# On determining the homological Conley index of Poincaré maps

Roman Srzednicki



Jagiellonian University

Łódź 2023

 $v: \Omega \to \mathbb{R}^n$  is a smooth vector-field on an open  $\Omega \subset \mathbb{R}^n$ .

$$\dot{x} = v(x)$$

generates a local dynamical system  $\phi$ .

 $v: \Omega \to \mathbb{R}^n$  is a smooth vector-field on an open  $\Omega \subset \mathbb{R}^n$ .

$$\dot{x} = v(x)$$

generates a local dynamical system  $\phi$ . Let  $\Sigma$  be a section:



 $v: \Omega \to \mathbb{R}^n$  is a smooth vector-field on an open  $\Omega \subset \mathbb{R}^n$ .

$$\dot{x} = v(x)$$

generates a local dynamical system  $\phi$ . Let  $\Sigma$  be a section:



 $\Pi\colon V\to \Sigma \text{ is the Poincaré map associated to } \Sigma; \text{ its domain } V \text{ is open in } \Sigma.$ 

X is a topological space, V open in X.  $f: V \to X$  is a homeomorphism onto f(V) open in X.  $A \subset V$ . The *invariant part of A* is defined as

$$Inv(A) := \{x \in A \colon f^n(x) \in A \ \forall n \in \mathbb{Z}\}$$

X is a topological space, V open in X.  $f: V \to X$  is a homeomorphism onto f(V) open in X.  $A \subset V$ . The *invariant part of A* is defined as

$$Inv(A) := \{x \in A \colon f^n(x) \in A \ \forall n \in \mathbb{Z}\}$$

A compact  $S \subset V$  is called isolated invariant if there exists a neighborhood U of S such that

$$S = Inv(U)$$

(i.e. S is the maximal invariant set in U).

(N, L) is a pair of compact subsets of V.

# Definition

- (N, L) is an *index pair* (for f) if
  - **1.**  $Inv(cl(N \setminus L)) \subset int(N \setminus L)$ ,
  - **2.**  $f(L) \cap N \subset L$ ,
  - **3.**  $\operatorname{cl}(f(N) \setminus N) \cap N \subset L$ .



(N, L) is an index pair for f.



$$f_{(N,L)} \colon N/L o N/L, \quad f_{(N,L)}[x] := egin{cases} f(x), & ext{if } x, f(x) \in N \setminus L, \\ *, & ext{otherwise,} \end{cases}$$

is called the *index map*.

(N, L) is an index pair for f.



$$f_{(N,L)} \colon N/L \to N/L, \quad f_{(N,L)}[x] := egin{cases} f(x), & ext{if } x, f(x) \in N \setminus L, \\ *, & ext{otherwise,} \end{cases}$$

is called the *index map*.

#### Remark

If (N, L) is an index pair then  $f_{(N,L)}$  is continuous.

(N, L) is called an *index pair for* (S, f) if  $S = Inv(cl(N \setminus L))$ .

# (N, L) is called an *index pair for* (S, f) if $S = Inv(cl(N \setminus L))$ . **Definition** (M. Mrozek, 1990)

The Conley index of (S, f) is the conjugacy class of the automorphism  $RH(f_{(N,L)})$  for an index pair (N, L) for (S, f).

Here  $RH(f_{(N,L)})$  is the Leray reduction of the endomorphism

$$H(f_{(N,L)}): H(N/L,*) \rightarrow H(N/L,*),$$

where H denotes the singular homology functor with coefficients in a field  $\mathbb{F}$ .

# (N, L) is called an *index pair for* (S, f) if $S = Inv(cl(N \setminus L))$ . **Definition** (M. Mrozek, 1990)

The Conley index of (S, f) is the conjugacy class of the automorphism  $RH(f_{(N,L)})$  for an index pair (N, L) for (S, f).

Here  $RH(f_{(N,L)})$  is the Leray reduction of the endomorphism

$$H(f_{(N,L)}): H(N/L,*) \rightarrow H(N/L,*),$$

where H denotes the singular homology functor with coefficients in a field  $\mathbb{F}$ .

