Vector-borne plant diseases: impact of vector preferences on the spatial spreading of Infectious **Diseases**

Yves Dumont

CIRAD, Umr AMAP, Saint Pierre, La Réunion, France University of Pretoria, department of Mathematics and Applied Mathematics, South Africa SarChi Chair M³B²: Mathematical Models and Methods in Bio-engineering and Biosciences, University of Pretoria, South Africa

January 2025

Food Security is a Major Challenge around the World.

- Globally, it is estimated that 20-40% of crop yields are lost to pests and diseases.
- In particular, when this loss affects staple crops such as rice, wheat, maize and tubers such as potatoes and sweet potatoes, it directly threatens food security and nutrition.

Food Security is a Major Challenge around the World.

- Globally, it is estimated that 20-40% of crop yields are lost to pests and diseases.
- In particular, when this loss affects staple crops such as rice, wheat, maize and tubers such as potatoes and sweet potatoes, it directly threatens food security and nutrition.

Studying Crop-Diseases dynamics in the field is a difficult task.

That is why modeling, analysis, and numerical simulations can be helpful and bring new insights to better focus the experiments and also improve the control strategies.

Introduction

Vector-borne diseases affect humans, animals and also plants

Sap-sucking Insects (plant hosts), like aphids: Potato virus Y, Plum pox

Mosquito (human and animal hosts) Malaria, Dengue, Yellow fever, Zika, ...

- Most models assume vectors visit hosts randomly
- However, growing evidence shows that many vectors do not visit hosts randomly

*From Blanc & Gutiérrez (2015) Current Opinion in Virology (□

 $AMAP_{bb}$ つへへ

Introduction

Vectors may be differentially attracted towards infected and uninfected hosts, depending on whether they carry the pathogen or not

[∗]After Gandon (2018) American Naturalist

Yves Dumont [IMDETA 2025](#page-0-0) 4/34

 \leftarrow \Box

 \mathbb{R}^n

∗

 $2Q$

A model with vector preferences

Let $I(x, t)$ be the infected host density at time t and location $x \in \mathbb{R}$, and $V(x, t)$ and $U(x, t)$ the infected (viruliferous) and uninfected vector densities, respectively:

$$
l_{t} = bpV \frac{a(N - l)}{a(N - l) + l} - rl,
$$

\n
$$
V_{t} = bqU \frac{ul}{ul + (N - l)} - (m + \delta)V + DV_{xx},
$$
\n
$$
U_{t} = (m + \delta)V - bqU \frac{ul}{ul + (N - l)} + DU_{xx},
$$
\n(1)

with non negative initial conditions. Biological parameters:

- \bullet N the total constant Host population.
- \bullet m (r) is the vector (host) recovery/mortality rate.
- \bullet D the diffusion rate.

A model with vector preferences

$$
I_t = bpV \frac{a(N - I)}{a(N - I) + I} - rl,
$$

\n
$$
V_t = bqU \frac{ul}{ul + (N - I)} - (m + \delta)V + DV_{xx},
$$
\n
$$
U_t = (m + \delta)V - bqU \frac{ul}{ul + (N - I)} + DU_{xx},
$$
\n(2)

The epidemiological parameters:

- \bullet *b*: the biting rate
- \bullet σ : probability of pathogen transmission
- \bullet q: probability of pathogen acquisition.
- $1/\delta$, the virus lifespan (related to non-persistent or semi-persistent viruses),

A model with vector preferences

$$
I_t = bpV \frac{a(N-l)}{a(N-l)+l} - rl,
$$

\n
$$
V_t = bqU \frac{ul}{ul + (N-l)} - (m+\delta)V + DV_{xx},
$$
\n(3)
\n
$$
U_t = (m+\delta)V - bqU \frac{ul}{ul + (N-l)} + DU_{xx},
$$

The epidemiological parameters:

- a: preference/attraction of infected vectors for uninfected hosts;
- \bullet μ : preference of uninfected vectors for infected hosts.

Let $W = U + V$ be the total vector population density, then $W_t = DW_{xx}$.

Assuming $W(x, 0) = K$ (the vector is established) for all $x \in (-\infty, +\infty)$, with $W_t(x, 0) = 0$ for all x, such that $W = K$ for all $(x, t) \in \mathbb{R} \times \mathbb{R}_+$.

Let $W = U + V$ be the total vector population density, then $W_t = DW_{xx}$.

Assuming $W(x, 0) = K$ (the vector is established) for all $x \in (-\infty, +\infty)$, with $W_t(x, 0) = 0$ for all x, such that $W = K$ for all $(x, t) \in \mathbb{R} \times \mathbb{R}_+$.

