Bifurcation diagrams of one-dimensional nonlocal elliptic equations

Tetsutaro SHIBATA

Hiroshima University, Japan

December 7, 2022 International Meetings on Differential Equations and Their Applications Institute of Mathematics of the Lodz University of Technology

Outline

(1) Introduction
(2) Proof of Theorem 1.1
(3) Proof of Theorem 1.2
(4) Proof of Theorem 1.3
(5) Proof of Theorem 1.4

Introduction

We consider the following one-dimensional nonlocal elliptic equation

$$
\left\{\begin{array}{l}
-\left(\int_{0}^{1}|u(x)|^{p} d x+b\right)^{q} u^{\prime \prime}(x)=\lambda u(x)^{p}, x \in I:=(0,1) \tag{1.1}\\
u(x)>0, x \in I \\
u(0)=u(1)=0
\end{array}\right.
$$

where b, p, q are given constants satisfying

$$
\begin{equation*}
b \geq 0, \quad p \geq 1, \quad q>1-\frac{1}{p} \tag{1.2}
\end{equation*}
$$

and $\lambda>0$ is a bifurcation parameter.

Introduction

Problem (1.1) is the model equation of the following nonlocal problem considered in Goodrich [10]:

$$
\left\{\begin{array}{l}
-a\left(\int_{0}^{1}|u(x)|^{p} d x\right) u^{\prime \prime}(x)=\lambda f(x, u(x)), x \in I \tag{1.3}\\
u(x)>0, x \in I \\
u(0)=u(1)=0
\end{array}\right.
$$

where $a=a(w)$ is a real-valued continuous function. Let

$$
\|u\|_{p}:=\left(\int_{0}^{1}|u(x)|^{p} d x\right)^{1 / p}
$$

If we put $a\left(\|u\|_{p}^{p}\right)=\left(\|u\|_{p}^{p}+b\right)^{q}$ and $f(x, u)=u^{p}$ in (1.3), then we obtain (1.1).

Introduction

Nonlocal elliptic problems as (1.3) have been studied intensively by many authors, since they arise in various physical models. We refer to
[4] F. J. S. A. Corrêa and D. C. de Morais Filho (2005),
[5] R. Filippucci, R. Ghiselli Ricci and P. Pucci (1994),
[6] R. Filippucci and R. Ghiselli Ricci (1994), [7] R. Filippucci (2007),
[10] C.S. Goodrich (2021),
[11,12] A.A. Lacey (1995),
[14] R. Stańczy (2001).
In particular, $[5,6]$ dealt with the existence of nodal solutions with respect to certain parameter for m-Laplacian case as well as mean curvature equations. In R. Filippucci and R. Ghiselli Ricci [6], a symmetric setting was taken under consideration, and the mean curvature case was considered in R. Filippucci [7].

Purpose

The purpose of this paper is to obtain the global and asymptotic behaviors of bifurcation curves $\lambda=\lambda(\alpha)$ and u_{λ} as $\lambda \rightarrow \infty$ by focusing on the typical nonlocal problem (1.1). Here, u_{λ} is a solution of (1.1) and $\alpha:=\alpha_{\lambda}=\left\|u_{\lambda}\right\|_{\infty}$ for given $\lambda>0$.
To state our results, we prepare the following notation. For $p>1$, let

$$
\left\{\begin{array}{l}
-W^{\prime \prime}(x)=W(x)^{p}, \quad x \in I \tag{1.4}\\
W(x)>0, \quad x \in I \\
W(0)=W(1)=0
\end{array}\right.
$$

We know from B. Gidas, W. M. Ni and L. Nirenberg [9, (1979)] that there exists a unique solution $W_{p}(x)$ of (1.4).

Theorem 1.1: the case $b=0$

Theorem 1.1. Let $\underline{b=0}$ in (1.1). Then there exists a unique solution u_{λ} of (1.1) for any given $\lambda>0$. Furthermore, the following formulas hold:
(i) Assume that $\underline{p>1}$. Then

$$
\begin{aligned}
\lambda= & 2^{q+1}(p+1)^{1-q} L_{p}^{2-q} \alpha^{p q-p+1} \\
u_{\lambda}(x)= & \lambda^{1 /(p q-p+1)} \\
& \times\left\{\left(2^{(2 p-1) /(p-1)}(p+1)^{1 /(p-1)} L_{p}^{(p+1) /(p-1)}\right\}^{-q /(p q-p+1)} W_{p}(x)\right.
\end{aligned}
$$

where

$$
\begin{equation*}
L_{p}:=\int_{0}^{1} \frac{1}{\sqrt{1-s^{p+1}}} d s \tag{1.7}
\end{equation*}
$$

(ii) Assume that $p=1$. Let $u_{\lambda}(x):=\alpha \sin \pi x$ be the solution of (1.1), where $\alpha>0$ is a given constant. Then

$$
\begin{equation*}
\lambda=2^{q} \pi^{2-q} \alpha^{q} . \tag{1.8}
\end{equation*}
$$

Theorem 1.1: the case $b=0$

We note that if we put $p=1$ in (1.5) formally, then we obtain (1.8). By Theorem 1.1 (i) and (1.2), we obtain the following qualitative image of the graph of (1.5).

Fig. 1. The graph of $\lambda(\alpha)$

Theorem 1.2: the simple case $b>0, p=2, q=1$

We next consider the case $\underline{b>0}$. To clarify our intention, we start from the simplest case $p=2$ and $q=1$. For $p>1$, we have

$$
\begin{align*}
\left\|W_{p}\right\|_{p} & =2^{(2 p-1) /(p(p-1))}(p+1)^{1 /(p(p-1))} L_{p}^{(p+1) /(p(p-1))} \tag{1.9}\\
\left\|W_{p}\right\|_{\infty} & =(2(p+1))^{1 /(p-1)} L_{p}^{2 /(p-1)} \tag{1.10}
\end{align*}
$$

We can obtain (1.9) and (1.10) by using time map argument at the end of the next Section 2.

