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2. K. Pichór, R.R., Stochastic and Dynamics 2017.
3. A. Tomski, R.R., J. Theor. Biol. 2015.
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Stochastic semigroups

(X,Σ,m) — σ-finite measure space.

D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1} – densities.

Stochastic operator (Markov operator):

P :L1 → L1 linear, P (D) ⊂ D.

Stochastic semigroup : {P (t)}t≥0,

P (t) - stochastic operators,

P (0) = Id, P (t+ s) = P (t)P (s), s, t ≥ 0,

(c) for each f ∈ L1, the function t 7→ P (t)f is

continuous.
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Standard example - Fokker-Planck equation:

(Xt)t≥0 diffusion process

f density of the distribution of X0

x 7→ u(t, x) density of the distribution of Xt.

∂u

∂t
= −

n∑
i=1

∂(bi(x)u)

∂xi
+

1

2

n∑
i,j=1

∂2(aij(x)u)

∂xi ∂xj
.

P (t)f(x) = u(t, x) a stochastic semigroup on

L1(Rn).
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Asymptotic stability

f∗ ∈ D – invariant if P (t)f∗ = f∗ for t ≥ 0.

{P (t)} – asymptotically stable if there is an

invariant density f∗ such that

lim
t→∞

‖P (t)f − f∗‖ = 0 for f ∈ D.

Sweeping (zero-type property)

{P (t)} – sweeping with respect to a family of

sets F if for B ∈ F and for f ∈ D

lim
t→∞

∫
B
P (t)f(x)m(dx) = 0.
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{P (t)} – partially integral if there exist t > 0,

k(t, x, y) ≥ 0∫
X

∫
X
k(t, x, y)m(dx)m(dy) > 0

P (t)f(y) ≥
∫
k(t, x, y)f(x)m(dx) for f ∈ D.

Theorem 1 If a partially integral stochastic

semigroup {P (t)}t≥0 has a unique invariant den-

sity f∗ and f∗ > 0 then it is asymptotically sta-

ble.
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X separable metric space, Σ = B(X),

{P (t)}t≥0 stochastic semigroup with the kernel

part k(t, x, y),

(K) for every x0 ∈ X there exist r > 0, t > 0,

and a function η ≥ 0 s.t.
∫
η dm > 0 and

k(t, x, y) ≥ η(y)1B(x0,r)
(x).
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Theorem 2 If (K) holds then:

there are a countable (possible empty) set I,

continuous positive functionals αi, i ∈ I,

and invariant densities f∗i , i ∈ I,

with pairwise disjoint supports Ai,

such that for every density f and every com-

pact set F we have

lim
t→∞

‖1AiP (t)f − αi(f)f∗i ‖ = 0,

lim
t→∞

∫
F∩Y

P (t)f(x)m(dx) = 0, Y = X \
⋃
i∈I

Ai.
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Remark. Theorem 2 has a version for stochas-

tic operators, but we replace the condition

lim
t→∞

‖1AiP (t)f − αi(f)f∗i ‖ = 0,

by asymptotic periodicity.
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Corollary 1 Assume (K) and that {P (t)}t≥0

has no invariant density. Then {P (t)}t≥0 is

sweeping with respect to compact sets.

Corollary 2 Assume (K), and
∫∞
0 P (t)f dt > 0

a.e. for f ∈ D. Then {P (t)}t≥0 is asymptoti-

cally stable or sweeping from compact sets.

Corollary 3 Let X be a compact space. As-

sume (K), and that
∫∞
0 P (t)f dt > 0 a.e. for

f ∈ D. Then {P (t)}t≥0 is asymptotically sta-

ble.
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Corollary 4 If (K) holds and there exists a

point x0 such that for each ε > 0 and each

density f we have∫
B(x0,ε)

P (t)f dt > 0 for some t ≥ 0. (1)

Then there is at most one invariant density for

this semigroup.

In particular, if X is compact then the stochas-

tic semigroup is asymptotically stable.
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Piecewise deterministic Markov processes

Davis (1984): ”PDMPs is a general family of

stochastic models covering virtually all non-

difussion applications.”

