


Differential equations



Consider the system

 is the growth rate of tumor cells,

 represents the conversion rate of the resulting cells to hunting predator cells, 

 is the specific loss rates of hunting predator cells, 

 represents the growth rate of resting cells, 

 is the conversion rate of resting cells to hunting predator cells, 

 is the specific loss rates of the resting cells,

 is the rate of killing of tumor cells by hunting cells,

 is the specific loss rates of tumor cells, 

 represents the rate of killing of hunting predator cells by tumor cells, 

 represents rate of killing of resting cells by tumor cells. 

Tumor growth cancer model

density of tumor cells

density of hunting predator cells

density of resulting cells



The equilibrium points of the system

are:



 where ( )

 where and  

( and )

 where and  ( )

Tumor growth cancer model



The equilibrium point is globaly asymptotically stable

Example









 118









Tumor growth cancer model
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Consider the system

 represent the susceptible humans

 represent the infected  humans

 represent the susceptible mosquitoes

 represent the infected mosquitoes

 represent the biolarvicide population

Biolarvicide vs Malaria Model



The direction of each solid line

represents movement of population along that

line within the same species. 

Example: is a removal from 

population and an addition to population.

The bi-directional dotted lines between boxes

indicates a mass-action interaction. 

The single directional dotted line indicates

increase of bacteria population. 

Biolarvicide vs Malaria Model



The equilibrium points of the system







Biolarvicide vs Malaria Model
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Difference and differential equations 
with delays and advances



Mixed differential equations (or equations with mixed arguments) occur in many problems:

 Economy, 

 Biology

 Physics

 Engineering

…

However, this class of equations has been much less studied than other classes of functional

differential equations. 

Introduction

Potential future 
events

DECISIONPast events



Why is this kind of equations a challenge?

It is well known that the solutions of these types of equations cannot be obtained in closed-form. 

It is not quite clear how to formulate an initial value problem for such equations and the existence and

uniqueness of solutions becomes a complicated issue. 

To study the oscillation of solutions of differential equations, we need to assume that there exists a

solution of such equations on the half line.
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Example 1 

Let the initial value problem with 

is a solution of this initial value problem on , which is unbounded on and cannot be

extended to 

Introduction

advanced on and delayed on 



Example 2 

Let 

1

has both an infinitely growing and a decaying solutions on , with positive and

negative, respectively.

For 

Remark: Note that for the delayed argument and , any solution of the

equation tends to zero as .
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H. Chi, J. Bell, and B. Hassard, Numerical solution of a nonlinear advance-delay-

differential Equation from nerve conduction theory, J. Math. Biol. 24 (1986), 583-601.

The equation

  

where  ,  and  , represents a model conduction in a myelinated nerve

axon in which the myelin completely insulates the membrane, so that the potential change

jumps from node to node.
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In the equation

  

we have:

 represents the transmembrane potential at a node;

 the internodal delay , represents the reciprocal of the speed of the potential wave as itpropagates

down the axon. This constant r is unknown a priori and must be found simultaneously with . 

 The constants and represent axoplasmic nodal resistivity and nodal capacity,

respectively.

 includes the model current-voltage relation.
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Using the Ohm law and the Taylor expansion around 0 the equation

  

will be transformed at

  

Using numerical methods we obtain the solutions

Introduction

This means the rise time of the

membrane potential is faster for

lower threshold potential.



The linear autonomous mixed type differential equation

where and are nonzero real numbers and each and are positive real numbers can arise in the

study of traveling waves in regions with non-local interactions initiated in:

 J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type, J. Dyn.

Diff. Eq. 11 (1999)  1-47.

 J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J.

Dyn. Diff. Eq. 11  (1999)  49-127.
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H. d’Albis, E. Augeraud-Véron, H.J. Hupkes, Stability  and  determinacy  conditions  for  mixed

-type functional differential equations, J. Math. Econom. 53 (2014) 119-129

deals with the linear mixed-type functional differential equation 

where is real valued function of bounded variation on . 

They also obtained the necessary conditions for the existence, uniqueness, and stability of a solution to

mixed type functional equations.
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Stability of solutions in differential 
equations with delays and advances



Consider the differential equation of mixed type 

where:



 and are real nonnegative continuous function on 

 and are  real valued function of bounded variation on 
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We define





We specify an initial condition of the form

where the initial function is a given continuous real-valued function on the interval 

satisfying the “consistency condition”
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By a solution of 

we mean a continuous function , which is differentiable on and satisfies,

the equation for every .

