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Provocative question: 

Can plants be aware of the danger?

Please see the video:   
https://www.youtube.com/watch?app=desktop&&v=7-3yFcZSyvo

„”Supplying glutamate directly to the tip of one leaf creates a strong wave of calcium 

across the entire plant, visualized by fluorescent light. This video is part of research 

by UW–Madison botany professor Simon Gilroy that shows how waves of calcium 

crisscrossing a plant help it respond to attacks by preparing for future threats. 

The work was published in Science in September of 2018”.

https://www.youtube.com/watch?app=desktop&&v=7-3yFcZSyvo


It turns out that plants or their parts can communicate with each other (e.g by 
sending sigals calcium waves), preparing thus for unpleasant consequences



By waves we mean travelling waves, 
special solutions: 𝒖 = 𝑼(𝑥 − 𝑐𝑡) to   
Reaction-Diff. equations (c-const )

• Waves are usually associated  with the wave equation or
with hyperbolic systems. However hyperbolic equations
are  almost nonexisting in biology. One predominantly
encounters parabolic equations or semilinear parabolic
systems – Reaction-Diffsion Systems. 

• The travelling waves  in R-D eqs are appearing as an 
interplay between the diffusion and nonlinearity.



If  u(t,x) – density of individuals, F(u) = ru(1-u/K), then one can 
speak of a simple model  in  population dynamics.  The 
diffusive term reflects the fact that individuals are moving
erratically. The reaction term F(u) is responsible for the birth
and death processes.

Here travelling wave solutions are   heteroclinic fronts. As F is
monostable,  because u=0 is unstable equilibrim, there are
solutions for an arbitrary speed ≥ 𝑐0 . 

Single reaction –diffusion equation

𝜕

𝜕𝑡
𝑢 = 𝐷∆𝑢 + 𝐹(𝑢)



Bistable case; the  wave speed is uniquely determined! 

𝐹 𝑢 = −𝐴(𝑢 − 𝑢1)(𝑢 − 𝑢2)(𝑢 − 𝑢3)

F(u) 

𝑢1 𝑢2 𝑢3 u

Fig. An example of a bistable source function:

F(u) has two stable: 𝑢1, 𝑢3 and one unstable (𝑢2) equilibrium.



An example of a travelling front 

𝝏

𝝏𝒕
𝒖 = 𝑫

𝝏𝟐

𝝏𝒙𝟐  𝒖 − 𝑨 𝒖(𝒖 − 𝒂)(𝒖 − 𝟏) 

The following bistable reaction diffusion equation with 
a cubic (bistable) source  term

has (D=1, A=1) following travelling front solutions

𝑢 =
1

1 + exp
±𝑥 − 𝑣𝑡

2

where   𝑣 = 2 (
1

2
− 𝑎) defines the propagation speed.



Monostable reaction term – waves can propagate with an arbitrary 
speed grater then some 𝑣0. The minimal speed makes physical sense) 

The case of   F(u)= ru(1-u/K)  is a good example of    a 
monostable reaction term. It has two zeros:  

Unstable state u=0  and stable state  u=K

Just look at    𝑢’ = 𝑟𝑢(1 − 𝐾/𝑢)



Theory based on single reaction diffusion equation predicts 

travelling waves in the form of heteroclinic fronts, joining two 

stable (in the bistable case) equilibria of the source term, whereas 

observed experimentally calcium waves are of homoclinic type. 

Thus, such simplified theory describes properly only the front part 

of the wave. To obtain the shape of a homoclinic, the additional 

equation for “recovery variable” is usually added. 

In the proposed here theory for CICI waves this additional equation 

appears in a natural way.



Ecology,   Population dynamics



MONOTONE SYSTEMS



Comments on a multistable case



Calcium waves were discovered
in 1977 on medaka fish egg.

John C. Gilkey, Lionel f. Jaffe, Ellis B. Ridgway, 
and George T. Reynolds „A FREE CALCIUM 
WAVE TRAVERSES THE ACTIVATING EGG OF 
THE MEDAKA, ORYZIAS LA TIPES”,, Journ. Cell 
Biology" Vol. 76, 1978



• Signals can be transmitted by various means – calcium concentration 
waves among the others.  After the fertilization of an egg the wave
sprading on its surface is generated, which changes the status of an 
egg. The second sperm can not enter the egg.    