A continuous time (homogeneous) Markov pro-

cess X(t) is a PDMP if there is an increasing

sequence of random times (tn), called jumps,

such that sample paths of X(t) are defined in

a deterministic way in each interval (tn, tn+1).

Two types of jumps: the process can jump to

a new point or can change the dynamics which

defines its trajectories.
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5
Dynamical system with random jumps

4π1
π2

Process with switching dynamics
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Examples:

1. Pure jump processes: Markov chains, kan-

garoo movement.

2. Velocity jump processes: dispersal of cells

and insects, stochastic billiards.

3. Semiflows with jumps: cell cycle models,

immune systems.

4. Processes with switching dynamics: stochas-

tic gene expression.

5. Mixture of 3 and 4: neural activity model,

production of subtilin.

6. Individual-based models (agent-based m.):

structured population models,

coagulation-fragmentation process.
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Gene expression model
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7
Gene
inactive

Gene
active

pre-
mRNA mRNA Protein

Auto-regulation (possible)

degradation

q0q1

dpmRx1 dmRx2 dPx3

A Rx1 Px2

x1, x2, x3 — the number of pre-mRNA, mRNA,

protein molecules,

dpmR, dmR, dP — degradation coefficients,

A, Rx1, Px2 - velocities of transcription; con-

version of pre-mRNA to mRNA; translation.
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
x′1 = Aγ(t)− (dpmR +R)x1

x′2 = Rx1 − dmRx2

x′3 = Px2 − dPx3,

(2)

where γ(t) = 1 if a gene is active or

γ(t) = 0 if it is inactive.

We assume that the gene is activated with rate

q0(x) and inactivated with rate q1(x).

x′1 = γ(t)−x1; x′2 = α(x1−x2); x′3 = β(x2−x3)

Processes with switching dynamics (PSD)
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Markov process

(x1(t), x2(t), x3(t)) is not a Markov process.

ξt = (x1(t), x2(t), x3(t), γ(t)), t ≥ 0.

The state-space

E = R3
+ × {0,1}.

Partial density functions fi(x1, x2, x3, t):

Pr(ξt ∈ B×{i}) =
∫∫
B

fi(x1, x2, x3, t) dx1 dx2 dx3,

where B is a Borel subset of R3
+, i = 0,1.

f – density of ξ(0), P (t)f – density of ξt.
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x′(t) = bi(x(t)), (3)

i = 1, . . . , N and at point x ∈ G ⊂ Rd it can

jump from j to i state with intensity qij(x).

ξt = (x(t), i(t)), t ≥ 0, is a PDMP.

prob(ξt ∈ E × {i}) =
∫
E
u(x, i, t) dx.

Aif = −
d∑

k=1

∂(bki (x, i)f)

∂xk
.

∂u

∂t
= Mu+Au

where Au = (A1u1, . . . , ANuN), ui(x, t) = u(x, i, t)

M = [mij(x)], mij(x) = qij(x) for i 6= j

and mii(x) = −
∑
k 6=i qki(x).
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Applications to PSD – how to check (K)?

The system is governed by k flows πit and each

flow πit is the solution of a differential equation

x′ = bi(x) on G ⊂ Rd. All transition intensities

qij(x) are continuous and positive in a neigh-

bourhood of y0.

(Hörmander condition) If vectors

b2(y0)− b1(y0), . . . , bk(y0)− b1(y0),

[bi, bj](y0)1≤i,j≤k, [bi, [bj, bl]](y0)1≤i,j,l≤k, . . .

span the space Rd then (K) holds for any point

x which is connected with y0.
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Assume that G is a bounded set and there exist

x0 ∈ G and i0 ∈ I such that starting from any

state (x, i) ∈ X we are able to go arbitrarily

close to (x0, i0) by a cumulative flow and that

the Hörmander’s condition holds. Then the

semigroup {P (t)}t≥0 is asymptotically stable.

