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ABSTRACT

The study of structurally disordered dispersed patterns and the hidden relationships between the geometric
random characteristics of composites and their physical properties Is a common focus In various branches of
mechanics, mathematics, and physics. Our objective Is to address the challenge of providing a constructive
guantitative description of the chaos/regularity, e.g., dislocations, exhibited by composites. The mathematical
results are based on the generalized alternating method of Schwarz and the Riemann-Hilbert problem for a
multiply connected domain.

The current state of the art of the theory of composites is outlined. We discuss the notions of model and empirical
method used In the framework of material sciences, highlighting the discrepancies when various engineering
approaches overlook asymptotic precision and conditionally convergent series.

We propose the computationally effective method of structural sums coinciding with the lattice sums for
regular composites. In particular, the results yield new high-order analytical exact and asymptotic justified
formulas for the effective conductivity and elasticity tensors of dispersed composites with Isotropic phases.
We specifically investigate the macroscopic properties of dispersed regular and random composites with a
gualitative analysis of the degree of randomness, anisotropy, and clustering.




2D STATIONARY PROBLEM

B L R
6%.?,2 OOC OQ ,

20 O @0 1O @0

Microstructure of TIC—FeCr composite Oﬁ@%g(}j . .... & - @@@

Py

The conception of homogenization:

a) Physical: we have two-phase material with different properties of components. To determine
averaged properties.

b) Mathematical: we have PDE with highly oscillating coefficients. To determine PDE (its
coefficients) when the periodicity cell shrinks to a point (€ - 0) & the domain Is extended to
infinity . (Bakhvalov, Lions, (1972) ...)



NUMERICAL APPROACH (FEM ETC.)

20x20 discretization cells (pixels) of
two-phase composites with a random
assignment to each cell.

The number of variants 2400

The number of atoms In observable
Universe 108°

The ratio 2499/10%°% ~ 1049,

Dykhne's formula for a random
isotropic checkerboard o.=+/0,0,
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with given constants & and &,

The main mathematical result iIs an
extension of the Poisson’s formula for a
disk to a multiply connected domain.
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R -LINEAR PROBLEMS FOR DOUBLY PERIODIC
DOMAIN; ANTI-PLANE SHEAR (CONDUCTIVITY)
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ABOUT MATHEMATICAL MODELING
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This textbook Is intended for readers who want to understand the main
principles of Modeling and Simulations In settings that are important for
the applications without using profound mathematical tools required by
most advanced texts. It can be useful for beginning applied
mathematicians and engineers who use Mathematical Modeling. Our
goal Is to outline Mathematical Modeling using simple mathematical
description that make it accessible for first- and second-year students.

2018 open access Chapter 1 (in preparation the secon edition 2024)

Mathematical models related to ODE are perfectly
developed [J. Banasiak, 2013; J. Banasiak, M.,
Lachowicz 2014, ...].

Mathematical modeling in modern engineering theory
of composites frequently presented In a different way.



[ ] VARIOUS .MODELS” OF COMPOSITES

Let r(1 £ a) denote the semi-axes of ellipses (0 < a <1 and r > 0) of conductivity A embedded in the host of
the normalized unit conductivity. Introduce the contrast parameter p = (A-1) / (A+1) and the concentration v
of ellipses. The components of the effective conductivity tensor

Al A
A= ("
(l‘z lzz)

aligned with the coordinate axes ellipses were estimated by Galeener
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A~ 14 i , Ap =1 id
I —o(v+a) I —o(v—a)
and by Cohen
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] EXTENDING CLUSTER OF INCLUSIONS
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MAXWELL'S APPROACH

Consider the boundary value problem with a finite
Q O number of circular of radius r inclusions on plane

o ﬂuk

Q Q Q = U, ﬂ_ll=ﬂ_ﬁ onl,, k=12 .../,

equivalent to the R-linear problem

Q pt() =alt) ¢~ (1) + b(t) ¢~ () +c(t), tel. R)

Q a(t) = 2= b(t) ==, c(t) = t.