Therefore, since $U = K - V$, model [\(3\)](#page-7-0) reduces to:

$$
I_{t} = bpV \frac{a(N - 1)}{a(N - 1) + 1} - rl,
$$

$$
V_{t} = bq(K - V) \frac{ul}{ul + (N - 1)} - (m + \delta)V + DV_{xx}.
$$
 (4)

With the following rescaling

$$
\tau = (m+\delta)t
$$
, $i = \frac{l}{N}$, and $v = \frac{V}{K}$,

and setting $\beta = \frac{bpK}{(m+\delta)}$ $\frac{bpK}{(m+\delta)N}$, $\rho = \frac{r}{(m+\delta)}$ $\frac{r}{(m+\delta)}, \ \theta = \frac{bq}{(m+\delta)}$ $\frac{pq}{(m+\delta)}$, leads to

$$
i' = \beta v \frac{a(1-i)}{a(1-i)+i} - \rho i := f_1(i, v),
$$

\n
$$
v' = \theta(1-v) \frac{u i}{u i+(1-i)} - v := f_2(i, v).
$$
 (5)

റ ദൈ

With the following rescaling

$$
\tau = (m + \delta)t, \quad i = \frac{1}{N}, \text{ and } v = \frac{V}{K},
$$

and setting $\beta = \frac{bpK}{(m+\delta)}$ $\frac{bpK}{(m+\delta)N}$, $\rho = \frac{r}{(m+\delta)}$ $\frac{r}{(m+\delta)}, \ \theta = \frac{bq}{(m+\delta)}$ $\frac{pq}{(m+\delta)}$, leads to

$$
i' = \beta v \frac{a(1-i)}{a(1-i) + i} - \rho i := f_1(i, v),
$$

\n
$$
v' = \theta(1-v) \frac{ui}{ui + (1-i)} - v := f_2(i, v).
$$
 (5)

Since

$$
\frac{\partial f_1}{\partial v} \ge 0, \qquad \frac{\partial f_2}{\partial i} \ge 0,
$$

the system is Cooperative: no periodic orbits, and every bounded trajectory converges to an equilibrium (Smith 2008). **AMAP**lob

つへへ

$$
i' = \beta \frac{a(1-i)}{a(1-i) + i} v - \rho i,
$$

\n
$$
v' = \theta \frac{u i}{u i + (1-i)} (1-v) - v.
$$
 (6)

It is well know that the disease-free equilibrium $(0, 0)$ is locally asymptotically stable (LAS) if and only if $\mathcal{R}_0^2 < 1$, where

$$
\mathcal{R}_0^2 = \frac{\beta \theta}{\rho} u = \frac{b^2 pq}{r(m+\delta)} \frac{K}{N} u = \mathcal{R}_{0,1} u.
$$

Note that \mathcal{R}_0^2 only depends on u (the preference of uninfected vectors for infected hosts) and not on a (the preference of infected vectors for uninfected hosts).

The temporal model with vector preferences

An endemic equilibrium, (i^*, v^*) , is solution of the quadratic

$$
Q(i^*) = Ai^{*2} + Bi^* + C = 0,
$$

in which

$$
A = (a-1)(u(1+\theta) - 1),
$$

\n
$$
B = ((2 - (1+\theta)u) - \frac{\beta \theta}{\rho}u) a - 1,
$$

\n
$$
C = a(\mathcal{R}_0^2 - 1).
$$

We discuss the number of endemic equilibrium according to the cases $\mathcal{R}_0^2 > 1$, $\mathcal{R}_0^2 = 1$, and $\mathcal{R}_0^2 < 1$.

- When $\mathcal{R}_0^2>1$, only one single endemic equilibrium exists.
- When $\mathcal{R}_0^2 = 1$, an endemic equilibrium exists iff $a > 1$ and $\frac{\alpha\theta}{(1+\theta)\beta}>\frac{\mathsf{a}}{\mathsf{a}-1}>1.$

- When $\mathcal{R}_0^2>1$, only one single endemic equilibrium exists.
- When $\mathcal{R}_0^2 = 1$, an endemic equilibrium exists iff $a > 1$ and $\frac{\alpha\theta}{(1+\theta)\beta}>\frac{\mathsf{a}}{\mathsf{a}-1}>1.$
- When $\mathcal{R}_0^2 < 1$, there exist two biologically endemic equilibria iff the following set of conditions is satisfied:

$$
A < 0, \quad B > 0, \quad B^2 - 4AC > 0, \quad 2A + B > 0
$$

Otherwise there exists no endemic equilibrium.