The calcium wave through moving amoebae. 
Speed  15 𝜇m/s. (L. Jaffe)



From L. Jaffe 



Calcium waves (first seen on the fertilizing medaka egg ) turned out to be quite common.
They can propagate both in individual cells and in tissues. The range of their speed: 
1nm/s – 30 cm/s (nearly a billion fold) falling into four speed –based groups (after L. Jaffe) 

In our lecture we will be interestet in CICI fast waves (see diagram below).  



The  mechanism of propagation of CICR waves is based on  

autocatalytic release of calcium from the internal  stores (e.g. 

endoplasmic reticulum) located in the  cells.

CICI waves. According to L. Jaffe this cannot explain the 

speed of the  second  group  of „fast waves” . Their speed 

can be by two orders higher. Such  waves are also  

observed in cells not having internal stores of calcium. 

Thus: Stretch-activated ion channels in the membrane are 

responsible for the calcium delivery from the extracellular

space.

CICI WAVES



CELL is extremally complex! (Nobel Prize 2013). 
The cell membrane is equipped with

a) ion channels (MECHANICALLY, chemically or electrically controlled) 

through which ions are admitted into the cell interior. 

b) There are pumps in the membrane - at least two types:

• ATP type - efficient at low 𝐶𝑎++ concentrations

• sodium-calcium exchangers; very efficient at high 𝐶𝑎++ concentrations.

Thanks to them, balance in the cell can be restored. 

Mechanically operated ion channels (stretch activated) 

are opened when the membrane is stretched. 



Inside the cel we have

1. Cytoplasm 

2. Actin filaments 

3. Internal stores of calcium (endoplasic reticulum) 

4. Other important ingredients as: ion channels and ion pumps located in 
the cell membrane.  

• As the Ca concentration increases, the filaments are increasingly
connected by myosin bridges and the filament network contracts. 

• The filaments also serve as routes along which various materials in bags
(vesicles) are transported by appropriate motors. (  F=2.7 pN). See for 
example :

https://learn.genetics.utah.edu/content/cells/vesicles/



Model of a cell

(from the lecture by Kizylvova)





Coming back to Ca waves 



There are already well known and well researched  CICR waves i.e. 
„Calcium Induced Calcium Released” waves (L. Jaffe) . The simplest 
theoretical description is based on single reaction diffusion equation 
with a bistable source term.  For a small excess of calcium above 
the equilibrium concentration, 
calcium is absorbed into internal
stores. After exceeding a certain 
threshold value (the second zero 
of the source function) calcium is
released from the internal stores of the cell in an autocathalitic
reaction, untill its concentration reaches the next equilibrium value (the 
third zero of source function).   



Lionel Jaffe Hypothesis
According to L. Jaffe, the CICR mechanism cannot be responsible 
for high speed of CICI waves (see diagram).
It is known that:  
Stretching the membrane activates the ion channels and calcium 
can enter the cell from the extracellular space. 

Hypothesis: when the calcium concentration grows the actin-
myosin network is reorganized – the filament network contracts. 
Consequently, filaments are pulling the membrane. Mechanically 
stimulated channels are opened and calcium enters the cell. This 
mechanism (calcium induced calcium influx) supports the wave 
propagation. 



Hypothetical CICI Waves – 
the subject of our modelling  

•  Accorfing to L. Jaffe in this case 
calcium from the extracellular space 
enters the cell through mechanicaly 
activated ion channels located in the 
cell membrane. In the extracellular 
space 𝑪𝒂++ concentration is by two 
orders higher than in the cell internal 
stores. The channels are opened when 
the membrane is stretched.    



Calcium pumps

Calcium pumps are ion transporters found in the cell

membrane. They are responsible for active transport

of calcium out of the cell, keeping the intracellular

calcium concentration 10 000 times lower than the

extracellular. The plasma membrane Ca2+ ATPase

and sodium-calcium calcium exchanger are the main

regulators of intracellular Ca2+ concentration. The

first type is efficient at low Ca concentration, whereas

the second type is extremely efficient at higher

concentrations.

