for infected hosts.

Let W = U + V be the total vector population density, then  $W_t = DW_{xx}$ .

Assuming W(x,0) = K (the vector is established) for all  $x \in (-\infty, +\infty)$ , with  $W_t(x,0) = 0$  for all x, such that W = K for all  $(x, t) \in \mathbb{R} \times \mathbb{R}_+$ .

Let W = U + V be the total vector population density, then  $W_t = DW_{xx}$ .

Assuming W(x,0) = K (the vector is established) for all  $x \in (-\infty, +\infty)$ , with  $W_t(x,0) = 0$  for all x, such that W = K for all  $(x, t) \in \mathbb{R} \times \mathbb{R}_+$ .

Therefore, since U = K - V, model (3) reduces to:

$$I_{t} = bpV \frac{a(N-I)}{a(N-I)+I} - rI,$$
  

$$V_{t} = bq(K-V) \frac{uI}{uI+(N-I)} - (m+\delta)V + DV_{xx}.$$
 (4)

With the following rescaling

$$au = (m + \delta)t$$
,  $i = \frac{I}{N}$ , and  $v = \frac{V}{K}$ ,

and setting  $\beta = \frac{bpK}{(m+\delta)N}$ ,  $\rho = \frac{r}{(m+\delta)}$ ,  $\theta = \frac{bq}{(m+\delta)}$ , leads to

$$i' = \beta v \frac{a(1-i)}{a(1-i)+i} - \rho i := f_1(i, v),$$
  

$$v' = \theta(1-v) \frac{ui}{ui+(1-i)} - v := f_2(i, v).$$
(5)

With the following rescaling

$$au = (m + \delta)t$$
,  $i = \frac{I}{N}$ , and  $v = \frac{V}{K}$ ,

and setting  $\beta = \frac{bpK}{(m+\delta)N}$ ,  $\rho = \frac{r}{(m+\delta)}$ ,  $\theta = \frac{bq}{(m+\delta)}$ , leads to

$$i' = \beta v \frac{a(1-i)}{a(1-i)+i} - \rho i := f_1(i, v),$$
  

$$v' = \theta(1-v) \frac{ui}{ui+(1-i)} - v := f_2(i, v).$$
(5)

Since

$$\frac{\partial f_1}{\partial v} \ge 0, \qquad \frac{\partial f_2}{\partial i} \ge 0,$$

the system is Cooperative: no periodic orbits, and every bounded trajectory converges to an equilibrium (Smith 2008).

9/34

$$i' = \beta \frac{a(1-i)}{a(1-i)+i} v - \rho i,$$
  

$$v' = \theta \frac{ui}{ui+(1-i)} (1-v) - v.$$
(6)

It is well know that the disease-free equilibrium (0,0) is locally asymptotically stable (LAS) if and only if  $\mathcal{R}_0^2 < 1$ , where

$$\mathcal{R}_0^2 = \frac{\beta\theta}{\rho} u = \frac{b^2 \rho q}{r(m+\delta)} \frac{K}{N} u = \mathcal{R}_{0,1} u.$$

Note that  $\mathcal{R}_0^2$  only depends on u (the preference of uninfected vectors for infected hosts) and not on a (the preference of infected vectors for uninfected hosts).

#### The temporal model with vector preferences

An endemic equilibrium,  $(i^*, v^*)$ , is solution of the quadratic

$$Q(i^*) = Ai^{*2} + Bi^* + C = 0,$$

in which

$$A = (a-1)(u(1+\theta)-1),$$
  

$$B = \left((2-(1+\theta)u) - \frac{\beta\theta}{\rho}u\right)a - 1$$
  

$$C = a(\mathcal{R}_0^2 - 1).$$

We discuss the number of endemic equilibrium according to the cases  $\mathcal{R}_0^2 > 1$ ,  $\mathcal{R}_0^2 = 1$ , and  $\mathcal{R}_0^2 < 1$ .

11/34

- When  $\mathcal{R}_0^2 > 1$ , only one single endemic equilibrium exists.
- When  $\mathcal{R}_0^2 = 1$ , an endemic equilibrium exists iff a > 1 and  $\frac{\alpha \theta}{(1+\theta)\beta} > \frac{a}{a-1} > 1$ .



- When  $\mathcal{R}_0^2 > 1$ , only one single endemic equilibrium exists.
- When  $\mathcal{R}_0^2 = 1$ , an endemic equilibrium exists iff a > 1 and  $\frac{\alpha\theta}{(1+\theta)\beta} > \frac{a}{a-1} > 1$ .
- When  $\mathcal{R}_0^2 < 1$ , there exist two biologically endemic equilibria iff the following set of conditions is satisfied:

$$A < 0, \quad B > 0, \quad B^2 - 4AC > 0, \quad 2A + B > 0$$

Otherwise there exists no endemic equilibrium.