- When $\mathcal{R}_0^2>1$, only one single endemic equilibrium exists.
- When $\mathcal{R}_0^2 = 1$, an endemic equilibrium exists iff $a > 1$ and $\frac{\alpha\theta}{(1+\theta)\beta}>\frac{\mathsf{a}}{\mathsf{a}-1}>1.$
- When $\mathcal{R}_0^2 < 1$, there exist two biologically endemic equilibria iff the following set of conditions is satisfied:

$$
A < 0, \quad B > 0, \quad B^2 - 4AC > 0, \quad 2A + B > 0
$$

Otherwise there exists no endemic equilibrium.

Setting $u^* = \frac{1}{1}$ $\frac{1}{1 + \theta}$, necessary conditions for two endemic equilibria to coexist are:

- \bullet $a > 1$: infected vectors prefer uninfected hosts.
- $u < u^* < 1$: uninfected vectors avoid infected hosts.

Since our system is Cooperative, we have

Qualitative analysis

- When $\mathcal{R}_0^2 < 1$ and $\boldsymbol{0}$ is the only equilibrium, then it is GAS.
- When $\mathcal{R}_0^2 < 1$, and two positive equilibrium E_2 and E_1 exist, with $E_1 \ll E_2$, then 0 and E_2 are LAS, and E_1 is unstable.
- When $\mathcal{R}_0^2>1$, then the endemic equilibrium E is GAS, and $\boldsymbol{0}$ is unstable.

Parameter values: $a = 15$, $\beta = 2.5$, $\rho = 1$, $\theta = 2$. $\bf{(A)}$ $\mathcal{R}_0^2 = 1.44 > 1$ $(u=0.3)$: the endemic equilibrium is the only attractor.

4日)

AMAP つへへ

Parameter values: $a = 15$, $\beta = 2.5$, $\rho = 1$, $\theta = 2$. $\bf{(A)}$ $\mathcal{R}_0^2 = 1.44 > 1$ $(u=0.3)$: the endemic equilibrium is the only attractor.

(B) Bistable case: $\mathcal{R}_0^2 = 0.72 < 1$ ($u = 0.15$).

MAP つへへ

Two-parameters bifurcation diagram.

Figure: The fold (transcritical) bifurcation curves are shown in solid blue (dashed black). They meet at ($a \approx 2.663$, $u \approx 0.2083$). The insets are illustrations of the nullcline constellations of the parameter domains leading to different dynamical regimes.

MAP n a G

The diffusion model with vector preferences

We rescale variables and parameters in this way: $\tau = (m + \delta)t$ and

$$
i = \frac{1}{N}
$$
, $v = \frac{V}{K}$, $\beta = \frac{bpK}{(m+\delta)N}$, $\rho = \frac{r}{m+\delta}$, $\theta = \frac{bq}{m+\delta}$,

and let

$$
\xi = x \sqrt{\frac{m+\delta}{D}}.
$$

A dimensionless version of model [\(4\)](#page-8-0) is the following:

$$
i_{\tau} = \beta v \frac{a(1-i)}{a(1-i) + i} - \rho i ,
$$

\n
$$
v_{\tau} = \theta (1-v) \frac{u i}{u i + (1-i)} - v + v_{\xi\xi} ,
$$
 (7)

in which the subscripts denote differentiation with respect to τ or ξ.

 Ω

The diffusion model with vector preferences

We consider the following spaces

$$
\mathcal{S} = \left\{ (i, v) | v \in L^2(\mathbb{R}); i \in L^\infty(\mathbb{R}) \right\},\
$$

and

$$
\mathcal{S}_{1,1} = \{(i,v) \in \mathcal{S} | 0 \le v \le 1; 0 \le i \le 1\}.
$$

Theorem (Existence and uniqueness)

For any initial values $(i_0, v_0) \in S_{1,1}$, system [\(7\)](#page-21-0) admits a unique non-negative bounded solution such that

$$
i\in C\left(\left[0,\infty\right);L^{\infty}(\mathbb{R})\right)\cap\mathcal{C}^1\left(\left[0,\infty\right);L^{\infty}(\mathbb{R})\right),
$$

and

$$
v\in C\left(\left[0,\infty\right);L^{\infty}(\mathbb{R})\right)\cap C\left(\left[0,\infty\right);H^{2}(\mathbb{R})\right)\cap C^{1}\left(\left[0,\infty\right);L^{2}(\mathbb{R})\right).
$$