The dipole moment (capacity) of the cluster Is the coefficient c_,
IN the expansion of the complex potential at Infinity n

b (z) =cotc_1z ™+ c_,z 7%+ ...




MAXWELL'S APPROACH

M® =0 (1406 ) + 0G4 where =33 —L
{ﬂk _Jm}z
k=1 m#k
Maxwell's homogenization suggests that the dipole
moment of the cluster Is equal to the dipole moment of the

homogenized medium, where f Is the concentration of
clusters.

Calculation of the dipole moment

{ﬂ} s

{H)_
JM {ﬂ}_l_ﬂ.




[ ] SQUARE ARRAY OF DISKS

QOOO0O0O e sum e{™ in the limit case n —» o becomes the

O O O O O lattice sum
Q Q O O Q S, = — ~ _ where mq, m, run over

Zml,mz (mq+imy)?’

O OO0 O Integers except m;=m, = 0.
OO O O Q  This series is conditionally convergent.

(OO O OO The same holds for e, as n - .

This Is the source of various ,models” in the theory of
composites, e.g., Mori-Tanaka method (about 10 000
citations).




SELF-CONSISTENT CONCEPT

lllustration of the
methodologically wrong and
correct self-consistent concepts:
a finite collection (a) embedded
INn the Infinite medium and
bounded by the dashed circle
does not represent a composite
(b) and does represent dilute
clusters (c).
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LATTICE SUMS

S = Z’ (Mm@ +im@n)™", m=273,....

my Jms
Eisenstein summation method:

e . . — wd 2 (th
i im tim Y Y W S= o.° (?)

niy ma=—Ms mj=—M,

Rayleigh (1892) calculated S, = & for the square array
by the Eisenstein summation method (1847) but referred
only to Welerstrass (1856-1864).




EISENSTEIN FUNCTION

Welerstrass' functions (1864)

Eisenstein’s functions (1847):

Ei(z) = €(z) =82z, Ea(z) = p(2) + 52




SOCHOCKI'S FORMULAS ON TORUS

Sochocki’s formulas:
Ot (1) = Sh(t)+ 5= [, h(T)E (T —1)dT,

O~ (t) = —5h(t)+ 5= [ h(T)Ei(T—1t)dT, 1 € L.

Cauchy-type Integral:

D7) = /h(r E\(t—z)dr, z€ DY UD

2Ti




R -LINEAR PROBLEMS FOR DOUBLY PERIODIC

DOMAIN; ANTI-PLANE SHEAR (CONDUCTIVITY)

O(t)=@(t) —prp(t), tely (k=1,2,....N]

Let the contrast parameter p = Z—: be the same for all inclusions

(two-phase composite).

Apply Cauchy-type integral over L to the boundary value problem.
Obtain the system of integral equations:

N
AEEDY %fmm(r}ﬂlu—z}dwﬂck, zeD, (k=12,....N)

m=1 L,




GENERAL SCHWARZ'S SCHEME FOR

DISPERSED COMPOSITES

up = PAUu, +p Eﬂmum-l-uﬂ} mbD,. k=12,....N
m=k

The method of successive approximations leads to the contrast expansion

ug =ug+ P Yi, Ao+ P> Li b, Aty Ao + P Yk, ko Ak Ak Ay i + - .

The term 4-3-2-3-1.: D,




STRUCTURAL SUMS

Definition
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Examples €2

N N
€2) w5 2 2 X Ealaky —a)Ex(ak, —ax,)
ko=1 k=1 k=1

The set of complex values completely determines a composite

& ={er}, & = {en}, & = {e33,er0}, &4 = {eaa,e332,€233,€2022}, .. ..

