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Introduction

We consider the following one-dimensional nonlocal elliptic equation


−
(∫ 1

0
|u(x)|pdx+ b

)q

u′′(x) = λu(x)p, x ∈ I := (0, 1),

u(x) > 0, x ∈ I,

u(0) = u(1) = 0,

(1.1)

where b, p, q are given constants satisfying

b ≥ 0, p ≥ 1, q > 1− 1

p
(1.2)

and λ > 0 is a bifurcation parameter.
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Introduction

Problem (1.1) is the model equation of the following nonlocal problem

considered in Goodrich [10]:
−a

(∫ 1

0
|u(x)|pdx

)
u′′(x) = λf(x, u(x)), x ∈ I,

u(x) > 0, x ∈ I,

u(0) = u(1) = 0,

(1.3)

where a = a(w) is a real-valued continuous function. Let

∥u∥p :=
(∫ 1

0
|u(x)|pdx

)1/p

.

If we put a(∥u∥pp) = (∥u∥pp + b)q and f(x, u) = up in (1.3), then we obtain

(1.1).
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Introduction

Nonlocal elliptic problems as (1.3) have been studied intensively by many

authors, since they arise in various physical models. We refer to

[4] F. J. S. A. Corrêa and D. C. de Morais Filho (2005),

[5] R. Filippucci, R. Ghiselli Ricci and P. Pucci (1994),

[6] R. Filippucci and R. Ghiselli Ricci (1994), [7] R. Filippucci (2007),

[10] C.S. Goodrich (2021),

[11,12] A.A. Lacey (1995),

[14] R. Stańczy (2001).

In particular, [5,6] dealt with the existence of nodal solutions with respect

to certain parameter for m-Laplacian case as well as mean curvature

equations. In R. Filippucci and R. Ghiselli Ricci [6], a symmetric setting

was taken under consideration, and the mean curvature case was

considered in R. Filippucci [7].
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Purpose

The purpose of this paper is to obtain the global and asymptotic behaviors

of bifurcation curves λ = λ(α) and uλ as λ → ∞ by focusing on the

typical nonlocal problem (1.1). Here, uλ is a solution of (1.1) and

α := αλ = ∥uλ∥∞ for given λ > 0.

To state our results, we prepare the following notation. For p > 1, let
−W ′′(x) = W (x)p, x ∈ I,

W (x) > 0, x ∈ I,

W (0) = W (1) = 0.

(1.4)

We know from B. Gidas, W. M. Ni and L. Nirenberg [9, (1979)] that there

exists a unique solution Wp(x) of (1.4).
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Theorem 1.1: the case b = 0

Theorem 1.1. Let b = 0 in (1.1). Then there exists a unique solution uλ

of (1.1) for any given λ > 0. Furthermore, the following formulas hold:

(i) Assume that p > 1. Then

λ = 2q+1(p+ 1)1−qL2−q
p αpq−p+1, (1.5)

uλ(x) = λ1/(pq−p+1) (1.6)

×
{
(2(2p−1)/(p−1)(p+ 1)1/(p−1)L(p+1)/(p−1)

p

}−q/(pq−p+1)
Wp(x),

where

Lp :=

∫ 1

0

1√
1− sp+1

ds. (1.7)

(ii) Assume that p = 1. Let uλ(x) := α sinπx be the solution of (1.1),

where α > 0 is a given constant. Then

λ = 2qπ2−qαq. (1.8)
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Theorem 1.1: the case b = 0

We note that if we put p = 1 in (1.5) formally, then we obtain (1.8). By

Theorem 1.1 (i) and (1.2), we obtain the following qualitative image of

the graph of (1.5).

α

λ

o

Fig. 1. The graph of λ(α)

λ(α)
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Theorem 1.2: the simple case b > 0, p = 2, q = 1

We next consider the case b > 0. To clarify our intention, we start from

the simplest case p = 2 and q = 1. For p > 1, we have

∥Wp∥p = 2(2p−1)/(p(p−1))(p+ 1)1/(p(p−1))L(p+1)/(p(p−1))
p , (1.9)

∥Wp∥∞ = (2(p+ 1))1/(p−1)L2/(p−1)
p . (1.10)

We can obtain (1.9) and (1.10) by using time map argument at the end of

the next Section 2.
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Theorem 1.2: the simple case b > 0, p = 2, q = 1

Theorem 1.2. Let b > 0, p = 2, q = 1 and

λ0 := 2b1/2∥W2∥2. (1.11)

(i) If 0 < λ < λ0, then there exists no solution of (1.1).