If a solution of 

is searched in the form  for ,  the characteristic equation will be      
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The solution of

is said to be stable if for every , there exists a number  such that, for any initial

function with  the solution satisfies 

,    for all  .

Otherwise, the solution is said to be unstable. 

The solution is called asymptotically stable if it is stable in the above sense and in addition there

exists a number such that, for any initial function with  , the solution satisfies

→
.
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Theorem 1 Let be a real root of the characteristic equation with the property 

and  set

Then, for every , the solution of  

satisfies

The Asymptotic Result

→



Proof (a draft)   

Define ,    for  

,    for  

( )

The Asymptotic Result

Using the fact that is a real root of the characteristic equation 



Proof (continuation)

Next, we set for  

what we have to prove is

   →

The Asymptotic Result



Proof (continuation)

∈  ,

We claim that

for  every  

Otherwise there exists a point  such that

( )

Then we have 

The Asymptotic Result



Proof (continuation)

for every 

Taking into consideration the definition of , it can be shown, by an easy induction, that  meets

→    →

The Asymptotic Result



Theorem 2 Let be a real root of the characteristic equation and

Then the solution of

satisfies

Moreover, the solution is: 

Estimation  of Solutions  and  Stability Criteria

 stable if

 asymptotically stable if  

 ustable if 



Proof (a draft)

Let

;

∈  ,

 ≤ 1 + 𝜇 𝜆 𝑁 𝜆 ; 𝜙

Estimation  of Solutions  and  Stability Criteria



Proof (continuation)

On the other hand

 stable if

 asymptotically stable if  

 ustable if 

Estimation  of Solutions  and  Stability Criteria



Lemma 1 Assume that

  

and

 

where .

Then, in the interval  the characteristic equation 

has a unique root  , and  this root satisfies the property

Some Important Lemmas 



Proof (a draft)

Define

We have 

 

 

 

  

Some Important Lemmas 



Proof (continuation)

 

 

Some Important Lemmas 



Corollary Assume that

  

and

 

where .

Then the solution of 

is:

 asymptotically stable if  

 unstable if 

Some Important Lemmas 



Lemma 2 Suppose that  and are decreasing on . Assume that

 

Then,

i. in the interval , the characteristic equation 

has no roots;

ii. in the interval  , the characteristic equation has a unique root;

is not a root of the characteristic equation;

iv. in the interval  , the characteristic equation has a unique root.

Some Important Lemmas 



Lemma 3 Suppose that  and are increasing on . Assume that 

 

Then,

i. In the interval , the characteristic equation 

has no roots;

ii. in the interval   , the characteristic equation has a unique root;

is not a root of the characteristic equation;

iv. in the interval  , the characteristic equation has a unique root.

Some Important Lemmas 



Example 1

Consider the equation 

Here the characteristic equations is

Examples

𝑟 𝜃 = −𝜃

𝑣 𝜃 = −
𝜃

4

𝑟 𝜃 = 𝜃 + 1

𝜂 𝜃 =
𝜃

4
+ 1



Example 1 (continuation)

So, .

We have 3 roots: and 

 .   

Since  is decreasing on and is increasing on , 

we get

Therefore, for  the condition of the Theorem 2 is provided. 

So, the solution is stable.

Examples



Example 2

Consider the equation 

Here the characteristic equations is

    

𝑟 𝜃 =
𝜃 + 1

2
𝑣 𝜃 =

𝜃 + 1

4
𝑟 𝜃 = −

𝜃

4
𝜂 𝜃 = −

3

2
𝜃
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Example 2 (continuation)

So,    

The only one root of is 

Then, for the condition of Theorem 2 is satisfied. 

In fact, since  is increasing on and is decreasing on ,

. .

.
 

.

So, the solution is asymptotically stable.

Examples



Example 2 (continuation)

In this example, stability analysis can be performed using Corollary of Lemma 1 without using the 

characteristic equation. Indeed,  we get 

 

 

Thus, according to the Lemma 1, it states that a real root must pass in the interval .

Finally, from the Corollary we obtain

and thus the solution is asymptotically stable.

Examples



Example 3

Consider the equation 

Here the characteristic equations is

 

 

𝑟 𝜃 = −
𝜃

2
𝑣 𝜃 = −

𝜃

4
𝑟 𝜃 = −

𝜃

2
𝜂 𝜃 = −

𝜃

4

Examples



Example 3 (continuation)

So,  .

The graph of the function shows that has two roots: and . 

Let  ,

  

So, Theorem 2, for cannot be applied. 

Let , 

  

 

Then, for the conditions of Theorem 2 are satisfied. So, the solution is asymptotically stable.

Examples
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