## Remarks

- **1.** If X is metrizable locally compact then there exists at least one index pair for (S, f).
- **2.** The Conley index does not depend on the choice of an index pair.
- **3.** The nozero part of the spectrum of  $H(f_{(N,L)})$  is an invariant of *S*.
- **4.** If the Lefschetz number of  $H(f_{(N,L)})$  is nonzero then f has a fixed point in  $N \setminus L$ .

*E* is a vector space over  $\mathbb{F}$ ,  $\alpha \colon E \to E$  is a linear endomorphism.

 $R\alpha$ , called the *Leray reduction of*  $\alpha$ , is a linear automorphism defined as follows:

*E* is a vector space over  $\mathbb{F}$ ,  $\alpha \colon E \to E$  is a linear endomorphism.

 $R\alpha$ , called the *Leray reduction of*  $\alpha$ , is a linear automorphism defined as follows:

**First step:** *QE* denotes the quotient of *E* by the *generalized kernel* of  $\alpha$ , i.e.,

$$QE := E / \bigcup_k \ker \alpha^k$$

and let  $Q\alpha \colon QE \to QE$  be the induced monomorphism.

*E* is a vector space over  $\mathbb{F}$ ,  $\alpha \colon E \to E$  is a linear endomorphism.

 $R\alpha$ , called the *Leray reduction of*  $\alpha$ , is a linear automorphism defined as follows:

**First step:** *QE* denotes the quotient of *E* by the *generalized kernel* of  $\alpha$ , i.e.,

$${\sf QE}:={\sf E}/igcup_k$$
ker  $lpha^k$ 

and let  $Q\alpha: QE \to QE$  be the induced monomorphism. Second step:  $gim(Q\alpha)$  denotes the the generalized image of  $Q\alpha$ , i.e.,

$$\operatorname{gim}(\mathcal{Q}\alpha):=\bigcap_k\operatorname{im}\mathcal{Q}\alpha^k\subset\mathcal{Q}\mathcal{E}.$$

Then the map  $gim(Q\alpha) \rightarrow gim(Q\alpha)$  induced by  $Q\alpha$  is an automorphism and it is denoted by  $R\alpha$ .

 $\phi$  is the local dynamical system generated by v on an open  $\Omega \subset \mathbb{R}^n.$ 

We assume that  $\phi$  is *rotating*,



 $\phi$  is the local dynamical system generated by v on an open  $\Omega \subset \mathbb{R}^n.$ 

We assume that  $\phi$  is *rotating*,



i.e. there is a smooth map  $\theta \colon \Omega \to \mathbb{R}/\mathbb{Z}$  such that  $\frac{d}{dt}\theta(\phi(x,t)) > 0$  for each  $x \in \Omega$ .





For  $a \in \mathbb{R}$  set  $\Omega_a := \theta^{-1}(a + \mathbb{Z})$ . For  $Z \subset \Omega$  and  $a \in \mathbb{R}$  set  $Z_a := \Omega_a \cap Z$ .



For  $a \in \mathbb{R}$  set  $\Omega_a := \theta^{-1}(a + \mathbb{Z})$ . For  $Z \subset \Omega$  and  $a \in \mathbb{R}$  set  $Z_a := \Omega_a \cap Z$ .

 $\Omega_0$  is a section for  $\phi$ . We assume that  $\Sigma := \Omega_0$ , hence  $\Pi : V \to \Omega_0$  is the Poincaré map.



h > 0,  $\phi^h := \phi(\cdot, h)$  is the *h*-discretization of  $\phi$ .

h > 0,  $\phi^h := \phi(\cdot, h)$  is the *h*-discretization of  $\phi$ .

#### Lemma

If S is an isolated invariant set for  $\phi^h$  then S<sub>0</sub> is an isolated invariant set for  $\Pi$ .



## Theorem (R.S.)

If (N, L) is an index pair for  $(S, \phi^h)$ ,  $N_0$  and  $L_0$  are ANRs and  $F_a: (N_0, L_0) \rightarrow (N_a, L_a)$  for  $a \in [0, 1]$  be a family of maps such that

$$F: (N_0, L_0) \times [0, 1] \rightarrow (N, L), \quad F(x, a) := F_a(x)$$

is a continuous. If  $F_0 = id_{N_0}$ ,  $\phi^t(F_a(N_0)) \subset N$ , and  $\phi^t(F_a(L_0)) \subset L$  for all  $a \in [0, 1]$  and  $t \in [0, h]$  then  $CH(S_0, \Pi)$  is equal to the conjugacy class of  $RH(F_1)$ .