The diffusion model with vector preferences

We consider the following spaces

$$
\mathcal{S} = \left\{ (i, v) | v \in L^2(\mathbb{R}); i \in L^\infty(\mathbb{R}) \right\},\
$$

and

$$
\mathcal{S}_{1,1}=\left\{(i,v)\in \mathcal{S}|0\leq v\leq 1; 0\leq i\leq 1\right\}.
$$

Theorem (Existence and uniqueness)

For any initial values $(i_0, v_0) \in S_{1,1}$, system [\(7\)](#page-21-0) admits a unique non-negative bounded solution such that

$$
i\in C\left(\left[0,\infty\right);L^{\infty}(\mathbb{R})\right)\cap\mathcal{C}^1\left(\left[0,\infty\right);L^{\infty}(\mathbb{R})\right),
$$

and

$$
v\in C\left(\left[0,\infty\right);L^{\infty}(\mathbb{R})\right)\cap C\left(\left[0,\infty\right);H^{2}(\mathbb{R})\right)\cap C^{1}\left(\left[0,\infty\right);L^{2}(\mathbb{R})\right).
$$

According to the temporal model study, it seems relevant to study $_{AMAP}$ the existence or not of travelling wave (TW) [so](#page-22-0)[lu](#page-24-0)[ti](#page-21-1)[o](#page-22-0)[n](#page-23-0)[s](#page-24-0)[.](#page-0-0)

The system being cooperative and partially degenerate, it is relatively straightforward to check

- the hypothesis of Theorem 4.2 [Li 2012] to show the existence of a monostable Travelling Wave connecting $\bf{0}$ to \bf{E} , the endemic equilibrium, when $\mathcal{R}_0^2 > 1$
- the hypothesis of Theorem 4.2 [Fang & Zhao 2019], to show the existence of a bistable Travelling Wave solution connecting $\boldsymbol{0}$ to E , the endemic equilibrium, when $\mathcal{R}_0^2 < 1$.

- We posit that the front speed is linearly determined as given by the minimum possible wave speed based on the linearisation at the leading edge of the wave.
- We apply the minimum wave speed approach (Lewis & Schmitz, 1996; Hadeler & Lewis, 2002) to the linearised model for finding the pathogen spreading speed.
- At the leading edge of the front invading the disease-free equilibrium, i and v have small positive values. We linearise system (7) at the leading edge:

$$
\begin{cases}\ni_{\tau} = \beta v - \rho i, \\
v_{\tau} = \theta u i - v + v_{\zeta\zeta}\n\end{cases}
$$

Then, we are looking for TW solutions $y = (i, v)^T = k \exp(-s(\zeta - c\tau))$, where c is the wave speed. つへへ

Following the methodology outlined by Hadeler& Lewis (2002), we derive the minimum speed, $c^*(\rho,\beta \theta u)$, which is the square root of the largest positive root of the following cubic equation

$$
c_3(c^2)^3 + c_2(c^2)^2 + c_1(c^2)^1 + c_0 = 0,
$$

with

$$
c_3 = 4\beta \theta u + (\rho - 1)^2,
$$

\n
$$
c_2 = 2\rho^3 + 2\rho^2 + (6\beta \theta u - 8)\rho + 18\theta u \beta + 4,
$$

\n
$$
c_1 = \rho^4 + 8\rho^3 - (6\beta \theta u + 8)\rho^2 + 36u\rho \beta \theta - 27u^2\beta^2\theta^2,
$$

\n
$$
c_0 = -4\rho^3(\beta \theta u - \rho) = -4\rho^4(\mathcal{R}_0^2 - 1).
$$

Since $R_0^2 > 1$, we have that c_0 is negative and c_3 is positive such that one positive root always exists. Thus the speed depends on β and \mathcal{R}_0^2 , thus on u , and not on a . **AMAP**

 290

Using the previous result, we can estimate the minimal speed for the monostable wavefront.

However, things are more complex than that[!](#page-26-0)

Assuming $\rho >> 1$, we consider a QSSA to reduce our model to

$$
v_t \approx \theta(1-v)\frac{ui^{\sharp}(v)}{ui^{\sharp}(v)+1-i^{\sharp}(v)}-v+v_{\xi\xi}=:W(v)+v_{\xi\xi}, \quad (8)
$$

where $0 < \it{i}^\sharp(\nu) :=$ $\left(\frac{\beta}{\rho}v+1\right)a-\sqrt{\left(\left(\frac{\beta}{\rho}v-1\right)^2a+4\frac{\beta}{\rho}v\right)a}$ $\frac{1}{2(a-1)}$ < 1. Notice that in the monostable case $(\mathcal{R}_0^2 > 1)$, $W(0) = 0$, $W(v^*) = 0$, and $W(v) > 0$ for all $v \in (0, v^*)$. When

$$
\frac{W(v)}{v} < W'(0) \quad \text{for all} \quad v \in (0, v^*) \,, \tag{9}
$$

the spreading speed of the wave is linearly determined by

$$
c^* = 2\sqrt{W'(0)} = 2\sqrt{\frac{\beta}{\rho}\theta u - 1} = 2\sqrt{\mathcal{R}_0^2 - 1}.
$$