Theorem 1.2: the simple case $b>0, p=2, q=1$

Theorem 1.2. Let $b>0, p=2, q=1$ and

$$
\begin{equation*}
\lambda_{0}:=2 b^{1 / 2}\left\|W_{2}\right\|_{2} \tag{1.11}
\end{equation*}
$$

(i) If $\underline{0<\lambda<\lambda_{0}}$, then there exists no solution of (1.1).
(ii) If $\underline{\lambda=\lambda_{0}}$, then (1.1) has a unique solution

$$
\begin{equation*}
u_{\lambda}(x)=\frac{\lambda_{0}}{2}\left\|W_{2}\right\|_{2}^{-2} W_{2}(x) \tag{1.12}
\end{equation*}
$$

(iii) If $\underline{\lambda>\lambda_{0}}$, then there exist exactly two solutions $u_{1, \lambda}, u_{2, \lambda}$ of (1.1) such that

$$
\begin{align*}
& u_{1, \lambda}(x)=\frac{\lambda\left\|W_{2}\right\|_{2}^{-1}-\sqrt{\lambda^{2}\left\|W_{2}\right\|_{2}^{-2}-4 b}}{2}\left\|W_{2}\right\|_{2}^{-1} W_{2}(x), \tag{1.13}\\
& u_{2, \lambda}(x)=\frac{\lambda\left\|W_{2}\right\|_{2}^{-1}+\sqrt{\lambda^{2}\left\|W_{2}\right\|_{2}^{-2}-4 b}}{2}\left\|W_{2}\right\|_{2}^{-1} W_{2}(x) . \tag{1.14}
\end{align*}
$$

Theorem 1.2: the simple case $b>0, p=2, q=1$

The following Fig. 2 is the qualitative image of $\alpha_{j}(\lambda):=\left\|u_{j, \lambda}\right\|_{\infty}$ $(j=1,2)$ of (1.13) and (1,14).

Fig. 2
Indeed, we see from (1.13) and (1.14) that these two curves start from $\left(\lambda_{0}, \alpha_{0}\right)\left(\alpha_{0}:=\lambda_{0}\left\|W_{2}\right\|_{2}^{-2}\left\|W_{2}\right\|_{\infty} / 2\right)$. Further, by Taylor expansion, we see that $\alpha_{1}(\lambda)=b\left\|W_{2}\right\|_{\infty} \lambda^{-1}(1+o(1))$ and $\alpha_{2}(\lambda)=\left\|W_{2}\right\|_{\infty}\left\|W_{2}\right\|_{2}^{-2} \lambda(1+o(1))$ for $\lambda \gg 1$.

Theorem 1.3: the case $b>0, p>1(p \neq 2), q=1$

For the case $p>1$ and $q=1(p \neq 2)$, it seems difficult to obtain such exact solutions u_{λ} as in (1.13)-(1.14). Therefore, we try to find the asymptotic shape of solutions u_{λ} for $\lambda \gg 1$.

Theorem 1.3. Let $p>1, b>0$ and $q=1$. Put

$$
\begin{equation*}
\lambda_{0}:=(b(p-1))^{1 / p} \frac{p}{p-1}\left\|W_{p}\right\|_{p}^{p-1} \tag{1.15}
\end{equation*}
$$

(i) If $0<\lambda<\lambda_{0}$, then there exists no solution of (1.1).
(ii) If $\lambda=\lambda_{0}$, then there exists a unique solution of (1.1).

Theorem 1.3: the case $b>0, p>1(p \neq 2), q=1$

(iii) If $\lambda>\lambda_{0}$, then there exist exactly two solutions $u_{1, \lambda}$ and $u_{2, \lambda}$ of (1.1). Moreover, for $\lambda \gg 1$,

$$
\begin{align*}
& \left\{\begin{array}{l}
\lambda:=\lambda_{1}(\alpha)=b\left\|W_{p}\right\|_{\infty}^{p-1} \alpha^{-(p-1)}\left\{1+b^{-1}\left\|W_{p}\right\|_{p}^{p}\left\|W_{p}\right\|_{\infty}^{-p} \alpha^{p}(1+o(1))\right\} \\
u_{1, \lambda}(x)=b^{1 /(p-1)} \lambda^{-1 /(p-1)}\left\{1+\frac{1}{p-1} b^{1 /(p-1)}\left\|W_{p}\right\|_{p}^{p} \lambda^{-p /(p-1)}(1+o(1))\right\}
\end{array}\right. \\
& \left\{\begin{array}{l}
\lambda:=\lambda_{2}(\alpha)=\left\|W_{p}\right\|_{p}^{p}\left\|W_{p}\right\|_{\infty}^{-1} \alpha+b\left\|W_{p}\right\|_{\infty}^{p-1} \alpha^{1-p}+o\left(\alpha^{1-p}\right), \\
u_{2, \lambda}(x)=\left\{\lambda\left\|W_{p}\right\|_{p}^{1-p}-b\left(\lambda\left\|W_{p}\right\|_{p}^{1-p}\right)^{1-p}(1+o(1))\right\}\left\|W_{p}\right\|_{p}^{-1} W_{p}(x) .
\end{array}\right.
\end{align*}
$$

Theorem 1.4: the case (1.2): $b>0, p>1, q>1-\frac{1}{p}$

Finally, we treat (1.1) under the condition (1.2).
Theorem 1.4. Assume (1.2) with $p>1, b>0$ and $\lambda \gg 1$. Then there exist exactly two solutions $u_{1, \lambda}$ and $u_{2, \lambda}$ of (1.1). Moreover, for $\lambda \gg 1$,

$$
\begin{align*}
& u_{1, \lambda}(x)=b^{q /(p-1)} \lambda^{-1 /(p-1)} \\
& \times\left\{1+\frac{q}{p-1} b^{(p q-p+1) /(p-1)}\left\|W_{p}\right\|_{p}^{p} \lambda^{-p /(p-1)}(1+o(1))\right\} W_{p}(x), \\
& u_{2, \lambda}(x)=\left\{m \lambda^{1 /(p q-p+1)}-\frac{b q m^{1-p}}{p q-p+1} \lambda^{(1-p) /(p q-p+1)}(1+o(1))\right\} \\
& \times\left\|W_{p}\right\|_{p}^{-1} W_{p}(x), \tag{1.19}
\end{align*}
$$

where $m:=\left\|W_{p}\right\|_{p}^{(1-p) /(p q-p+1)}$.

