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Introduction

Food Security is a Major Challenge around the World.

Globally, it is estimated that 20-40% of crop yields are lost to
pests and diseases.

In particular, when this loss affects staple crops such as rice,
wheat, maize and tubers such as potatoes and sweet
potatoes, it directly threatens food security and nutrition.

Studying Crop-Diseases dynamics in the field is a difficult task.

That is why modeling, analysis, and numerical simulations can be
helpful and bring new insights to better focus the experiments and
also improve the control strategies.
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Introduction

Vector-borne diseases affect humans, animals and also plants

Sap-sucking Insects (plant hosts), like
aphids: Potato virus Y, Plum pox
virus,..

Mosquito (human and animal hosts)
Malaria, Dengue, Yellow fever, Zika, ...

∗

Most models assume vectors visit hosts randomly

However, growing evidence shows that many vectors do not
visit hosts randomly

∗From Blanc & Gutiérrez (2015) Current Opinion in Virology
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Introduction

Vectors may be differentially attracted towards infected and
uninfected hosts, depending on whether they carry the pathogen or
not

∗

∗After Gandon (2018) American Naturalist
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A model with vector preferences

Let I (x , t) be the infected host density at time t and location
x ∈ R, and V (x , t) and U(x , t) the infected (viruliferous) and
uninfected vector densities, respectively:

It = bpV
a(N − I )

a(N − I ) + I
− r I ,

Vt = bqU
uI

uI + (N − I )
− (m + δ)V + DVxx , (1)

Ut = (m + δ)V − bqU
uI

uI + (N − I )
+ DUxx ,

with non negative initial conditions. Biological parameters:

N the total constant Host population.

m (r) is the vector (host) recovery/mortality rate.

D the diffusion rate.
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A model with vector preferences

It = bpV
a(N − I )

a(N − I ) + I
− rI ,

Vt = bqU
uI

uI + (N − I )
− (m + δ)V + DVxx , (2)

Ut = (m + δ)V − bqU
uI

uI + (N − I )
+ DUxx ,

The epidemiological parameters:

b: the biting rate

p: probability of pathogen transmission

q: probability of pathogen acquisition.

1/δ, the virus lifespan (related to non-persistent or
semi-persistent viruses),
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A model with vector preferences

It = bpV
a(N − I )

a(N − I ) + I
− rI ,

Vt = bqU
uI

uI + (N − I )
− (m + δ)V + DVxx , (3)

Ut = (m + δ)V − bqU
uI

uI + (N − I )
+ DUxx ,

The epidemiological parameters:

a: preference/attraction of infected vectors for uninfected
hosts;

u: preference of uninfected vectors for infected hosts.
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The diffusion-less model

Let W = U + V be the total vector population density, then
Wt = DWxx .

Assuming W (x , 0) = K (the vector is established) for all
x ∈ (−∞,+∞), with Wt(x , 0) = 0 for all x , such that W = K for
all (x , t) ∈ R× R+.

Therefore, since U = K − V , model (3) reduces to:

It = bpV
a(N − I )

a(N − I ) + I
− rI ,

Vt = bq(K − V )
uI

uI + (N − I )
− (m + δ)V + DVxx . (4)
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The diffusion-less model

With the following rescaling

τ = (m + δ)t , i =
I

N
, and v =

V

K
,

and setting β = bpK
(m+δ)N , ρ = r

(m+δ) , θ = bq
(m+δ) , leads to

i ′ = βv
a(1− i)

a(1− i) + i
− ρi := f1(i , v) ,

v ′ = θ(1− v)
ui

ui + (1− i)
− v := f2(i , v) . (5)

Since
∂f1
∂v

≥ 0,
∂f2
∂i

≥ 0,

the system is Cooperative: no periodic orbits, and every bounded
trajectory converges to an equilibrium (Smith 2008).
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The diffusion-less model

i ′ = β
a(1− i)

a(1− i) + i
v − ρi ,

v ′ = θ
ui

ui + (1− i)
(1− v)− v . (6)

It is well know that the disease-free equilibrium (0, 0) is locally
asymptotically stable (LAS) if and only if R2

0 < 1, where

R2
0 =

βθ

ρ
u =

b2pq

r(m + δ)

K

N
u= R0,1u .

Note that R2
0 only depends on u (the preference of uninfected

vectors for infected hosts) and not on a (the preference of infected
vectors for uninfected hosts).
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The temporal model with vector preferences

An endemic equilibrium, (i∗, v∗), is solution of the quadratic

Q (i∗) = Ai∗2 + Bi∗ + C = 0 ,

in which

A = (a− 1) (u(1 + θ)− 1) ,

B =

(
(2− (1 + θ)u)− βθ

ρ
u

)
a− 1

C = a
(
R2

0 − 1
)
.