12/34

- When  $\mathcal{R}_0^2 > 1$ , only one single endemic equilibrium exists.
- When  $\mathcal{R}_0^2 = 1$ , an endemic equilibrium exists iff a > 1 and  $\frac{\alpha\theta}{(1+\theta)\beta} > \frac{a}{a-1} > 1$ .
- When  $\mathcal{R}_0^2 < 1$ , there exist two biologically endemic equilibria iff the following set of conditions is satisfied:

$$A < 0, \quad B > 0, \quad B^2 - 4AC > 0, \quad 2A + B > 0$$

Otherwise there exists no endemic equilibrium. Setting  $u^* = \frac{1}{1+\theta}$ , necessary conditions for two endemic equilibria to coexist are:

- a > 1: infected vectors prefer uninfected hosts.
- $u < u^* < 1$ : uninfected vectors avoid infected hosts.

Since our system is Cooperative, we have

#### Qualitative analysis

- When  $\mathcal{R}_0^2 < 1$  and **0** is the only equilibrium, then it is GAS.
- When  $\mathcal{R}_0^2 < 1$ , and two positive equilibrium  $E_2$  and  $E_1$  exist, with  $E_1 << E_2$ , then **0** and  $E_2$  are LAS, and  $E_1$  is unstable.
- When  $\mathcal{R}_0^2 > 1$ , then the endemic equilibrium *E* is GAS, and **0** is unstable.



Parameter values:  $a = 15, \beta = 2.5, \rho = 1, \theta = 2$ . (A)  $\mathcal{R}_0^2 = 1.44 > 1$  (u = 0.3): the endemic equilibrium is the only attractor.

MAP



Parameter values:  $a = 15, \beta = 2.5, \rho = 1, \theta = 2.$ (A)  $\mathcal{R}_0^2 = 1.44 > 1$  (u = 0.3): the endemic equilibrium is the only attractor.

(**B**) Bistable case:  $\mathcal{R}_0^2 = 0.72 < 1 \ (u = 0.15)$ .

## Two-parameters bifurcation diagram.



Figure: The fold (transcritical) bifurcation curves are shown in solid blue (dashed black). They meet at ( $a \approx 2.663$ ,  $u \approx 0.2083$ ). The insets are illustrations of the nullcline constellations of the parameter domains leading to different dynamical regimes.

## The diffusion model with vector preferences

We rescale variables and parameters in this way:  $au = (m + \delta)t$  and

$$i = \frac{I}{N}, \quad v = \frac{V}{K}, \quad \beta = \frac{bpK}{(m+\delta)N}, \rho = \frac{r}{m+\delta}, \quad \theta = \frac{bq}{m+\delta},$$

and let

$$\xi = x \sqrt{\frac{m+\delta}{D}} \,.$$

A dimensionless version of model (4) is the following:

$$i_{\tau} = \beta v \frac{a(1-i)}{a(1-i)+i} - \rho i,$$
  

$$v_{\tau} = \theta (1-v) \frac{ui}{ui+(1-i)} - v + v_{\xi\xi},$$
(7)

in which the subscripts denote differentiation with respect to  $\tau$  or  $\xi$ .

# The diffusion model with vector preferences

We consider the following spaces

$$\mathcal{S} = \left\{ (i, \mathbf{v}) | \mathbf{v} \in L^2(\mathbb{R}); i \in L^\infty(\mathbb{R}) \right\},$$

and

$$S_{1,1} = \{(i, v) \in S | 0 \le v \le 1; 0 \le i \le 1\}.$$

Theorem (Existence and uniqueness)

For any initial values  $(i_0, v_0) \in S_{1,1}$ , system (7) admits a unique non-negative bounded solution such that

$$i\in \mathit{C}\left(\left[0,\infty
ight);\mathit{L}^{\infty}(\mathbb{R})
ight)\cap \mathit{C}^{1}\left(\left[0,\infty
ight);\mathit{L}^{\infty}(\mathbb{R})
ight),$$

and

$$v\in C\left([0,\infty);L^{\infty}(\mathbb{R})
ight)\cap C\left([0,\infty);H^{2}(\mathbb{R})
ight)\cap C^{1}\left([0,\infty);L^{2}(\mathbb{R})
ight).$$