Proof of Theorem 1.1: the case $b=0$

In this section, let $b=0$ in (1.1).
Lemma 2.1. For any $\lambda>0$, (1.1) has a unique solution u_{λ}.
Proof. We apply the argument used in C. O. Alves, etal (2005) to (1.1). For a given $\lambda>0$, we consider

$$
\left\{\begin{array}{l}
-w^{\prime \prime}(x)=\lambda w(x)^{p}, \quad x \in I=(0,1) \tag{2.1}\\
w(x)>0, \quad x \in I \\
w(0)=w(1)=0
\end{array}\right.
$$

Then it is clear that

$$
\begin{equation*}
w_{\lambda}(x):=\lambda^{1 /(1-p)} W_{p}(x) \tag{2.2}
\end{equation*}
$$

is the unique solution of (2.1).

Existence

For $t>0$, we put

$$
\begin{equation*}
g(t):=t^{p q / 2}-\left\|w_{\lambda}\right\|_{p}^{1-p} t^{(p-1) / 2} \tag{2.3}
\end{equation*}
$$

Then it is known from C. O. Alves, etal (2005) [1,Theorem 2] that if $\underline{g\left(t_{\lambda}\right)=0}$, then

$$
u_{\lambda}:=\gamma w_{\lambda} \quad\left(\gamma:=t_{\lambda}^{1 / 2}\left\|w_{\lambda}\right\|_{p}^{-1}\right)
$$

satisfies (1.1). Indeed, by (2.1) and (2.3), we have

$$
\begin{align*}
& -\left(\int_{0}^{1} u_{\lambda}(x)^{p} d x\right)^{q} u_{\lambda}^{\prime \prime}(x)=-\left\|u_{\lambda}\right\|_{p}^{p q} u_{\lambda}^{\prime \prime}(x) \tag{2.4}\\
& =-\left(\left\|\gamma w_{\lambda}\right\|_{p}\right)^{p q} \gamma w_{\lambda}^{\prime \prime}(x)=t_{\lambda}^{p q / 2} \gamma \lambda w_{\lambda}(x)^{p} \\
& =\left(t_{\lambda}^{1 / 2}\left\|w_{\lambda}\right\|_{p}^{-1}\right)^{p-1} \gamma \lambda w_{\lambda}(x)^{p} \\
& =\lambda\left(\gamma w_{\lambda}(x)\right)^{p}=\lambda u_{\lambda}(x)^{p} .
\end{align*}
$$

Existence

On the other hand, assume that u_{λ} satisfies (1.1). Then we see that $u_{\lambda}=\left\|u_{\lambda}\right\|_{p}^{p q /(p-1)} w_{\lambda}$. Then we have $\left\|u_{\lambda}\right\|_{p}^{(p-1-p q) /(p-1)}=\left\|w_{\lambda}\right\|_{p}$. We put $t_{\lambda}^{1 / 2}:=\left\|u_{\lambda}\right\|_{p}=\left\|w_{\lambda}\right\|_{p}^{(1-p) /(p q-p+1)}$. Then by (2.3), we have $g\left(t_{\lambda}\right)=0$. Consequently, the solutions $\left\{t_{1, \lambda}, t_{2, \lambda}, \cdots, t_{k, \lambda}\right\}$ of $g(t)=0$ correspond to the solutions $\left\{u_{1, \lambda}, u_{2, \lambda}, \cdots, u_{k, \lambda}\right\}$. Therefore, if $g(t)=0$ has a unique soution, then (1.1) also has a unique solution. By (1.2) and (2.3), we see that

$$
\begin{equation*}
g(t)=t^{(p-1) / 2}\left(t^{(p q-p+1) / 2}-\left\|w_{\lambda}\right\|_{p}^{1-p}\right)=0 \tag{2.5}
\end{equation*}
$$

has a unique positive solution $t_{\lambda}=\left\|w_{\lambda}\right\|_{p}^{2(1-p) /(p q-p+1)}$. Thus the proof is complete.

Proof of Theorem 1.1

Proof of Theorem 1.1. (i) Let $t_{\lambda}=\left\|w_{\lambda}\right\|_{p}^{2(1-p) /(p q-p+1)}$. By Lemma 2.1 and (2.2), we have

$$
\begin{equation*}
u_{\lambda}(x)=t_{\lambda}^{1 / 2}\left\|w_{\lambda}\right\|_{p}^{-1} w_{\lambda}(x)=t_{\lambda}^{1 / 2}\left\|W_{p}\right\|_{p}^{-1} W_{p}(x) \tag{2.6}
\end{equation*}
$$

By (2.2) and (2.5), we have

$$
\begin{equation*}
t_{\lambda}=\left\|w_{\lambda}\right\|_{p}^{2(1-p) /(p q-p+1)}=\lambda^{2 /(p q-p+1)}\left\|W_{p}\right\|_{p}^{2(1-p) /(p q-p+1)} . \tag{2.7}
\end{equation*}
$$