 $\phi$  induces a local dynamical system  $\widetilde{\phi}$  on  $\widetilde{\Omega}$ .

$$\widetilde{Z} := \{ (x, a) \in \widetilde{\Omega} \colon x \in Z_a \}.$$

For an interval  $J \subset \mathbb{R}$  set

$$\widetilde{Z}_J := \{(x, a) \in \widetilde{Z} : a \in J\}.$$

h > 0, (N, L) is an index pair for  $\phi^h$ .



 $u \in Z(N_0, L_0)$  and  $v \in Z(N_1, L_1)$  are singular cycles.

h > 0, (N, L) is an index pair for  $\phi^h$ .



 $u \in Z(N_0, L_0)$  and  $v \in Z(N_1, L_1)$  are singular cycles.

#### Definition

(u, v) is called a *pair of contiguous cycles over* [0, 1] if there exist chains  $c \in S(\widetilde{N}_{[0,1]})$  and  $d \in S(\widetilde{L}_{[0,1]})$  such that



h > 0, (N, L) is an index pair for  $\phi^h$ .



 $u \in Z(N_0, L_0)$  and  $v \in Z(N_1, L_1)$  are singular cycles.

#### Definition

(u, v) is called a *pair of contiguous cycles over* [0, 1] if there exist chains  $c \in S(\widetilde{N}_{[0,1]})$  and  $d \in S(\widetilde{L}_{[0,1]})$  such that



### Definition

(u, v) is called a *pair of contiguous cycles over* [0, 1] if there exist chains  $c \in S(\widetilde{N}_{[0,1]})$  and  $d \in S(\widetilde{L}_{[0,1]})$  such that

$$u\times 0-v\times 1=\partial c+d,$$

If, moreover,  $\widetilde{\phi}(|c|, [0, h]) \subset \widetilde{N}$  and  $\widetilde{\phi}(|d|, [0, h]) \subset \widetilde{L}$  the pair of contiguous cycles (u, v) is called *h*-movable.

(Here |c| donotes the support of the singular chain c.)

## Definition

(u, v) is called a *pair of contiguous cycles over* [0, 1] if there exist chains  $c \in S(\widetilde{N}_{[0,1]})$  and  $d \in S(\widetilde{L}_{[0,1]})$  such that

$$u\times 0-v\times 1=\partial c+d,$$

If, moreover,  $\widetilde{\phi}(|c|, [0, h]) \subset \widetilde{N}$  and  $\widetilde{\phi}(|d|, [0, h]) \subset \widetilde{L}$  the pair of contiguous cycles (u, v) is called *h*-movable.

(Here |c| donotes the support of the singular chain c.)

# Theorem (R.S.)

Let h > 0 and let (N, L) be an index pair for an isolated invariant set S with respect to  $\phi^h$ . If  $N_0$  and  $L_0$  are ANRs,  $n = \dim H(N_0, L_0), A = [a_{ij}]$  is a graded  $(n \times n)$ -matrix over  $\mathbb{F}$ , and  $(u_j, \sum_{i=1}^n a_{ij}u_i)$  for  $j = 1, \ldots, n$  is an h-movable pair of contiguous cycles over [0, 1] such that  $\{[u_j]: j = 1, \ldots, n\}$  is a basis of  $H(N_0, L_0)$  then  $CH(S_0, \Pi)$  is equal to the conjugacy class of the Leray reduction RA. M. Mrozek, R. Srzednicki, F. Weilandt, A topological approach to the algorithmic computation of the Conley index for Poincaré maps, SIAM J. Appl. Dyn. Syst. 14 (2015), 1348-1386.

R. Srzednicki, On determining the homological Conley index of Poincaré maps in autonomous systems, Topol. Methods Nonlinear Anal. 60 (2022), 5-32.