2-point 3-point
correlation correlation



STRUCTURAL SUMS (E-SUMS)

Decomposition series for the effective permittivity (may be complex value) /
conductivity / shear modulus (physical constants, geometry, concentration):

BJ_:I+2Qf(I+A1f+A2f2+-“),

@ 0 1

Al = €2, Ay = 322, Az = 3 [—292333 + 936222] :
Ay = % [3Q2344 ~20°(e332+€233) + Q462222] ,
As = % [-4Q2355 + 293 (€442 +2€343 +€244)—
-2Q4 (€3322 +€2332 +€2233) + Q5¢22222] ;
Ag = % [5.92366 — 393 (€255 +3€354)+

+0" (6Re €244 + 12Re €343 +4€3333 + 3€2442) —

5 6
—407 (€22233 +€22332) + 0 6222222] ;




STRUCTURAL SUMS (E-SUMS)

A7

1
) 3

= [ —607e77+ 1007 (€266 +4€365 + 3€464)
4

—20" ( 2e2255 + 6€2354 + 6€2453 + 2€2552 + 3€3344 + 9€3443

+6€3542 +3€4433 + 6€4532 +2€5522)
5

+20” ( 3Re e22244 + 6Re €22343 + 3Re €22442 +4Re €23333 + 3€23432

6 7
+2€33233) — 20° (2€222033 +2€222332 + €223322) +0' €220002 ] -

92

3 [7egs + 0°Re (6€244222 + 8€333300 + 6€442022) + 16Q2Re €5533
—20 (€2223322 +2€2233202 +4€2332000 +4€3322022) + 0" (6€222343
+0€223432 + 3€224422 +4€233233 +4€233332 + 0€234322 +4€332233
+4€332332 +6€343222) — 0° (12€22354 + 12€22453 +60°€23344 + 18€23443
+12€23547 +6€24433 + 12€24532 + 8€25520 + 12€33343 + 6€33442 + 12€34333
+18e34432 + 12€35422 + 12€44233 + 6€44332 + 12€45322 + 8€55222)

+0% (202365 + 30€2464 +20€2563 + S€2662 + 36€3454 +48€3553 +20€3652
+9€4444 +36€4543 + 30€4642 + 205632 + 10€p622)

—0(30e376 + 60 0e475 + 600574 +300eg73 + 120€772) + 0°€22202022 ]



SHEAR MODULUS OF I\/IACROSCOPICALLY’
[ ] ISOTROPIC EASTIC COMPOSITES (P.DRYGAS)
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HASHIN-SHTRIKMAN BOUNDS

Hashin-Shtrikman bounds for two-phase composites with
the permittivity £, > £, . The bounds are based on the 2-
point corellation functions.

L, e1(1+f)+ex(l1-f) U, e1f+&2(2-f)
- E.E:](l—f)+.€2(1+f)’ 2 ]S](Z—f)+£?gf.




] BRUGGEMAN’S EQUATION (10 000 CITATIONS

E1 — Ep I - —&e _
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Hashin-Shtrikman bounds (dashed) and Bruggeman's
formula (solid) for €, = 4
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] BRUGGEMAN’S EQUATION (10 000 CITATIONS

Hashin-Shtrikman bounds (dashed) and Bruggeman's
formula (solid) for €, = 10 000
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STRUCTURAL SUMS

"Theorem":
RVE (representative volume element) and the macroscopic constants are deter-
mined by means of the geometry. The e-sums completely describe the geometry.
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Figure 4.4 From 100 inclusions in large cell to 12 inclusions per representative cell by instant
computer computations.




STRUCTURAL SUMS

Try to guess which structure Is isotropic.

£y =T, isotropy up to O(f3)

Bryy = 27085, — T isotropy up to O(f4)



STRUCTURAL SUMS
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] THEORETICAL SIMULATIONS BY MACHINE LEARNING
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Figure 5.2: Values of —eg3 against egg for samples from considered
distributions. =~ The fitted curves are 3.118log(0.061x + 1) (identical
radii, crosses), 2.5261og(0.034x + 1) (normally distributed radii, triangles),
1.98710g(0.028x + 1) (uniformly distributed radii, disks).




] ANALYTICAL REPRESENTATIVE VOLUME ELEMENT

 New aRVE theory Is proposed to classify composites. Hill's theory can
be considered rather as conditions to an RVE

 This aRVE theory Is based on the high order approximation formulas
for the effective properties of composites

 Fast formulae and algorithms are used not reached by standard
computations. The number of treated Inclusions per cell can be
1000000 while up to 100 Is used In standard approaches.
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