Value of $\left\|W_{p}\right\|_{p}$. We apply the time map argument to (1.4). (cf. [13]). Since (1.4) is autonomous, we have

$$
\begin{align*}
W_{p}(x) & =W_{p}(1-x), \quad x \in[0,1 / 2] \tag{2.8}\\
W_{p}^{\prime}(x) & >0, \quad x \in[0,1 / 2) \tag{2.9}\\
\xi & :=\left\|W_{p}\right\|_{\infty}=\max _{0 \leq x \leq 1} W_{p}(x)=W_{p}(1 / 2) \tag{2.10}
\end{align*}
$$

Proof of Theorem 1.1; time map method

By (1.4), for $0 \leq x \leq 1$, we have

$$
\begin{equation*}
\left\{W_{p}^{\prime \prime}(x)+W_{p}(x)^{p}\right\} W_{p}^{\prime}(x)=0 \tag{2.11}
\end{equation*}
$$

By this and (2.10), we have

$$
\begin{align*}
& \frac{1}{2} W_{p}^{\prime}(x)^{2}+\frac{1}{p+1} W_{p}(x)^{p+1}=\mathrm{constant} \tag{2.12}\\
& =\frac{1}{p+1} W_{p}(1 / 2)^{p+1}=\frac{1}{p+1} \xi^{p+1}
\end{align*}
$$

By this and (2.9), for $0 \leq x \leq 1 / 2$, we have

$$
\begin{equation*}
W_{p}^{\prime}(x)=\sqrt{\frac{2}{p+1}\left(\xi^{p+1}-W_{p}(x)^{p+1}\right)} \tag{2.13}
\end{equation*}
$$

By this, (2.8) and putting $\theta:=W_{p}(x)$, we have

Proof of Theorem 1.1

$$
\begin{align*}
\left\|W_{p}\right\|_{p}^{p} & =2 \int_{0}^{1 / 2} W_{p}(x)^{p} d x \tag{2.14}\\
& =2 \int_{0}^{1 / 2} W_{p}(x)^{p} \frac{W_{p}^{\prime}(x)}{\sqrt{\frac{2}{p+1}\left(\xi^{p+1}-W_{p}(x)^{p+1}\right)}} d x \\
& =\sqrt{2(p+1)} \int_{0}^{\xi} \frac{\theta^{p}}{\sqrt{\xi^{p+1}-\theta^{p+1}}} d \theta \quad(\theta=\xi s) \\
& =\sqrt{2(p+1)} \xi^{(p+1) / 2} \int_{0}^{1} \frac{s^{p}}{\sqrt{1-s^{p+1}}} d s \\
& =2^{3 / 2}(p+1)^{-1 / 2} \xi^{(p+1) / 2} .
\end{align*}
$$

Proof of Theorem 1.1

By this, (2.6), and (2.7), we have

$$
\begin{equation*}
u_{\lambda}(x)=\lambda^{1 /(p q-p+1)}\left\{2^{3 / 2}(p+1)^{-1 / 2} \xi^{(p+1) / 2}\right\}^{-q /(p q-p+1)} W_{p}(x) \tag{2.15}
\end{equation*}
$$

By putting $x=1 / 2$ in (2.15), we have

$$
\begin{equation*}
\alpha=\lambda^{1 /(p q-p+1)}\left\{\left(2^{3 / 2}(p+1)^{-1 / 2} \xi^{(p+1) / 2}\right\}^{-q /(p q-p+1)} \xi\right. \tag{2.16}
\end{equation*}
$$

By (2.13), we have

$$
\begin{align*}
\frac{1}{2} & =\int_{0}^{1 / 2} 1 d x=\int_{0}^{1 / 2} \frac{W_{p}^{\prime}(x)}{\sqrt{\frac{2}{p+1}\left(\xi^{p+1}-W_{p}(x)^{p+1}\right)}} d x \tag{2.17}\\
& =\sqrt{\frac{p+1}{2}} \int_{0}^{\xi} \frac{1}{\sqrt{\xi^{p+1}-\theta^{p+1}}} d \theta \quad(\theta=\xi s) \\
& =\sqrt{\frac{p+1}{2}} \xi^{(1-p) / 2} \int_{0}^{1} \frac{1}{\sqrt{1-s^{p+1}}} d s=\sqrt{\frac{p+1}{2}} \xi^{(1-p) / 2} L_{p}
\end{align*}
$$

Proof of Theorem 1.1

By this, we have

$$
\begin{equation*}
\xi=(2(p+1))^{1 /(p-1)} L_{p}^{2 /(p-1)} . \tag{2.18}
\end{equation*}
$$

Thus, using also (2.15) and (2.16), we obtain (1.5) and (1.6).
(ii) Let $p=1$. Then by (1.1), we have

$$
\begin{equation*}
-u_{\lambda}^{\prime \prime}(x)=\frac{\lambda}{\left\|u_{\lambda}\right\|_{1}^{q}} u_{\lambda}(x)=\pi^{2} u_{\lambda}(x) \tag{2.19}
\end{equation*}
$$

Since $u_{\lambda}(x)=\alpha \sin \pi x\left(\alpha=\left\|u_{\lambda}\right\|_{\infty}\right)$, and

$$
\begin{equation*}
\left\|u_{\lambda}\right\|_{1}=\int_{0}^{1} \alpha \sin \pi x d x=\frac{2 \alpha}{\pi} \tag{2.20}
\end{equation*}
$$

By this and (2.19), we have

$$
\begin{equation*}
\lambda=\pi^{2}\left\|u_{\lambda}\right\|_{1}^{q}=2^{q} \pi^{2-q} \alpha^{q} . \tag{2.21}
\end{equation*}
$$

This implies (1.8). Thus the proof of Theorem 1.1 is complete.