Corollary 5 The semigroup generated by the

gene expression model is asymptotically stable.
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Dynamics of antibody levels
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The immune status x is the concentration of specific

antibodies, which appear after infection with a pathogen

and remain in serum, providing protection against future

attacks of that same pathogen.

x(t) is a stochastic process whose trajectories are de-

creasing functions x(t) between subsequent infections:

x′(t) = g(x(t)), g < 0, (4)

If x is the concentration of antibodies at the moment

of infection, then Q(x) > x is the concentration of

antibodies just after clearance of infection.

The moments of infections are independent of the state

of the immune system and they are distributed according

to a Poisson process (Nt)t≥0 with rate Λ > 0.
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ξtn = Q(ξ
t−n

), ξ′t = g(ξt) for t ∈ [tn−1, tn),

The process (ξt)t≥0 satisfies the stochastic dif-

ferential equation

dξt = g(ξt) dt+ (Q(ξt)− ξt) dNt.
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If f is the density distribution of x before an

infection then PQf is the density distribution

of x just after clearance of infection:

PQf(x) =
∑
i∈Ix

f(ϕi(x))|ϕ′i(x)|, (5)

where ϕi are the right-inverse functions of Q
∣∣∣
(ai,bi)

.

P ∗Qf(x) = f(Q(x)).

The density of ξt is given by u(t)(x) and

u′(t) = Au(t),

Af(x) = −
d

dx
(g(x)f(x)) + ΛPQf(x)− Λf(x).

A is a generator of a semigroup {U(t)}t≥0.
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Results:

Theorem 3 The semigroup {U(t)}t≥0 satisfies

the Foguel alternative, i.e. it is asymptotically

stable or for every f ∈ L1[0,∞) and M > 0

lim
t→∞

∫ M
0

U(t)f(x) dx = 0.

The proof of (K) is based on the Dyson-Phillips expan-

sion.

Asymptotic stability — if we have V such that:

lim sup
x→∞

[g(x)V ′(x) + ΛV (Q(x))− ΛV (x)] < 0.

Example: if lim
x→∞ g(x) = −∞ and Q(x) ≤ x+L,

then V (x) = x is OK.
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1) a > Λ log b, g(x) ≤ −ax and Q(x) ≤ bx for

a sufficiently large x, then {U(t)}t≥0 is asymp-

totically stable.

2) If a < Λ log b, g(x) ≥ −ax and Q(x) ≥ bx

then the semigroup is sweeping from compact

sets.

Sweeping can be interpreted as asymptotic

permanent immunity of the population.
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Collisionless kinetic equations
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∂tu(t, x, v)+v·∇xu(t, x, v) = 0, (x, v) ∈ Ω×V, t ≥ 0

ψ|Γ− = H(ψ|Γ+
),

where

Γ± = {(x, v) ∈ ∂Ω× V ; ±v · n(x) > 0}

n(x) – the outward unit normal at x ∈ ∂Ω

H is a linear boundary operator relating the

outgoing and incoming fluxes.

f(x, v) = u(0, x, v), P (t)f(x, v) = u(t, x, v) stochas-

tic semigroup on L1(Ω× V ).
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Main result: Sufficient conditions for asymp-

totic stability of {P (t)}t≥0.

Steps of the proof: Existence of invariant

density, checking the semigroup is partially in-

tegral and irreducible.
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One dimensional stochastic billiard

−a ax
r rr -v �

v′

Stochastic process ξ(t) = (x(t), v(t)) with val-

ues in X = [−a, a]× ([−1,0) ∪ (0,1]).

∂u

∂t
(t, x, v) + v

∂f

∂x
(t, x, v) = 0

f -invariant density ⇒ f is a function of v and

satisfies some integral equation.

Special case: velocity after hitting a boundary

point is uniformly distributed.
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Then the semigroup is sweeping from compact

sets and, consequently, the distribution of ve-

locity converges to δ0.

It is interesting that in this case

f(t, x, v) ∼
c

|v|
(log t)−1 when t→∞

for |v| ≥ ε i x ∈ [−a, a], where c is some con-

stant.
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Thank You!
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