(ii) If λ = λ0, then (1.1) has a unique solution

uλ(x) =
λ0

2
∥W2∥−2

2 W2(x). (1.12)

(iii) If λ > λ0, then there exist exactly two solutions u1,λ, u2,λ of (1.1)

such that

u1,λ(x) =
λ∥W2∥−1

2 −
√

λ2∥W2∥−2
2 − 4b

2
∥W2∥−1

2 W2(x), (1.13)

u2,λ(x) =
λ∥W2∥−1

2 +
√

λ2∥W2∥−2
2 − 4b

2
∥W2∥−1

2 W2(x). (1.14)
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Theorem 1.2: the simple case b > 0, p = 2, q = 1

The following Fig. 2 is the qualitative image of αj(λ) := ∥uj,λ∥∞
(j = 1, 2) of (1.13) and (1,14).

λ

α

O λ0

α0

Fig. 2

α1(λ)

α2(λ)

Indeed, we see from (1.13) and (1.14) that these two curves start from

(λ0, α0) (α0 := λ0∥W2∥−2
2 ∥W2∥∞/2). Further, by Taylor expansion, we

see that α1(λ) = b∥W2∥∞λ−1(1 + o(1)) and

α2(λ) = ∥W2∥∞∥W2∥−2
2 λ(1 + o(1)) for λ ≫ 1.
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Theorem 1.3: the case b > 0, p > 1(p ̸= 2), q = 1

For the case p > 1 and q = 1 (p ̸= 2), it seems difficult to obtain such

exact solutions uλ as in (1.13)–(1.14). Therefore, we try to find the

asymptotic shape of solutions uλ for λ ≫ 1.

Theorem 1.3. Let p > 1, b > 0 and q = 1. Put

λ0 := (b(p− 1))1/p
p

p− 1
∥Wp∥p−1

p . (1.15)

(i) If 0 < λ < λ0, then there exists no solution of (1.1).

(ii) If λ = λ0, then there exists a unique solution of (1.1).
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Theorem 1.3: the case b > 0, p > 1(p ̸= 2), q = 1

(iii) If λ > λ0, then there exist exactly two solutions u1,λ and u2,λ of (1.1).

Moreover, for λ ≫ 1, λ := λ1(α) = b∥Wp∥p−1
∞ α−(p−1)

{
1 + b−1∥Wp∥pp∥Wp∥−p

∞ αp(1 + o(1))
}
,

u1,λ(x) = b1/(p−1)λ−1/(p−1)
{
1 + 1

p−1b
1/(p−1)∥Wp∥ppλ−p/(p−1)(1 + o(1))

}
Wp(x),

(1.16)
λ := λ2(α) = ∥Wp∥pp∥Wp∥−1

∞ α+ b∥Wp∥p−1
∞ α1−p + o(α1−p),

u2,λ(x) =

{
λ∥Wp∥1−p

p − b
(
λ∥Wp∥1−p

p

)1−p
(1 + o(1))

}
∥Wp∥−1

p Wp(x).

(1.17)
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Theorem 1.4: the case (1.2): b > 0, p > 1, q > 1− 1
p

Finally, we treat (1.1) under the condition (1.2).

Theorem 1.4. Assume (1.2) with p > 1, b > 0 and λ ≫ 1. Then there

exist exactly two solutions u1,λ and u2,λ of (1.1). Moreover, for λ ≫ 1,

u1,λ(x) = bq/(p−1)λ−1/(p−1) (1.18)

×
{
1 +

q

p− 1
b(pq−p+1)/(p−1)∥Wp∥ppλ−p/(p−1)(1 + o(1))

}
Wp(x),

u2,λ(x) =

{
mλ1/(pq−p+1) − bqm1−p

pq − p+ 1
λ(1−p)/(pq−p+1)(1 + o(1))

}
×∥Wp∥−1

p Wp(x), (1.19)

where m := ∥Wp∥(1−p)/(pq−p+1)
p .
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Proof of Theorem 1.1: the case b = 0

In this section, let b = 0 in (1.1).