$\left\|W_{p}\right\|_{p}$ and $\left\|W_{p}\right\|_{\infty}$

By (2.14) and (2.18), for $p>1$, we obtain

$$
\begin{equation*}
\left\|W_{p}\right\|_{p}=2^{(2 p-1) /(p(p-1))}(p+1)^{1 /(p(p-1))} L_{p}^{(p+1) /(p(p-1))} \tag{2.22}
\end{equation*}
$$

This implies (1.9). By (2.18), we obtain (1.10).

The Idea of the Proof of Theorems 1.2 and 1.3:

$b>0, p>1$

In this section, let $p>1$. First, we consider (1.1) under the condition (1.2). The approach to find the solutions of (1.1) is a variant of (2.3)-(2.4). Namely, we seek the solutions of (1.1) of the form

$$
\begin{equation*}
u_{\lambda}(x):=t\left\|w_{\lambda}\right\|_{p}^{-1} w_{\lambda}(x)=t\left\|W_{p}\right\|_{p}^{-1} W_{p}(x) \tag{3.1}
\end{equation*}
$$

for some $t>0$. To do this, let $M(s):=(s+b)^{q}$. If we have solutions of (1.1) of the form (3.1), then since $\left\|u_{\lambda}\right\|_{p}=t$ by (3.1), we have

$$
\begin{align*}
-M\left(\left\|u_{\lambda}\right\|_{p}^{p}\right) u_{\lambda}^{\prime \prime}(x) & =-M\left(t^{p}\right) \frac{t}{\left\|w_{\lambda}\right\|_{p}} w_{\lambda}^{\prime \prime}(x) \tag{3.2}\\
& =M\left(t^{p}\right) \frac{t}{\left\|w_{\lambda}\right\|_{p}} \lambda w_{\lambda}(x)^{p} \\
& =M\left(t^{p}\right) t^{1-p}\left\|w_{\lambda}\right\|_{p}^{p-1} \lambda u_{\lambda}(x)^{p}
\end{align*}
$$

The Idea of the Proof of Theorems 1.2 and 1.3:

$b>0, p>1$

By this, we look for t satisfying

$$
\begin{equation*}
M\left(t^{p}\right) t^{1-p}\left\|w_{\lambda}\right\|_{p}^{p-1}=1 \tag{3.3}
\end{equation*}
$$

Namely, we solve the equation

$$
\begin{equation*}
g(t):=\left(t^{p}+b\right)^{q}-\left\|w_{\lambda}\right\|_{p}^{1-p} t^{p-1}=0 . \tag{3.4}
\end{equation*}
$$

By this, we have

$$
\begin{align*}
g^{\prime}(t) & =p q\left(t^{p}+b\right)^{q-1} t^{p-1}-(p-1)\left\|w_{\lambda}\right\|_{p}^{1-p} t^{p-2} \tag{3.5}\\
& =t^{p-2}\left\{p q\left(t^{p}+b\right)^{q-1} t-(p-1)\left\|w_{\lambda}\right\|_{p}^{1-p}\right\}=: t^{p-2} \tilde{g}(t)
\end{align*}
$$

The Idea of the Proof of Theorems 1.2 and 1.3:

 $b>0, p>1$By direct calculation, we see that $\tilde{g}(t)$ is strictly increasing for $t>0$. Further, by (3.5), for $0<t \ll 1$, we have $g^{\prime}(t)<0$. Therefore, we see that there exists a unique $t_{0}>0$ such that $g^{\prime}(t)<0$ for $0<t_{0}<t, g^{\prime}\left(t_{0}\right)=0$ and $g^{\prime}(t)>0$ for $t>t_{0}$. By using (3.4) and (3.5), we find that

$$
\begin{equation*}
g\left(t_{0}\right)=\frac{\left\|w_{\lambda}\right\|_{p}^{1-p}}{p q t_{0}}\left\{-(p q-p+1) t_{0}^{p}+b(p-1)\right\} . \tag{3.6}
\end{equation*}
$$

If $g\left(t_{0}\right)<0$, then there exists exactly t_{1}, t_{2} with $0<t_{1}<t_{0}<t_{2}$ such that $g\left(t_{1}\right)=g\left(t_{2}\right)=0$. If $g\left(t_{0}\right)>0$, then (3.3) has no solutions. This idea will be also used in the next sections.

The Idea of the Proof of Theorems 1.2 and 1.3: $b>0, p>1$

```
g
\(g\)
```


Fig. 3-1. The graph of $g(t)$

Fig. 3-2. The graph of $g(t)$

The Idea of the Proof of Theorems 1.2 and 1.3: $b>0, p>1$

g

Fig. 3-3. The graph of $g(t)$

The Idea of the Proof of Theorems 1.2 and 1.3:

 $b>0, p>1$Proof of Theorem 1.2 is more simple, since t_{0} is obtained explicitly. Since $p=2, q=1$, by (3.4), we have

$$
\begin{equation*}
g(t)=t^{2}+b-\lambda\left\|W_{2}\right\|_{2}^{-1} t=0 . \tag{3.7}
\end{equation*}
$$

Then

$$
\begin{align*}
t_{1, \lambda} & =\frac{\lambda\left\|W_{2}\right\|_{2}^{-1}-\sqrt{\lambda^{2}\left\|W_{2}\right\|_{2}^{-2}-4 b}}{2}, \tag{3.8}\\
t_{2, \lambda} & =\frac{\lambda\left\|W_{2}\right\|_{2}^{-1}+\sqrt{\lambda^{2}\left\|W_{2}\right\|_{2}^{-2}-4 b}}{2} . \tag{3.9}
\end{align*}
$$

By these and (3.1), we obtain (i), (ii) and (iii). Thus, the proof is complete.