# The diffusion model with vector preferences

We consider the following spaces

$$\mathcal{S} = \left\{ (i, v) | v \in L^2(\mathbb{R}); i \in L^\infty(\mathbb{R}) \right\},$$

and

$$S_{1,1} = \{(i, v) \in S | 0 \le v \le 1; 0 \le i \le 1\}.$$

Theorem (Existence and uniqueness)

For any initial values  $(i_0, v_0) \in S_{1,1}$ , system (7) admits a unique non-negative bounded solution such that

$$i\in \mathit{C}\left(\left[0,\infty
ight);\mathit{L}^{\infty}(\mathbb{R})
ight)\cap \mathit{C}^{1}\left(\left[0,\infty
ight);\mathit{L}^{\infty}(\mathbb{R})
ight),$$

and

$$v\in \mathit{C}\left([0,\infty)\,;\,\mathit{L}^{\infty}(\mathbb{R})
ight)\cap \mathit{C}\left([0,\infty)\,;\,\mathit{H}^{2}(\mathbb{R})
ight)\cap \mathit{C}^{1}\left([0,\infty)\,;\,\mathit{L}^{2}(\mathbb{R})
ight).$$

According to the temporal model study, it seems relevant to study  $_{AMAPlob}$  the existence or not of travelling wave (TW) solutions.

2025

| Yves Dumont | IMDETA |
|-------------|--------|
|-------------|--------|

17/34

The system being cooperative and partially degenerate, it is relatively straightforward to check

- the hypothesis of Theorem 4.2 [Li 2012] to show the existence of a monostable Travelling Wave connecting **0** to *E*, the endemic equilibrium, when  $\mathcal{R}_0^2 > 1$
- the hypothesis of Theorem 4.2 [Fang & Zhao 2019], to show the existence of a bistable Travelling Wave solution connecting **0** to *E*, the endemic equilibrium, when  $\mathcal{R}_0^2 < 1$ .

- We posit that the front speed is linearly determined as given by the minimum possible wave speed based on the linearisation at the leading edge of the wave.
- We apply the minimum wave speed approach (Lewis & Schmitz, 1996; Hadeler & Lewis, 2002) to the linearised model for finding the pathogen spreading speed.
- At the leading edge of the front invading the disease-free equilibrium, *i* and *v* have small positive values. We linearise system (7) at the leading edge:

$$\begin{cases} i_{\tau} = \beta v - \rho i, \\ v_{\tau} = \theta u i - v + v_{\zeta\zeta} \end{cases}$$

Then, we are looking for TW solutions  $y = (i, v)^T = k \exp(-s(\zeta - c\tau))$ , where c is the wave speed. AMAP to the second s

Following the methodology outlined by Hadeler& Lewis (2002), we derive the minimum speed,  $c^*(\rho, \beta\theta u)$ , which is the square root of the largest positive root of the following cubic equation

$$c_3(c^2)^3 + c_2(c^2)^2 + c_1(c^2)^1 + c_0 = 0$$
,

with

$$\begin{array}{rcl} c_{3} & = & 4\beta\theta u + (\rho - 1)^{2} \,, \\ c_{2} & = & 2\rho^{3} + 2\rho^{2} + (6\beta\theta u - 8)\rho + 18\theta u\beta + 4 \,, \\ c_{1} & = & \rho^{4} + 8\rho^{3} - (6\beta\theta u + 8)\rho^{2} + 36u\rho\beta\theta - 27u^{2}\beta^{2}\theta^{2} \,, \\ c_{0} & = & -4\rho^{3}(\beta\theta u - \rho) = -4\rho^{4}(\mathcal{R}_{0}^{2} - 1) \,. \end{array}$$

Since  $R_0^2 > 1$ , we have that  $c_0$  is negative and  $c_3$  is positive such that one positive root always exists. Thus the speed depends on  $\beta$  and  $\mathcal{R}_0^2$ , thus on u, and not on a.

Using the previous result, we can estimate the minimal speed for the monostable wavefront.



However, things are more complex than that!