Lemma 2.1. For any λ > 0, (1.1) has a unique solution uλ.

Proof. We apply the argument used in C. O. Alves, etal (2005) to (1.1).

For a given λ > 0, we consider
−w′′(x) = λw(x)p, x ∈ I = (0, 1),

w(x) > 0, x ∈ I,

w(0) = w(1) = 0.

(2.1)

Then it is clear that

wλ(x) := λ1/(1−p)Wp(x) (2.2)

is the unique solution of (2.1).
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Existence

For t > 0, we put

g(t) := tpq/2 − ∥wλ∥1−p
p t(p−1)/2. (2.3)

Then it is known from C. O. Alves, etal (2005) [1,Theorem 2] that if

g(tλ) = 0, then

uλ := γwλ (γ := t
1/2
λ ∥wλ∥−1

p )

satisfies (1.1). Indeed, by (2.1) and (2.3), we have

−
(∫ 1

0
uλ(x)

pdx

)q

u′′λ(x) = −∥uλ∥pqp u′′λ(x) (2.4)

= −(∥γwλ∥p)pqγw′′
λ(x) = t

pq/2
λ γλwλ(x)

p

= (t
1/2
λ ∥wλ∥−1

p )p−1γλwλ(x)
p

= λ(γwλ(x))
p = λuλ(x)

p.
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Existence

On the other hand, assume that uλ satisfies (1.1). Then we see that

uλ = ∥uλ∥
pq/(p−1)
p wλ. Then we have ∥uλ∥

(p−1−pq)/(p−1)
p = ∥wλ∥p. We

put t
1/2
λ := ∥uλ∥p = ∥wλ∥

(1−p)/(pq−p+1)
p . Then by (2.3), we have

g(tλ) = 0. Consequently, the solutions {t1,λ, t2,λ, · · · , tk,λ} of g(t) = 0

correspond to the solutions {u1,λ, u2,λ, · · · , uk,λ}. Therefore, if g(t) = 0

has a unique soution, then (1.1) also has a unique solution. By (1.2) and

(2.3), we see that

g(t) = t(p−1)/2
(
t(pq−p+1)/2 − ∥wλ∥1−p

p

)
= 0 (2.5)

has a unique positive solution tλ = ∥wλ∥
2(1−p)/(pq−p+1)
p . Thus the proof is

complete.
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Proof of Theorem 1.1

Proof of Theorem 1.1. (i) Let tλ = ∥wλ∥
2(1−p)/(pq−p+1)
p . By Lemma 2.1

and (2.2), we have

uλ(x) = t
1/2
λ ∥wλ∥−1

p wλ(x) = t
1/2
λ ∥Wp∥−1

p Wp(x). (2.6)

By (2.2) and (2.5), we have

tλ = ∥wλ∥2(1−p)/(pq−p+1)
p = λ2/(pq−p+1)∥Wp∥2(1−p)/(pq−p+1)

p . (2.7)

Value of ∥Wp∥p. We apply the time map argument to (1.4). (cf. [13]).

Since (1.4) is autonomous, we have

Wp(x) = Wp(1− x), x ∈ [0, 1/2], (2.8)

W ′
p(x) > 0, x ∈ [0, 1/2), (2.9)

ξ := ∥Wp∥∞ = max
0≤x≤1

Wp(x) = Wp(1/2). (2.10)
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Proof of Theorem 1.1; time map method

By (1.4), for 0 ≤ x ≤ 1, we have

{W ′′
p (x) +Wp(x)

p}W ′
p(x) = 0. (2.11)

By this and (2.10), we have

1

2
W ′

p(x)
2 +

1

p+ 1
Wp(x)

p+1 = constant (2.12)

=
1

p+ 1
Wp(1/2)

p+1 =
1

p+ 1
ξp+1.