If [\(9\)](#page-28-0) is not satisfied, the spreading speed may not be linearly determined. A sufficient condition for condition [\(9\)](#page-28-0) not to hold is $W''(0) > 0$. We have

$$
W''(0)=-\frac{2\frac{\beta}{\rho}u\theta\left((1+(u-1)a)\frac{\beta}{\rho}+a\right)}{a},
$$

and so $W''(0) > 0$ is equivalent to

$$
(u-1)\frac{\beta}{\rho}+1<0 \text{ and } a>\frac{\frac{\beta}{\rho}}{-((u-1)\frac{\beta}{\rho}+1)}=:\tilde{a}(u). (10)
$$

This means that the curve separating pulled waves (linear speed) with pushed waves (nonlinear speed) in the parameter plane "originates" at (u_c, a_c) , where u_c is such that $\mathcal{R}_0(u_c) = 1$, and $a_c = \frac{1}{1 - a}$ $\frac{1}{1-\frac{u_c}{u^*}}$.

Simulations of the monostable TW

AMAPlob

 290

Simulations of the bistable TW $(\mathcal{R}_0^2 < 1)$

AMAPlob

 290

 $\mathcal{R}_0^2=0.72 < 1$, with $\mu=0.15$. The spread is reversing, $c^* < 0.1$ $AMAP$ lob

 $2Q$

Two-parameter bifurcation diagram of the TW dynamic

The parameter domains of reversal and advance are separated by a curve corresponding to stalled waves, with zero wave speed, obtained by solving the PDE system (grey square) or the QSSA **AMAP**Iob (red points) for $\rho = 1$, $\beta = 2.4$ and $\theta = 2$.

Monostable case $(\mathcal{R}_0^2 > 1)$:

- the disease invades the spatial domain
- since $\mathcal{R}_0^2=\beta\theta u/\rho$, the disease spreading speed depends only on ρ and $\beta \theta u$, and does not depend on a. Interpretation: at the leading edge of the front, close to the disease-free equilibrium, there are so few infected hosts that the preference of infected vectors for uninfected hosts has a negligible effect on the dynamics.
- However, the spreading speed can be non linear and may depend on a: the disease spread is not driven by the leading edge of the invasion front "pulled wave"), but by the whole of the front ("pushed wave").

Bistable case $(\mathcal{R}_0^2 < 1)$:

- the disease either invades or retreats, depending on parameter values: backward bifurcation
- a travelling wave with a negative speed occurs when an endemic equilibrium is replaced by the disease-free one
- front reversal has seldom been shown to occur when bistability is due to the epidemiological dynamics (as opposed to host population dynamics, e.g. Allee effect, see Hilker et al. 2005)

Ouputs

- Vector preferences: VMH and HMH.
- \bullet Is it possible to "play" with parameters a and μ ?
- Roguing the infected plant is an option to get $\mathcal{R}_0^2 < 1$
- An alternative for modelling vector preference could be density-dependent advection, like "prey-taxis" equation.
- **•** Further improvements are possible: distinguish vegetative and reproductive stages, take into account plant growth.
- New advances in Agronomy, in Forest Sciences, ... will be possible only through multi-disciplinary works that gather researchers from different domains (Mathematicians, computer scientists, software developers, biologists, botanists, agronomists, ...).
- I believe that Maths can bring new insights in Plant/Crop/Forest Science. In other words, Plant Science is really an amazing area to develop and study new Mathematical Problems.
- A need in the developments of new Mathematical Tools and/or Theories to study these new problems.

Thank You!

Journal of Mathematical Biology (2023) 87:38 https://doi.org/10.1007/s00285-023-01972-y

Mathematical Biology

Spatial spread of infectious diseases with conditional vector preferences

Frédéric M. Hamelin¹ D · Frank M. Hilker² D · Yves Dumont^{3,4,5}

Questions?

K ロ ▶ K 御 ▶ K 君 ▶ K 君

AMAPIde

 Ω