Proof of Theorems 1.3: $b>0, p>1, q=1$

In this section, let $p>1, q=1$. Since $\left\|w_{\lambda}\right\|_{p}=\lambda^{-1 /(p-1)}\left\|W_{p}\right\|_{p}$ by (2.2), we have from (3.5) that

$$
\begin{equation*}
g^{\prime}(t)=t^{p-2}\left\{p t-\lambda\left\|W_{p}\right\|^{1-p}(p-1)\right\} \tag{4.1}
\end{equation*}
$$

We put

$$
\begin{equation*}
t_{0}:=\frac{p-1}{p} \lambda\left\|W_{p}\right\|_{p}^{1-p} . \tag{4.2}
\end{equation*}
$$

Then $g^{\prime}\left(t_{0}\right)=0$. By this and (3.4), we have

$$
\begin{align*}
g\left(t_{0}\right) & =\left(\frac{p-1}{p} \lambda\left\|W_{p}\right\|_{p}^{1-p}\right)^{p}+b-\lambda\left\|W_{p}\right\|_{p}^{1-p}\left(\frac{p-1}{p} \lambda\left\|W_{p}\right\|_{p}^{1-p}\right)^{p-1} \\
& =-\frac{1}{p-1}\left(\frac{p-1}{p} \lambda\left\|W_{p}\right\|_{p}^{1-p}\right)^{p}+b \tag{4.3}
\end{align*}
$$

Proof of Theorems 1.3: $b>0, p>1, q=1$

We put

$$
\begin{equation*}
\lambda_{0}:=(b(p-1))^{1 / p} \frac{p}{p-1}\left\|W_{p}\right\|_{p}^{p-1} \tag{4.4}
\end{equation*}
$$

By this, we see that (i)-(iii) are valid, since if λ_{0} satisfies (4.4), then $g\left(t_{0}\right)=0$ by (4.3). Further, $g(0)=b>0$ and $g(t)>0$ when $t \gg 1$. We now prove (1.17). We assume that $\lambda \gg 1$. Then there exists t_{1}, t_{2} with $0<t_{1}<t_{0}<t_{2}$ which satisfy $g\left(t_{1}\right)=g\left(t_{2}\right)=0$. Since $t_{0} \rightarrow \infty$ as $\lambda \rightarrow \infty$, we see that $t_{2} \rightarrow \infty$ as $\lambda \rightarrow \infty$. Then by (3.4), we have

$$
\begin{equation*}
t_{2}=\lambda\left\|W_{p}\right\|_{p}^{1-p}+R \tag{4.5}
\end{equation*}
$$

where R is the remainder term, and $R=o(\lambda)$. By (3.4), (4.5) and Taylor expansion, we have

Proof of Theorems 1.3: $b>0, p>1, q=1$

$$
\begin{align*}
& \left(\lambda\left\|W_{p}\right\|_{p}^{1-p}\right)^{p}\left(1+\frac{R}{\lambda\left\|W_{p}\right\|_{p}^{1-p}}\right)^{p}+b \tag{4.6}\\
& -\left(\lambda\left\|W_{p}\right\|_{p}^{1-p}\right)^{p}\left(1+\frac{R}{\lambda\left\|W_{p}\right\|_{p}^{1-p}}\right)^{p-1} \\
& =\left(\lambda\left\|W_{p}\right\|_{p}^{1-p}\right)^{p}\left(1+\frac{p R}{\lambda \|\left. W_{p}\right|_{p} ^{1-p}}(1+o(1))\right)+b \\
& -\left(\lambda\left\|W_{p}\right\|_{p}^{1-p}\right)^{p}\left(1+\frac{R(p-1)}{\lambda\left\|W_{p}\right\|_{p}^{1-p}}(1+o(1))\right)=0 .
\end{align*}
$$

This implies that

Proof of Theorems 1.3: $b>0, p>1, q=1$

$$
\begin{equation*}
R=-b\left(\lambda\left\|W_{p}\right\|_{p}^{1-p}\right)^{1-p}(1+o(1)) \tag{4.7}
\end{equation*}
$$

By this, (3.1) and (4.5), for $\lambda \gg 1$, we have
$u_{2, \lambda}(x)=\left\{\lambda\left\|W_{p}\right\|_{p}^{1-p}-b\left(\lambda\left\|W_{p}\right\|_{p}^{1-p}\right)^{1-p}(1+o(1))\right\}\left\|W_{p}\right\|_{p}^{-1} W_{p}(x)(4.8)$
By putting $x=1 / 2$ in (4.8), we have

$$
\alpha=\left\{\lambda\left\|W_{p}\right\|_{p}^{1-p}-b\left(\lambda\left\|W_{p}\right\|_{p}^{1-p}\right)^{1-p}(1+o(1))\right\}\left\|W_{p}\right\|_{p}^{-1}\left\|W_{p}\right\|_{\infty}
$$

Proof of Theorems 1.3: $b>0, p>1, q=1$

By this, we obtain

$$
\begin{equation*}
\lambda=\left\|W_{p}\right\|_{p}^{p}\left\|W_{p}\right\|_{\infty}^{-1} \alpha+b\left\|W_{p}\right\|_{\infty}^{p-1} \alpha^{1-p}+o\left(\alpha^{1-p}\right) \tag{4.10}
\end{equation*}
$$

By this and (4.8), we obtain (1.17). We next prove (1.16). To do this, we consider the asymptotic behavior of t_{1} as $\lambda \rightarrow \infty$. If there exists a constant $C>0$ such that $C<t_{1}<C^{-1}$. Then by (3.3), for $\lambda \gg 1$, we have

$$
\begin{equation*}
g\left(t_{1}\right)=t_{1}^{p}+b-\lambda\left\|W_{p}\right\|_{p}^{1-p} t_{1}^{p-1}<0 . \tag{4.11}
\end{equation*}
$$