ΔΜΔΡ

Assuming  $\rho >> 1$ , we consider a QSSA to reduce our model to

$$v_t \approx \theta(1-v) \frac{ui^{\sharp}(v)}{ui^{\sharp}(v)+1-i^{\sharp}(v)} - v + v_{\xi\xi} =: W(v) + v_{\xi\xi},$$
 (8)

where  $0 < i^{\sharp}(v) := \frac{\left(\frac{\beta}{\rho}v+1\right)a-\sqrt{\left(\left(\frac{\beta}{\rho}v-1\right)^{2}a+4\frac{\beta}{\rho}v\right)a}}{2(a-1)} < 1.$ Notice that in the monostable case  $(\mathcal{R}_{0}^{2} > 1), W(0) = 0, W(v^{*}) = 0, \text{ and } W(v) > 0 \text{ for all } v \in (0, v^{*}).$  When

$$\frac{W(v)}{v} < W'(0) \quad \text{for all} \quad v \in (0, v^*), \tag{9}$$

the spreading speed of the wave is linearly determined by

$$c^* = 2\sqrt{W'(0)} = 2\sqrt{\frac{\beta}{\rho}}\theta u - 1 = 2\sqrt{\mathcal{R}_0^2 - 1}.$$

If (9) is not satisfied, the spreading speed may not be linearly determined. A sufficient condition for condition (9) not to hold is W''(0) > 0. We have

$$W''(0) = -rac{2rac{eta}{
ho}u heta\left((1+(u-1)a)rac{eta}{
ho}+a
ight)}{a}\,,$$

and so W''(0) > 0 is equivalent to

$$(u-1)\frac{\beta}{\rho}+1<0$$
 and  $a>rac{rac{\beta}{\rho}}{-((u-1)rac{\beta}{\rho}+1)}=:\widetilde{a}(u)$ . (10)

This means that the curve separating pulled waves (linear speed) with pushed waves (nonlinear speed) in the parameter plane "originates" at  $(u_c, a_c)$ , where  $u_c$  is such that  $\mathcal{R}_0(u_c) = 1$ , and  $a_c = \frac{1}{1 - \frac{u_c}{u^*}}$ .



Yves Dumont

IMDETA 2025

24 / 34



#### Simulations of the monostable TW



AMAPlob

# Simulations of the bistable TW ( $\mathcal{R}_0^2 < 1$ )





 $\mathcal{R}_0^2 = 0.72 < 1$ , with u = 0.15. The spread is reversing,  $c^* < 0$ . AMAPING

# Two-parameter bifurcation diagram of the TW dynamic



The parameter domains of reversal and advance are separated by a curve corresponding to stalled waves, with zero wave speed, obtained by solving the PDE system (grey square) or the QSSA (red points) for  $\rho = 1$ ,  $\beta = 2.4$  and  $\theta = 2$ .

Monostable case  $(\mathcal{R}_0^2 > 1)$ :

- the disease invades the spatial domain
- since R<sub>0</sub><sup>2</sup> = βθu/ρ, the disease spreading speed depends only on ρ and βθu, and does not depend on a.
   Interpretation: at the leading edge of the front, close to the disease-free equilibrium, there are so few infected hosts that the preference of infected vectors for uninfected hosts has a negligible effect on the dynamics.
- However, the spreading speed can be non linear and may depend on a: the disease spread is not driven by the leading edge of the invasion front "pulled wave"), but by the whole of the front ("pushed wave").

#### Bistable case ( $\mathcal{R}_0^2 < 1$ ):

- the disease either invades or retreats, depending on parameter values: backward bifurcation
- a travelling wave with a negative speed occurs when an endemic equilibrium is replaced by the disease-free one
- front reversal has seldom been shown to occur when bistability is due to the epidemiological dynamics (as opposed to host population dynamics, e.g. Allee effect, see Hilker et al. 2005)

#### Ouputs

- Vector preferences: VMH and HMH.
- Is it possible to "play" with parameters a and u?
- $\bullet\,$  Roguing the infected plant is an option to get  $\mathcal{R}_0^2 < 1$
- An alternative for modelling vector preference could be density-dependent advection, like "prey-taxis" equation.
- Further improvements are possible: distinguish vegetative and reproductive stages, take into account plant growth.

- New advances in Agronomy, in Forest Sciences, ... will be possible only through multi-disciplinary works that gather researchers from different domains (Mathematicians, computer scientists, software developers, biologists, botanists, agronomists, ...).
- I believe that Maths can bring new insights in Plant/Crop/Forest Science. In other words, Plant Science is really an amazing area to develop and study new Mathematical Problems.
- A need in the developments of new Mathematical Tools and/or Theories to study these new problems.

## Thank You!

Journal of Mathematical Biology (2023) 87:38 https://doi.org/10.1007/s00285-023-01972-y

#### **Mathematical Biology**



Spatial spread of infectious diseases with conditional vector preferences

Frédéric M. Hamelin<sup>1</sup> · Frank M. Hilker<sup>2</sup> · Yves Dumont<sup>3,4,5</sup>

# Questions?



イロト イヨト イヨト イヨ