By this and (2.9), for 0 ≤ x ≤ 1/2, we have

W ′
p(x) =

√
2

p+ 1
(ξp+1 −Wp(x)p+1). (2.13)

By this, (2.8) and putting θ := Wp(x), we have
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Proof of Theorem 1.1

∥Wp∥pp = 2

∫ 1/2

0
Wp(x)

pdx (2.14)

= 2

∫ 1/2

0
Wp(x)

p
W ′

p(x)√
2

p+1(ξ
p+1 −Wp(x)p+1)

dx

=
√

2(p+ 1)

∫ ξ

0

θp√
ξp+1 − θp+1

dθ (θ = ξs)

=
√

2(p+ 1)ξ(p+1)/2

∫ 1

0

sp√
1− sp+1

ds

= 23/2(p+ 1)−1/2ξ(p+1)/2.
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Proof of Theorem 1.1

By this, (2.6), and (2.7), we have

uλ(x) = λ1/(pq−p+1){23/2(p+ 1)−1/2ξ(p+1)/2}−q/(pq−p+1)Wp(x). (2.15)

By putting x = 1/2 in (2.15), we have

α = λ1/(pq−p+1){(23/2(p+ 1)−1/2ξ(p+1)/2}−q/(pq−p+1)ξ. (2.16)

By (2.13), we have

1

2
=

∫ 1/2

0
1dx =

∫ 1/2

0

W ′
p(x)√

2
p+1(ξ

p+1 −Wp(x)p+1)
dx (2.17)

=

√
p+ 1

2

∫ ξ

0

1√
ξp+1 − θp+1

dθ (θ = ξs)

=

√
p+ 1

2
ξ(1−p)/2

∫ 1

0

1√
1− sp+1

ds =

√
p+ 1

2
ξ(1−p)/2Lp.
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Proof of Theorem 1.1

By this, we have

ξ = (2(p+ 1))1/(p−1)L2/(p−1)
p . (2.18)

Thus, using also (2.15) and (2.16), we obtain (1.5) and (1.6).

(ii) Let p = 1. Then by (1.1), we have

−u′′λ(x) =
λ

∥uλ∥q1
uλ(x) = π2uλ(x). (2.19)

Since uλ(x) = α sinπx (́α = ∥uλ∥∞), and

∥uλ∥1 =
∫ 1

0
α sinπxdx =

2α

π
. (2.20)

By this and (2.19), we have

λ = π2∥uλ∥q1 = 2qπ2−qαq. (2.21)

This implies (1.8). Thus the proof of Theorem 1.1 is complete.
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∥Wp∥p and ∥Wp∥∞

By (2.14) and (2.18), for p > 1, we obtain

∥Wp∥p = 2(2p−1)/(p(p−1))(p+ 1)1/(p(p−1))L(p+1)/(p(p−1))
p . (2.22)

This implies (1.9). By (2.18), we obtain (1.10).
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The Idea of the Proof of Theorems 1.2 and 1.3:
b > 0, p > 1

In this section, let p > 1. First, we consider (1.1) under the condition

(1.2). The approach to find the solutions of (1.1) is a variant of

(2.3)–(2.4). Namely, we seek the solutions of (1.1) of the form

uλ(x) := t∥wλ∥−1
p wλ(x) = t∥Wp∥−1

p Wp(x) (3.1)

for some t > 0. To do this, let M(s) := (s+ b)q. If we have solutions of

(1.1) of the form (3.1), then since ∥uλ∥p = t by (3.1), we have

−M(∥uλ∥pp)u′′λ(x) = −M(tp)
t

∥wλ∥p
w′′
λ(x) (3.2)

= M(tp)
t

∥wλ∥p
λwλ(x)

p

= M(tp)t1−p∥wλ∥p−1
p λuλ(x)

p.
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The Idea of the Proof of Theorems 1.2 and 1.3:
b > 0, p > 1

By this, we look for t satisfying

M(tp)t1−p∥wλ∥p−1
p = 1. (3.3)

Namely, we solve the equation

g(t) := (tp + b)q − ∥wλ∥1−p
p tp−1 = 0. (3.4)

By this, we have

g′(t) = pq(tp + b)q−1tp−1 − (p− 1)∥wλ∥1−p
p tp−2 (3.5)

= tp−2{pq(tp + b)q−1t− (p− 1)∥wλ∥1−p
p } =: tp−2g̃(t).
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The Idea of the Proof of Theorems 1.2 and 1.3:
b > 0, p > 1

By direct calculation, we see that g̃(t) is strictly increasing for t > 0.