They also seem to play the crucial role in supporting 

the CICI Waves! 



 

Assumptions.

1. The contraction of the actomyosin network  results in appearing  of so 

called “traction forces”. However, the effect  of contraction  following the 

increase of calcium concentration appears with  some delay –relaxation time 

is needed  to  form the myosin  bridges

2.  The calcium can enter  from  the intercellular space through  the 

mechanically stimulated ion channels located in the cell membrane 

3.  The mechanical stimulation of the membrane is caused by the 

actomyosin network  - cortex.  The  fibers of the cortex as well as the rest of 

actomyosin network in the cell are subject to the contraction whenever  the 

calcium concentration in the cell cytoplasm increases.



As the calcium concentration increases, the myosin 
filaments become more and more connected through the 
increasing number of myosin Bridges. This leads to the 
contraction of the filament network. 
This contraction influences the shape of the cell. If we 
imagine the ideal cell of a cylindrical shape, then the cell 
radius will be reduced. Therefore, at first glance, we should
not expect any stretching of the cell membrane. 
This is however macroscopic view. Microscopically the 
membrane will be very unsmooth. Funnel-shaped 
depressions will appear under the influence of pulling 
forces, in places where the filaments are anchored. So in 
spite of this that the average radiuce gets smaller we will
have the membrane stretching as its shape becames more
complex.



When the wave passes, the cell radius shrinks. So how can 

we have stretching ?  locally we expect the following picture



Suppose, the ion channels are openned whenever the  
membrane is streched. Then permanent stretch  :

High calcium concentration over a long period of time would

lead to the cell death. Therefore, a permanent state of stretch 

should not result in a continuous influx of calcium. 

Experiment: oscillatory stretching leads to 𝐶𝑎++ influx 

proportional to the amplitude and oscillations frequency. 

This suggests that the calcium influx should rather be related to 

the speed of membrane stretching !



H.1. Therefore, if n is an internal unit vector normal to the cell 

membrane and F is the force acting on  unit membrane area, 

then the calcium influx (flux per unit area) is proportional to 

the positive part of the time derivative of the force acting on 

the unit surface.

 

𝐶𝑎++ 𝑖𝑛𝑓𝑙𝑢𝑥 ~
𝜕

𝜕𝑡
(𝒏 ∙ 𝑭)

+

Positive part, because only stretching counts. One can show 

that otherwise the Ca concentration may become negative ! 



Taking into account the pumps p(c)

𝑝 𝑐 :

This is the boundary condition  for the Ca diffusion equation.

𝑡𝑜𝑡𝑎𝑙 𝐶𝑎++ 𝑖𝑛𝑓𝑙𝑢𝑥 ~
𝜕

𝜕𝑡
(𝒏 ∙ 𝑭)

+
− 𝑝(𝑢) -



Now we arrived at the  MECHANICAL PROBLEM: 

Determine the forces acting on the membrane ; i.e. forces 

resulting from the actin filaments attached to it.  

In principle two approaches seem to be possible:

a) Calculate the distribution of forces on each filament of the 

contracting network due to the appearance of myosin 

bridges. In particular those anchored in the membrane. Then 

find the shape of deformed membrane. 

This seems hopelessly difficult !



Continuum mechanical approach ?

b) In mathematical biology (Murray, Mathematical Biology) , 

the cell is often treated as an elastic (or viscoelastic) body, and 

the forces associated with the contraction (traction forces) are 

expressed by the traction tensor. This description is very 

similar to termo-elasticity.  𝑪𝒂++concentration plays the role 

of the temperature (in fact −𝑻).

Applying this idea, we arrive at a system of three equations.  



The system consists of 

1. The equation of motion of the viscoelastic body, i.e  cytoplasm with 

the filament network. The  equation of motion (linear approximation) for 

the displacement vector 𝒖(𝒕, 𝒙) must be equipped with proper

boundary conditions. Under the influence of traction forces the 

membrane is deflected. So basically, we should know the elasticity of 

the membrane. However, to estimate the forces acting on the 

membrane, one can  assume that the membrane is stiff and not 

deformed. In such a case we have simple b-dry condition:  u(R) =  0

Let us remind that if the initial position of a material point is 𝒙 and it 

position changes to ෥𝒙 then 𝒖 𝒙 = ෥𝒙 − 𝒙.