This is a contradiction, since $g\left(t_{1}\right)=0$. If $t_{1} \rightarrow \infty$ as $\lambda \rightarrow \infty$, then by (1.11), we see that $t_{1}=(1+o(1)) \lambda\left\|W_{p}\right\|_{p}^{1-p}$ and by (4.2), we have $t_{1}>t_{0}$ for $\lambda \gg 1$. This is a contradiction. Therefore, $t_{1} \rightarrow 0$ as $\lambda \rightarrow \infty$. By (3.4), we have

Proof of Theorems 1.3: $b>0, p>1, q=1$

$$
\begin{equation*}
t_{1}^{p-1}\left(\lambda\left\|W_{p}\right\|_{p}^{1-p}-t_{1}\right)=b \tag{4.12}
\end{equation*}
$$

By this and Taylor expansion, we have

$$
\begin{align*}
t_{1} & =\left(\frac{b}{\lambda\left\|W_{p}\right\|_{p}^{1-p}-t_{1}}\right)^{1 /(p-1)} \tag{4.13}\\
& =\left\|W_{p}\right\|_{p} b^{1 /(p-1)} \lambda^{-1 /(p-1)}\left(\frac{1}{1-t_{1} \lambda^{-1}\left\|W_{p}\right\|_{p}^{p-1}}\right)^{1 /(p-1)} \\
& =\left\|W_{p}\right\|_{p} b^{1 /(p-1)} \lambda^{-1 /(p-1)}\left(1+\frac{1}{p-1} \frac{t_{1}}{\lambda\left\|W_{p}\right\|_{p}^{1-p}}(1+o(1))\right)
\end{align*}
$$

By this and (3.1), we have

Proof of Theorems 1.3: $b>0, p>1, q=1$

$$
\begin{align*}
u_{1, \lambda}(x)= & b^{1 /(p-1)} \lambda^{-1 /(p-1)} \tag{4.14}\\
& \times\left(1+\frac{1}{p-1} \frac{b^{1 /(p-1)}\left\|W_{p}\right\|_{p}^{p}}{\lambda^{p /(p-1)}}(1+o(1))\right) W_{p}(x)
\end{align*}
$$

By this, we obtain

$$
\begin{equation*}
\alpha=b^{1 /(p-1)} \lambda^{-1 /(p-1)}\left(1+\frac{1}{p-1} \frac{b^{1 /(p-1)}\left\|W_{p}\right\|_{p}^{p}}{\lambda^{p /(p-1)}}(1+o(1))\right) \xi \tag{4.15}
\end{equation*}
$$

By this, we have

$$
\begin{equation*}
\lambda_{1}=b\left\|W_{p}\right\|_{\infty}^{p-1} \alpha^{-(p-1)}\left\{1+b^{-1}\left\|W_{p}\right\|_{p}^{p}\left\|W_{p}\right\|_{\infty}^{-p} \alpha^{p}(1+o(1))\right\} \tag{4.16}
\end{equation*}
$$

By this and (4.14), we obtain (1.16). Thus the proof is complete.

Proof of Theorems 1.4: $b>0, p>1, \lambda \gg 1$

In this section, we assume (1.2) and $p>1, \lambda \gg 1$. We put $k:=\left((p-1)\left\|W_{p}\right\|_{p}^{1-p} / p q\right)^{1 /(p q-p+1)}$. By (3.5), we have

$$
\begin{equation*}
t_{0}=k \lambda^{1 /(p q-p+1)}(1+o(1)) \tag{5.1}
\end{equation*}
$$

By this, (1.2) and (3.4), we see that $g\left(t_{0}\right)<0$. Then there exists $0<t_{1}<t_{0}<t_{2}$ such that $g\left(t_{1}\right)=g\left(t_{2}\right)=0$. By (5.1), we see that $t_{2} \rightarrow \infty$ as $\lambda \rightarrow \infty$. We first prove (1.19). We recall that $m:=\left\|W_{p}\right\|_{p}^{(1-p) /(p q-p+1)}$. By (3.4), we have

$$
\begin{equation*}
t_{2}=m \lambda^{1 /(p q-p+1)}+r, \tag{5.2}
\end{equation*}
$$

where r is the remainder term satisfying $r=o\left(\lambda^{1 /(p q-p+1)}\right)$. It is clear that (3.4) is equivalent to

$$
\begin{equation*}
\left(t_{2}^{p}+b\right)^{q}=\lambda\left\|W_{p}\right\|_{p}^{1-p} t_{2}^{p-1} \tag{5.3}
\end{equation*}
$$

Proof of Theorems 1.4: $b>0, p>1, \lambda \gg 1$

By this, (5.2) and Taylor expansion, we have

$$
\begin{align*}
\text { r.h.s. of }(5.3)= & \lambda\left\|W_{p}\right\|_{p}^{1-p}\left(m \lambda^{1 /(p q-p+1)}+r\right)^{p-1} \tag{5.4}\\
= & \lambda\left\|W_{p}\right\|_{p}^{1-p} m^{p-1} \lambda^{(p-1) /(p q-p+1)} \\
& \times\left(1+(p-1) \frac{r}{m \lambda^{1 /(p q-p+1)}}(1+o(1)) .\right.
\end{align*}
$$

Proof of Theorems 1.4: $b>0, p>1, \lambda \gg 1$

By (5.2) and Taylor expansion, we have

$$
\begin{align*}
\text { I.h.s. of (5.3) }= & t_{2}^{p q}\left(1+\frac{b}{t_{2}^{p}}\right)^{q}=t_{2}^{p q}\left(1+\frac{b q}{t_{2}^{p}}(1+o(1))\right) \tag{5.5}\\
= & \left(m \lambda^{1 /(p q-p+1)}+r\right)^{p q} \\
& \times\left\{1+b q\left(m \lambda^{1 /(p q-p+1)}+r\right)^{-p}(1+o(1))\right\} \\
= & \left(m \lambda^{1 /(p q-p+1)}\right)^{p q}\left(1+\frac{r}{m \lambda^{1 /(p q-p+1)}}(1+o(1))\right)^{p q} \\
& \times\left\{1+b q\left(m \lambda^{1 /(p q-p+1)}\right)^{-p}(1+o(1))\right\}
\end{align*}
$$