Further, by (3.5), for 0 < t ≪ 1, we have g′(t) < 0. Therefore, we see that

there exists a unique t0 > 0 such that g′(t) < 0 for 0 < t0 < t, g′(t0) = 0

and g′(t) > 0 for t > t0. By using (3.4) and (3.5), we find that

g(t0) =
∥wλ∥1−p

p

pqt0
{−(pq − p+ 1)tp0 + b(p− 1)} . (3.6)

If g(t0) < 0, then there exists exactly t1, t2 with 0 < t1 < t0 < t2 such

that g(t1) = g(t2) = 0. If g(t0) > 0, then (3.3) has no solutions. This idea

will be also used in the next sections.
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The Idea of the Proof of Theorems 1.2 and 1.3:
b > 0, p > 1

t

g

o

Fig. 3-1. The graph of g(t)

g(t)
bq

t0
t

g

o

Fig. 3-2. The graph of g(t)

g(t)
bq

t0
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The Idea of the Proof of Theorems 1.2 and 1.3:
b > 0, p > 1

t

g

o

Fig. 3-3. The graph of g(t)

g(t)
bq

t0
t1 t2
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The Idea of the Proof of Theorems 1.2 and 1.3:
b > 0, p > 1

Proof of Theorem 1.2 is more simple, since t0 is obtained explicitly. Since

p = 2, q = 1, by (3.4), we have

g(t) = t2 + b− λ∥W2∥−1
2 t = 0. (3.7)

Then

t1,λ =
λ∥W2∥−1

2 −
√
λ2∥W2∥−2

2 − 4b

2
, (3.8)

t2,λ =
λ∥W2∥−1

2 +
√
λ2∥W2∥−2

2 − 4b

2
. (3.9)

By these and (3.1), we obtain (i), (ii) and (iii). Thus, the proof is

complete.
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Proof of Theorems 1.3: b > 0, p > 1, q = 1

In this section, let p > 1, q = 1. Since ∥wλ∥p = λ−1/(p−1)∥Wp∥p by (2.2),

we have from (3.5) that

g′(t) = tp−2{pt− λ∥Wp∥1−p(p− 1)}. (4.1)

We put

t0 :=
p− 1

p
λ∥Wp∥1−p

p . (4.2)

Then g′(t0) = 0. By this and (3.4), we have

g(t0) =

(
p− 1

p
λ∥Wp∥1−p

p

)p

+ b− λ∥Wp∥1−p
p

(
p− 1

p
λ∥Wp∥1−p

p

)p−1

= − 1

p− 1

(
p− 1

p
λ∥Wp∥1−p

p

)p

+ b. (4.3)
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Proof of Theorems 1.3: b > 0, p > 1, q = 1

We put

λ0 := (b(p− 1))1/p
p

p− 1
∥Wp∥p−1

p . (4.4)

By this, we see that (i)–(iii) are valid, since if λ0 satisfies (4.4), then

g(t0) = 0 by (4.3). Further, g(0) = b > 0 and g(t) > 0 when t ≫ 1.

We now prove (1.17). We assume that λ ≫ 1. Then there exists t1, t2

with 0 < t1 < t0 < t2 which satisfy g(t1) = g(t2) = 0. Since t0 → ∞ as

λ → ∞, we see that t2 → ∞ as λ → ∞. Then by (3.4), we have

t2 = λ∥Wp∥1−p
p +R, (4.5)

where R is the remainder term, and R = o(λ). By (3.4), (4.5) and Taylor

expansion, we have
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Proof of Theorems 1.3: b > 0, p > 1, q = 1

(
λ∥Wp∥1−p

p

)p(
1 +

R

λ∥Wp∥1−p
p

)p

+ b (4.6)

−
(
λ∥Wp∥1−p

p

)p(
1 +

R

λ∥Wp∥1−p
p

)p−1

=
(
λ∥Wp∥1−p

p

)p(
1 +

pR

λ∥Wp∥1−p
p

(1 + o(1))

)
+ b

−
(
λ∥Wp∥1−p

p

)p(
1 +

R(p− 1)

λ∥Wp∥1−p
p

(1 + o(1))

)
= 0.