We discuss the number of endemic equilibrium according to the
cases R2

0 > 1, R2
0 = 1, and R2

0 < 1.
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The diffusion-less model

When R2
0 > 1, only one single endemic equilibrium exists.

When R2
0 = 1, an endemic equilibrium exists iff a > 1 and

αθ
(1+θ)β > a

a−1 > 1.

When R2
0 < 1, there exist two biologically endemic equilibria

iff the following set of conditions is satisfied:

A < 0, B > 0, B2 − 4AC > 0, 2A+ B > 0

Otherwise there exists no endemic equilibrium.

Setting u∗ =
1

1 + θ
, necessary conditions for two endemic

equilibria to coexist are:

a > 1: infected vectors prefer uninfected hosts.
u < u∗ < 1: uninfected vectors avoid infected hosts.
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The diffusion-less model

Since our system is Cooperative, we have

Qualitative analysis

When R2
0 < 1 and 0 is the only equilibrium, then it is GAS.

When R2
0 < 1, and two positive equilibrium E2 and E1 exist,

with E1 << E2, then 0 and E2 are LAS, and E1 is unstable.

When R2
0 > 1, then the endemic equilibrium E is GAS, and 0

is unstable.
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The diffusion-less model
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Parameter values: a = 15, β = 2.5, ρ = 1, θ = 2.
(A) R2

0 = 1.44 > 1 (u = 0.3): the endemic equilibrium is the only
attractor.

(B) Bistable case: R2
0 = 0.72 < 1 (u = 0.15).
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Two-parameters bifurcation diagram.
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Figure: The fold (transcritical) bifurcation curves are shown in solid blue
(dashed black). They meet at (a ≈ 2.663, u ≈ 0.2083). The insets are
illustrations of the nullcline constellations of the parameter domains
leading to different dynamical regimes.
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The diffusion model with vector preferences

We rescale variables and parameters in this way: τ = (m+ δ)t and

i =
I

N
, v =

V

K
, β =

bpK

(m + δ)N
, ρ =

r

m + δ
, θ =

bq

m + δ
,

and let

ξ = x

√
m + δ

D
.

A dimensionless version of model (4) is the following:

iτ = βv
a(1− i)

a(1− i) + i
− ρi ,

vτ = θ(1− v)
ui

ui + (1− i)
− v + vξξ , (7)

in which the subscripts denote differentiation with respect to τ or
ξ.
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The diffusion model with vector preferences

We consider the following spaces

S =
{
(i , v)|v ∈ L2(R); i ∈ L∞(R)

}
,

and
S1,1 = {(i , v) ∈ S|0 ≤ v ≤ 1; 0 ≤ i ≤ 1} .

Theorem (Existence and uniqueness)

For any initial values (i0, v0) ∈ S1,1, system (7) admits a unique
non-negative bounded solution such that

i ∈ C ([0,∞) ; L∞(R)) ∩ C 1 ([0,∞) ; L∞(R)) ,

and

v ∈ C ([0,∞) ; L∞(R)) ∩ C
(
[0,∞) ;H2(R)

)
∩ C 1

(
[0,∞) ; L2(R)

)
.

According to the temporal model study, it seems relevant to study
the existence or not of travelling wave (TW) solutions.
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Existence of TW solution

The system being cooperative and partially degenerate, it is
relatively straightforward to check

the hypothesis of Theorem 4.2 [Li 2012] to show the existence
of a monostable Travelling Wave connecting 0 to E , the
endemic equilibrium, when R2

0 > 1

the hypothesis of Theorem 4.2 [Fang & Zhao 2019], to show
the existence of a bistable Travelling Wave solution
connecting 0 to E , the endemic equilibrium, when R2

0 < 1 .
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Minimal Speed of the Monostable TW

We posit that the front speed is linearly determined as given
by the minimum possible wave speed based on the
linearisation at the leading edge of the wave.

We apply the minimum wave speed approach (Lewis &
Schmitz, 1996; Hadeler & Lewis, 2002) to the linearised
model for finding the pathogen spreading speed.

At the leading edge of the front invading the disease-free
equilibrium, i and v have small positive values. We linearise
system (7) at the leading edge: iτ = βv − ρi ,

vτ = θui − v + vζζ

Then, we are looking for TW solutions
y = (i , v)T = k exp(−s(ζ − cτ)), where c is the wave speed.
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Minimal Speed of the Monostable TW

Following the methodology outlined by Hadeler& Lewis (2002), we
derive the minimum speed, c∗(ρ, βθu), which is the square root of
the largest positive root of the following cubic equation

c3(c
2)3 + c2(c

2)2 + c1(c
2)1 + c0 = 0 ,

with

c3 = 4βθu + (ρ− 1)2 ,

c2 = 2ρ3 + 2ρ2 + (6βθu − 8)ρ+ 18θuβ + 4 ,

c1 = ρ4 + 8ρ3 − (6βθu + 8)ρ2 + 36uρβθ − 27u2β2θ2 ,

c0 = −4ρ3(βθu − ρ) = −4ρ4(R2
0 − 1) .