2. Relaxation equation for the traction tensor ෡𝑻 with a given equilibrium 

form ෡𝑻∗ 𝒄 .  We have ෡𝑻(𝑡, 𝒙) = ෡𝑻∗ 𝒄(𝑡, 𝒙) for very slow changes of the 

concentration  𝒄(𝒕, 𝒙).

3. The diffusion equation for calcium concentration 𝒄(𝑡, 𝒙) and nonlinear

boundary condition expressing the influx of calcium (by ion channels and ion 

pumps) caused by positive part of time derivative of traction forces acting on 

the membrane.  

In fact, the diffusion of calcium in the cell is quite a complicated process 

because of the buffers - proteins that can attach and release calcium ions. This 

can be described by a system of equations for the diffusion reaction. If we use 

one equation as here, D should be treated as the effective diffusion 

coefficient.  



Treating (idealized) cell as an Infinite cylinder we could try to solve:

(1)  𝝆
𝝏𝟐

𝝏𝒕𝟐 𝒖 −  𝝂𝟐∆ ሶ𝒖 + 𝝂𝟏 + 𝝂𝟐 𝛁𝐝𝐢𝐯 ሶ𝒖 =μ ∆ 𝒖 + 𝝁 + 𝝀 𝜵𝒅𝒊𝒗𝒖 + 𝒅𝒊𝒗 ෡𝑻(𝒄)

with b-dry condition:   𝒖 𝑡, 𝑅 = 0

(2)          
𝜕

𝜕𝑡
෡𝑻 = 𝛽[෡𝑻∗ 𝒄 − ෡𝑻],     where  ෡𝑻∗ 𝒄 - known (e.g. linear) 

(3)          
𝜕

𝜕𝑡
𝑐 = 𝐷∆𝑐 inside the cell

𝐷
𝜕

𝜕𝑟
𝑐 𝑡, 𝑅, 𝑧 =  𝑄

𝑑

𝑑𝑡
𝜎𝑟𝑟 (𝑡, 𝑅, 𝑧)

+
− 𝑝(𝑢) on the b-dry

suplied by initial conditions for 𝑢, 𝑇, 𝑐 .



Comment. The first equation, the equation of motion can be 

simplified by omitting the dynamical term 𝝆
𝝏𝟐

𝝏𝒕𝟐 𝒖 and possibly the 

viscouse terms 𝝂𝟐∆ ሶ𝒖 + 𝝂𝟏 + 𝝂𝟐 𝛁𝐝𝐢𝐯 ሶ𝒖 .

Then one obtains an eliptic system for the displacement 𝒖(𝑡, 𝑥). 

In principle it is possible to solve the above system numerically. For 

reasons discussed below, we decided on a slightly roundabout but 

simpler route.       



In presented here equations we assumed the medium to be isotropic. 

However, the anisotropy, can be important as it can greatly influence the 

speed of waves. Indeed, the network structure - the way the filaments are 

connected, affects the transfer of forces acting on the membrane through 

the interconnected fibers.

Depending on the way the filament network is interconnected, calcium 

channels may be opened in places more or less distant from the front of the 

wave of increased calcium concentration. Thus, we should solve systems

with different degree of anisotropy. 

To avoid all these complications, we chose a slightly different modeling 

route.



Intermediate way, Here ෡𝑻 = 𝜏I

Instead, we chose the intermediate solution. By solving the equations
of mechanical equilibrium,

μ ∆ 𝒖 + 𝝁 + 𝝀 𝜵𝒅𝒊𝒗𝒖 + 𝒅𝒊𝒗 ෡𝑻 𝒄 = 𝟎

assuming that the solution is independent of the axial variable, and for 
isotropic traction tensor ෡𝑻 = 𝜏𝐈 we can estimate the forces acting on 
the membrane as