This implies that
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Proof of Theorems 1.3: b > 0, p > 1, q = 1

R = −b
(
λ∥Wp∥1−p

p

)1−p
(1 + o(1)). (4.7)

By this, (3.1) and (4.5), for λ ≫ 1, we have

u2,λ(x) =
{
λ∥Wp∥1−p

p − b
(
λ∥Wp∥1−p

p

)1−p
(1 + o(1))

}
∥Wp∥−1

p Wp(x).(4.8)

By putting x = 1/2 in (4.8), we have

α =
{
λ∥Wp∥1−p

p − b
(
λ∥Wp∥1−p

p

)1−p
(1 + o(1))

}
∥Wp∥−1

p ∥Wp∥∞. (4.9)
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Proof of Theorems 1.3: b > 0, p > 1, q = 1

By this, we obtain

λ = ∥Wp∥pp∥Wp∥−1
∞ α+ b∥Wp∥p−1

∞ α1−p + o(α1−p). (4.10)

By this and (4.8), we obtain (1.17). We next prove (1.16). To do this, we

consider the asymptotic behavior of t1 as λ → ∞. If there exists a

constant C > 0 such that C < t1 < C−1. Then by (3.3), for λ ≫ 1, we

have

g(t1) = tp1 + b− λ∥Wp∥1−p
p tp−1

1 < 0. (4.11)

This is a contradiction, since g(t1) = 0. If t1 → ∞ as λ → ∞, then by

(1.11), we see that t1 = (1 + o(1))λ∥Wp∥1−p
p and by (4.2), we have

t1 > t0 for λ ≫ 1. This is a contradiction. Therefore, t1 → 0 as λ → ∞.

By (3.4), we have
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Proof of Theorems 1.3: b > 0, p > 1, q = 1

tp−1
1 (λ∥Wp∥1−p

p − t1) = b. (4.12)

By this and Taylor expansion, we have

t1 =

(
b

λ∥Wp∥1−p
p − t1

)1/(p−1)

(4.13)

= ∥Wp∥pb1/(p−1)λ−1/(p−1)

(
1

1− t1λ−1∥Wp∥p−1
p

)1/(p−1)

= ∥Wp∥pb1/(p−1)λ−1/(p−1)

(
1 +

1

p− 1

t1

λ∥Wp∥1−p
p

(1 + o(1))

)
.

By this and (3.1), we have
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Proof of Theorems 1.3: b > 0, p > 1, q = 1

u1,λ(x) = b1/(p−1)λ−1/(p−1) (4.14)

×

(
1 +

1

p− 1

b1/(p−1)∥Wp∥pp
λp/(p−1)

(1 + o(1))

)
Wp(x).

By this, we obtain

α = b1/(p−1)λ−1/(p−1)

(
1 +

1

p− 1

b1/(p−1)∥Wp∥pp
λp/(p−1)

(1 + o(1))

)
ξ. (4.15)

By this, we have

λ1 = b∥Wp∥p−1
∞ α−(p−1)

{
1 + b−1∥Wp∥pp∥Wp∥−p

∞ αp(1 + o(1))
}
. (4.16)

By this and (4.14), we obtain (1.16). Thus the proof is complete.
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Proof of Theorems 1.4: b > 0, p > 1, λ ≫ 1

In this section, we assume (1.2) and p > 1, λ ≫ 1. We put

k := ((p− 1)∥Wp∥1−p
p /pq)1/(pq−p+1). By (3.5), we have

t0 = kλ1/(pq−p+1)(1 + o(1)). (5.1)