Since R2
0 > 1, we have that c0 is negative and c3 is positive such

that one positive root always exists. Thus the speed depends on β
and R2

0, thus on u, and not on a.
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Minimal Speed of the Monostable TW

Using the previous result, we can estimate the minimal speed for
the monostable wavefront.
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However, things are more complex than that!
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Minimal Speed of the Monostable TW

Assuming ρ >> 1, we consider a QSSA to reduce our model to

vt ≈ θ(1− v)
ui ♯(v)

ui ♯(v) + 1− i ♯(v)
− v + vξξ =: W (v) + vξξ , (8)

where 0 < i ♯(v) :=

(
β
ρ
v+1

)
a−

√((
β
ρ
v−1

)2
a+4β

ρ
v

)
a

2(a−1) < 1.

Notice that in the monostable case (R2
0 > 1), W (0) = 0,

W (v∗) = 0, and W (v) > 0 for all v ∈ (0, v∗). When

W (v)

v
< W ′(0) for all v ∈ (0, v∗) , (9)

the spreading speed of the wave is linearly determined by

c∗ = 2
√
W ′(0) = 2

√
β
ρ θu − 1 = 2

√
R2

0 − 1.
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Minimal Speed of the Monostable TW

If (9) is not satisfied, the spreading speed may not be linearly
determined. A sufficient condition for condition (9) not to hold is
W ′′(0) > 0. We have

W ′′(0) = −
2β
ρuθ

(
(1 + (u − 1)a)βρ + a

)
a

,

and so W ′′(0) > 0 is equivalent to

(u − 1)
β

ρ
+ 1 < 0 and a >

β
ρ

−((u − 1)βρ + 1)
=: ã(u) . (10)

This means that the curve separating pulled waves (linear speed)
with pushed waves (nonlinear speed) in the parameter plane
“originates” at (uc , ac), where uc is such that R0(uc) = 1, and
ac = 1

1− uc
u∗
.
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Minimal Speed of the Monostable TW
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Minimal Speed of the Monostable TW

Linear wave speed
Actual spread rate
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Simulations of the monostable TW
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R2
0 = 1.44 > 1, with u = 0.3. The disease is invading c∗ > 0.
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Simulations of the bistable TW (R2
0 < 1)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

R2
0 = 0.96 < 1, with u = 0.2. The disease is invading c∗ > 0.
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Simulations of the bistable TW - Front reversal

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R2
0 = 0.72 < 1, with u = 0.15. The spread is reversing, c∗ < 0.
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Two-parameter bifurcation diagram of the TW dynamic
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The parameter domains of reversal and advance are separated by a
curve corresponding to stalled waves, with zero wave speed,
obtained by solving the PDE system (grey square) or the QSSA
(red points) for ρ = 1, β = 2.4 and θ = 2.
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Conclusion: Plant Vector-borne diseases

Monostable case (R2
0 > 1):

the disease invades the spatial domain

since R2
0 = βθu/ρ, the disease spreading speed depends only

on ρ and βθu, and does not depend on a.
Interpretation: at the leading edge of the front, close to the
disease-free equilibrium, there are so few infected hosts that
the preference of infected vectors for uninfected hosts has a
negligible effect on the dynamics.

However, the spreading speed can be non linear and may
depend on a: the disease spread is not driven by the leading
edge of the invasion front ”pulled wave”), but by the whole of
the front (”pushed wave”).
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Conclusion: Plant Vector-borne diseases

Bistable case (R2
0 < 1):

the disease either invades or retreats, depending on parameter
values: backward bifurcation

a travelling wave with a negative speed occurs when an
endemic equilibrium is replaced by the disease-free one

front reversal has seldom been shown to occur when bistability
is due to the epidemiological dynamics (as opposed to host
population dynamics, e.g. Allee effect, see Hilker et al. 2005)
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Conclusion: control strategies

Ouputs

Vector preferences: VMH and HMH.

Is it possible to ”play” with parameters a and u?

Roguing the infected plant is an option to get R2
0 < 1

An alternative for modelling vector preference could be
density-dependent advection, like ”prey-taxis” equation.

Further improvements are possible: distinguish vegetative and
reproductive stages, take into account plant growth.
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Conclusion

New advances in Agronomy, in Forest Sciences, ... will be
possible only through multi-disciplinary works that gather
researchers from different domains (Mathematicians,
computer scientists, software developers, biologists, botanists,
agronomists, ...).

I believe that Maths can bring new insights in
Plant/Crop/Forest Science. In other words, Plant Science is
really an amazing area to develop and study new
Mathematical Problems.

A need in the developments of new Mathematical Tools
and/or Theories to study these new problems.
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Conclusion

Thank You!

Questions?
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