Proof of Theorems 1.4: $b>0, p>1, \lambda \gg 1$

By the definition of m, we see that the leading terms of (5.4) and (5.5) coinside each other. By (5.4) and (5.5), we have

$$
\begin{equation*}
p q \frac{r}{m \lambda^{1 /(p q-p+1)}}+\frac{b q}{m^{p} \lambda^{p /(p q-p+1)}}=(p-1) \frac{r}{m \lambda^{1 /(p q-p+1)}} . \tag{5.6}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
r=-\frac{b q m^{1-p}}{p q-p+1} \lambda^{(1-p) /(p q-p+1)}(1+o(1)) \tag{5.7}
\end{equation*}
$$

By this and (5.2), for $\lambda \gg 1$, we have

$$
\begin{equation*}
t_{2}=\left\{m \lambda^{1 /(p q-p+1)}-\frac{b q m^{1-p}}{p q-p+1} \lambda^{(1-p) /(p q-p+1)}(1+o(1))\right\} . \tag{5.8}
\end{equation*}
$$

By this and (3.1), we have

Proof of Theorems 1.4: $b>0, p>1, \lambda \gg 1$

$$
\begin{align*}
u_{2, \lambda}(x)= & \left\{m \lambda^{1 /(p q-p+1)}-\frac{b q m^{1-p}}{p q-p+1} \lambda^{(1-p) /(p q-p+1)}(1+o(1))\right\} \\
& \left\|W_{p}\right\|_{p}^{-1} W_{p}(x) \tag{5.9}
\end{align*}
$$

This implies (1.19). We next show (1.18). We consider the asymptotic behavior of t_{1} as $\lambda \rightarrow \infty$. By the same argument as that in Section 4, we find that $t_{1} \rightarrow 0$ as $\lambda \rightarrow \infty$. By (5.3), we have

$$
\begin{equation*}
\lambda\left\|W_{p}\right\|_{p}^{1-p} t_{1}^{p-1}=b^{q}(1+o(1)) . \tag{5.10}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
t_{1}=b^{q /(p-1)}\left\|W_{p}\right\|_{p} \lambda^{-1 /(p-1)}(1+\eta) \tag{5.11}
\end{equation*}
$$

where η is the remainder term. Then by Taylor expansion and (5.11), we have

Proof of Theorems 1.4: $b>0, p>1, \lambda \gg 1$

By this, we have

$$
\eta=\frac{q}{p-1} b^{-1} t_{1}^{p}=\frac{q}{p-1} b^{(p q-p+1) /(p-1)}\left\|W_{p}\right\|_{p}^{p} \lambda^{-p /(p-1)}(1+o(1)) .(5.13)
$$

By this, (3.1) and (5.11), we have

$$
\begin{aligned}
u_{1, \lambda}(x) & =b^{q /(p-1)} \lambda^{-1 /(p-1)} \\
& \times\left\{1+\frac{q}{p-1} b^{(p q-p+1) /(p-1)}\left\|W_{p}\right\|_{p}^{p} \lambda^{-p /(p-1)}(1+o(1))\right\} W_{p}(x)
\end{aligned}
$$

This implies (1.18). Thus the proof is complete.

References

[1] C. O. Alves, F. J. S. A. Corréa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49 (2005), 85-93.
[2] D. Arcoya, T. Leonori and A. Primo, Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano theorem. Acta Appl. Math. 127 (2013), 87-104.
[3] F. J. S. A. Corrêa, On positive solutions of nonlocal and nonvariational elliptic problems, Nonlinear Anal. 59 (2004), 1147-1155.
[4] F. J. S. A. Corrêa and D. C. de Morais Filho, On a class of nonlocal elliptic problems via Galerkin method. J. Math. Anal. Appl. 310 (2005), 177-187.

References

[5] R. Filippucci, R. Ghiselli Ricci and P. Pucci, Non-existence of nodal and one-signed solutions for nonlinear variational equations. Arch. Rational Mech. Anal. 127 (1994), 255-280.
[6] R. Filippucci and R. Ghiselli Ricci, Non-existence of nodal and one-signed solutions for nonlinear variational equations with special symmetries. Arch. Rational Mech. Anal. 127 (1994), no. 3, 281-295.
[7] R. Filippucci, Entire radial solutions of elliptic systems and inequalities of the mean curvature type. J. Math. Anal. Appl. 334 (2007), 604-620.
[8] J. M. Fraile, J. López-Gómez and J. Sabina de Lis, On the global structure of the set of positive solutions of some semilinear elliptic boundary value problems, J. Differential Equations 123 (1995), 180-212.

References

[9] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 209-243.
[10] C.S. Goodrich, A topological approach to nonlocal elliptic partial differential equations on an annulus. Math. Nachr. 294 (2021), 286-309.
[11] A.A. Lacey, Thermal runaway in a non-local problem modelling Ohmic heating. I. Model derivation and some special cases. European J. Appl. Math. 6 (1995), 127-144.
[12] A.A. Lacey, Thermal runaway in a non-local problem modelling Ohmic heating. II. General proof of blow-up and asymptotics of runaway. European J. Appl. Math. 6 (1995), 201-224.

References

[13] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J. 20 (1970/1971), 1-13.
[14] R. Stańczy, Nonlocal elliptic equations, Nonlinear Anal. 47 (2001), 3579-3584.

Thank you very much

Thank You for Your Attention

 X