By this, (1.2) and (3.4), we see that g(t0) < 0. Then there exists

0 < t1 < t0 < t2 such that g(t1) = g(t2) = 0. By (5.1), we see that

t2 → ∞ as λ → ∞. We first prove (1.19). We recall that

m := ∥Wp∥(1−p)/(pq−p+1)
p . By (3.4), we have

t2 = mλ1/(pq−p+1) + r, (5.2)

where r is the remainder term satisfying r = o(λ1/(pq−p+1)). It is clear

that (3.4) is equivalent to

(tp2 + b)q = λ∥Wp∥1−p
p tp−1

2 . (5.3)
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Proof of Theorems 1.4: b > 0, p > 1, λ ≫ 1

By this, (5.2) and Taylor expansion, we have

r.h.s. of (5.3) = λ∥Wp∥1−p
p

(
mλ1/(pq−p+1) + r

)p−1
(5.4)

= λ∥Wp∥1−p
p mp−1λ(p−1)/(pq−p+1)

×
(
1 + (p− 1)

r

mλ1/(pq−p+1)
(1 + o(1)

)
.
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Proof of Theorems 1.4: b > 0, p > 1, λ ≫ 1

By (5.2) and Taylor expansion, we have

l.h.s. of (5.3) = tpq2

(
1 +

b

tp2

)q

= tpq2

(
1 +

bq

tp2
(1 + o(1))

)
(5.5)

=
(
mλ1/(pq−p+1) + r

)pq
×
{
1 + bq(mλ1/(pq−p+1) + r)−p(1 + o(1))

}
= (mλ1/(pq−p+1))pq

(
1 +

r

mλ1/(pq−p+1)
(1 + o(1))

)pq
×
{
1 + bq(mλ1/(pq−p+1))−p(1 + o(1))

}
.
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Proof of Theorems 1.4: b > 0, p > 1, λ ≫ 1

By the definition of m, we see that the leading terms of (5.4) and (5.5)

coinside each other. By (5.4) and (5.5), we have

pq
r

mλ1/(pq−p+1)
+

bq

mpλp/(pq−p+1)
= (p− 1)

r

mλ1/(pq−p+1)
. (5.6)

This implies that

r = − bqm1−p

pq − p+ 1
λ(1−p)/(pq−p+1)(1 + o(1)). (5.7)

By this and (5.2), for λ ≫ 1, we have

t2 =

{
mλ1/(pq−p+1) − bqm1−p

pq − p+ 1
λ(1−p)/(pq−p+1)(1 + o(1))

}
. (5.8)

By this and (3.1), we have
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Proof of Theorems 1.4: b > 0, p > 1, λ ≫ 1

u2,λ(x) =

{
mλ1/(pq−p+1) − bqm1−p

pq − p+ 1
λ(1−p)/(pq−p+1)(1 + o(1))

}
∥Wp∥−1

p Wp(x). (5.9)

This implies (1.19). We next show (1.18). We consider the asymptotic

behavior of t1 as λ → ∞. By the same argument as that in Section 4, we

find that t1 → 0 as λ → ∞. By (5.3), we have

λ∥Wp∥1−p
p tp−1

1 = bq(1 + o(1)). (5.10)

This implies that

t1 = bq/(p−1)∥Wp∥pλ−1/(p−1)(1 + η), (5.11)

where η is the remainder term. Then by Taylor expansion and (5.11), we

have

l.h.s. of (5.3) = (b+ tp1)
q = bq(1 + b−1tp1)

q = bq(1 + b−1qtp1 + o(tp)),(5.12)

r.h.s. of (5.3) = bq(1 + (p− 1)η + o(η)).
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Proof of Theorems 1.4: b > 0, p > 1, λ ≫ 1

By this, we have

η =
q

p− 1
b−1tp1 =

q

p− 1
b(pq−p+1)/(p−1)∥Wp∥ppλ−p/(p−1)(1 + o(1)).(5.13)

By this, (3.1) and (5.11), we have

u1,λ(x) = bq/(p−1)λ−1/(p−1) (5.14)

×
{
1 +

q

p− 1
b(pq−p+1)/(p−1)∥Wp∥ppλ−p/(p−1)(1 + o(1))

}
Wp(x).

This implies (1.18). Thus the proof is complete.
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Thank you very much

Thank You for Your Attention

ｘ
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