𝜎𝑟𝑟 𝑡, 𝑅 =
1

𝜋𝑅2
න

0

𝑅

𝜏 𝑡, 𝑟 2𝜋𝑟𝑑𝑟



Since the Ca influx is proportional to time derivative of 𝜎𝑟𝑟

𝜕

𝜕𝑡
𝜎𝑟𝑟 𝑡, 𝑅 =

1

𝜋𝑅2 0׬

𝑅 𝜕

𝜕𝑡
𝜏 𝑡, 𝑟 2𝜋𝑟𝑑𝑟

we have
𝜕

𝜕𝑡
𝜏 = 𝛽 [𝜏∗ 𝑐 − 𝜏] , so

𝜕

𝜕𝑡
𝜎𝑟𝑟 𝑡, 𝑅 =

𝛽

𝜋𝑅2
න

0

𝑅

[𝜏∗ 𝑐 − 𝜏] 2𝜋𝑟𝑑𝑟



Smearing the force (interconnected filaments)

The previous step do not include transmition of force from one point to 
another by interconnected filaments. To take this into account we introduce a 
kind of smearing out of forces acting on the membrane through an averaging 
integral operator (convolution wit 𝐾𝜎) 

𝐷
𝜕

𝜕𝑟
𝑐 𝑡, 𝑅. 𝑧 = 𝐴 𝐾𝜎 ∗

2

𝑅2  න

0

𝑅

𝜏∗(𝑐 𝑡, 𝑟, 𝑧 ) − 𝜏 𝑡, 𝑟, 𝑧 𝑟𝑑𝑟

+

− 𝑝(𝑐)

where in numerical simmulations we took 𝐾𝜎 =
1

𝜎 2𝜋
exp(−

𝑧2

2𝜎2).    

This non-local mechanism embodies the idea of ​​L. Jaffe



actin network
                                                                                                                             
 

  Schematic  view of simplest model of actin fibers network in 2D.
When Ca concentration increases the fibers contract pulling

the membrane.  This arrangment of fibers corresponds to completely    
anisotropic case ( no myosin bridges between filaments). The force is not 
transfered between filaments – local mechanism.

𝐾~ 𝛿(𝑥)

membrane



Nonlocal 
mechanism of 
propagation

 

                                                                   membrane 

                                                                                                                                                                                                                                                                                                                                                                   

                                                                                                          actin network 

 

 

 

                                                                                                   cortex                                                                                        
• This mechanizm is nonlocal. The filaments 

are  interconnected by myosin bridges. 
Their number grows with Ca concentration.  

• The force that appears in one place is
transferred by the tangled fibers to other
neighboring ones.  Thus the channels are 
openned ahead of the propagating wave of 
𝐶𝑎++ concentration. This accelerates the 
wave propagation.  



Numerical computations

All numerical computations were done for the diffusion coefficient D=1. 
The source term:

[𝑲 𝟎, 𝟐𝟓𝒖 + 𝟎. 𝟏𝒖𝟐 − 𝝉 ]+−𝒑(𝒖) where 

𝒑 𝒖 = 𝒖 𝒖𝟐 − 𝟏. 𝟏𝟓𝒖 + 𝟎. 𝟓

For K=id and 𝜏 ≡ 0 the source term takes form    

𝑢 𝑢 − 0,25)(𝑢 − 1

Eq.      
𝜕

𝜕𝑡
𝑢 =

𝜕2

𝜕𝑥2  𝑢 − 𝑢 𝑢 − 0,25)(𝑢 − 1 has heteroclinic solutions

(travelling fronts) of the form



Source term for 𝜏 = 0
For 𝜏 = 0 we must have bistable case! 



3D  NUMERICAL SIMMULATIONS l

Assuming cylindical symmetry we solved numerically the system :

𝝏

𝝏𝒕
𝒄 = 𝑫∆𝒄   in Ω , 

𝑫 𝒏 ∙ 𝛁𝐜 = 𝑨{ 𝑲𝝈
𝛛

𝛛𝐭
𝛕

+
− 𝒑 𝒄 } on 𝜕Ω, 

𝛛

𝛛𝐭
𝛕 = 𝛃[𝛕∗ 𝐜 − 𝛕] in Ω



Numerically determined travelling homoclinic waves (moving to the right)

𝐶𝑎++ concentration (for different 𝜎) 



Numerical computations

All numerical computations were done for the diffusion coefficient D=1. 
The source term:

[𝑲 𝟎, 𝟐𝟓𝒖 + 𝟎. 𝟏𝒖𝟐 − 𝝉 ]+−𝒑(𝒖) where 

𝒑 𝒖 = 𝒖 𝒖𝟐 − 𝟏. 𝟏𝟓𝒖 + 𝟎. 𝟓

For K=id and 𝜏 ≡ 0 the source term takes form    

𝑢 𝑢 − 0,25)(𝑢 − 1

Eq.      
𝜕

𝜕𝑡
𝑢 =

𝜕2

𝜕𝑥2  𝑢 − 𝑢 𝑢 − 0,25)(𝑢 − 1 has heteroclinic solutions

(travelling fronts) of the form



Averaging  our  diffusion equation with respect to r : 

and similarly, the equation for the traction, we arrive at  

the one dimensional problem

𝝏

𝝏𝒕
𝒖 = 𝑫

𝝏𝟐

𝝏𝒙𝟐  𝒖 +
𝟐𝑨

𝑹
 𝛃𝐊𝟐 ∗ [𝛕∗ 𝐮 − 𝛕]  − 𝒑(𝒖)     

𝛛

𝛛𝐭
𝛕 = 𝛃[𝛕∗ 𝐮 − 𝛕]   

where

 𝑢(𝑡, 𝑥) =
1

𝜋𝑅2 0׬ 

𝑅
2𝜋𝑟 𝑐 𝑡, 𝑥, 𝑟 𝑑𝑟 

ONE DIMENSIONAL APPROXIMATION



Waves profiles at r=R, (R=2)  for different β: (a) β=0,1𝜷𝟎, (b) β=0,2𝜷𝟎,  (c) β=0,3𝜷𝟎  
etc.   where the reference 𝜷 is 𝜷𝟎 = 𝟎, 𝟎𝟏𝟐𝟎𝟓.  On the left for σ=10. On the right 
for σ=20.



On the left: wave profiles and wave velocities in 1-D simulations for A=1, and (a) 𝜎=40, (b) 𝜎=20, (c) 
𝜎=10, (d) 𝜎=0  and for 𝛽=0.001205 (=0.1 𝛽0). On the right: 3D simulations for A=1, R=2, and  β=0,001205  
and the same values of σ. Propagation velocities with respect to the heteroclinic case ( 𝑣0 = 2/4)  are: 
(a)13.7,(b) 6.96, (c) 3.63 , (d) 0.978 



Fitzhugh –Nagumo type of approximation

The influence of the variance 𝜎 of 𝐾𝜎  on the wave velocity. 

Expanding :

𝐊𝟐 ∗ 𝛕∗ 𝐮 we arrive to easier, local system of equations

𝝏

𝝏𝒕
𝒘 =

𝝏𝟐

𝝏𝒛𝟐 𝑫𝒘 +
𝑨

𝑹
𝝈𝟐 𝝉∗ 𝒘 +

𝟐𝑨

𝑹
𝝉∗ 𝒘 − 𝝉 +  − 𝒑(𝒘) 

𝝏

𝝏𝒕
𝝉 = 𝜷[𝝉∗ 𝒘 − 𝝉]

with larger diffusivity. The wave velocity is ~ 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦



F-N model is simple and gives good wave speed.

This F-N model we studied (with J. Napiokowska) for a particular shape
of the source term  step like 𝝉∗ 𝒘 and linear 𝒑(𝒘).

• In this case the existence of homoclinic waves is proven for some
range of 𝛽 < 𝛽0 , 

• For 𝛽 > 𝛽0 there are no homoclinic waves.

• There are two solutions for given 𝛽 < 𝛽0. Narrow one unstable and 
wider which is stable. 



Conclusions

1. It seems that the idea of F. Jaffe works 

a) Wave velocity grows as 𝜎 . 𝜎 – range of mechanical 

interactions due to actin-myosin fiber network.  

b) The concentration of Ca in extracellular space is 

100 times bigger than in endoplasmic reticulum, so 

flux through ion channel can be quite high. Again,

wave velocity grows as 𝑆𝑜𝑢𝑟𝑐𝑒

2.  1-D approximation seems to work quite well ! It 

well reproduces the 3-D simulations.   
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