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Plan of my talk

1 Introduction to the homoclinic problem for ordinary differential
equations.

2 Mathematical methods how to study the above problem:
▶ The nonlinear Nemytskii operator,
▶ The concept of parity (definition and the main properties),
▶ Stable and unstable manifolds vs the homoclinic trajectories,
▶ The Evans function.

3 A new criterion of the existence of bifurcation points.

4 Examples illustrating our methods and results.
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Differential equations and homoclinic solutions{
ẋ(t) = f (t, x(t), λ)
lim

t→±∞
xλ(t) = 0. (HP)

(a) f : R× Rd × Λ → Rd is continuous and Λ ⊂ Rk is a compact subset.
(b) f (t, 0, λ) = 0 for all t ∈ R and λ ∈ Λ.

Remark
1 for each λ ∈ Λ, the function x(t) ≡ 0 is a solution of (HP) – a trivial

homoclinic solution.

2 Question: For what parameters λ ∈ Λ is there a non-trivial function
x(t) ̸≡ 0 that solves Problem (HP)?

3 We are looking for the solutions in the space:

C 1
0 (R,Rd) := {x : R → Rd | x is of class C 1 and x , ẋ ∈ C0(R,Rd)},

C0(R,Rd) := {x : R → Rd | x is continuous with lim
|t|→∞

x(t) = 0}

Robert Skiba (Toruń) IMDETA 2024 08.05.2024 3 / 46



Differential equations and homoclinic solutions{
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Homoclinic is a rather widespread phenomenon

Example (Non-trivial homoclinic sol. for one-dimesnional space R){
ẋ(t) = arctan(t) · x(t)
lim

t→±∞
x(t) = 0

Here f : R× R → R is given by f (t, x) = arctan(t) · x .
Each solution reads as follows x(t) =

√
1 + t2e−t·arctan(t)x0, x0 ∈ R.

Thus lim
t→±∞

x(t) = 0.

Remark (Motivation)

Homoclinic Equations (HP) arises in many real phenomena, for instance,
in physics as the study of traveling waves for parabolic reaction-diffusion
equations or in biology/chemistry as the study of the Scott-Gray model for
autocatalysis.

Robert Skiba (Toruń) IMDETA 2024 08.05.2024 4 / 46



Homoclinic is a rather widespread phenomenon

Example (Non-trivial homoclinic sol. for one-dimesnional space R){
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How to study (HP)? - the first observation:{
ẋ(t) = f (t, x(t), λ)
lim

t→±∞
xλ(t) = 0. (HP)

Recall that f (t, 0, λ) = 0, A(t, λ) := D2f (0, t, λ) exists and is continuous.

1 (HP) has a non-trivial solution ⇐⇒ W s
λ(0) ∩W u

λ (0) ̸= {0}, where

W
s/u
λ (0) := {xλ(0) ∈ Rd | xλ(·) solves (HP), lim

t→+∞/−∞
xλ(t) = 0}.

2 We associate the problem (HP) with its linearization (LHP):{
ẋ(t) = A(t, λ)x(t)
lim

t→±∞
xλ(t) = 0. (LHP)

3 (LHP) has a non-trivial solution ⇐⇒ E s
λ(0) ∩ Eu

λ (0) ̸= {0}, where

E
s/u
λ (0) := {xλ(0) ∈ Rd | xλ(·) solves (LHP), lim

t→+∞/−∞
xλ(t) = 0}.
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How to study (HP)? - the second observation:{
ẋ(t) = f (t, x(t), λ)
lim

t→±∞
xλ(t) = 0. (HP)

Consider F : C 1
0 (R,Rd)× Λ → C0(R,Rd) given by:

F (x , λ)(t) := ẋ(t)− f (t, x(t), λ) – the Nemytskii operator,

C0(R,Rd) := {x : R → Rd | x is continuous with lim
|t|→∞

x(t) = 0},

C 1
0 (R,Rd) := {x : R → Rd | x is of class C 1 with x , ẋ ∈ C0(R,Rd)},

x is a solution of (HP) ⇔ F (x , λ) = 0 for some λ ∈ Λ.

Lemma

If f : R× Rd × Λ → Rd has the following properties:

1 f is continuous,

2 ∃ ε > 0 such that f (t, y , λ) −−−−→
t→±∞

0 for all y ∈ B(0, ε) and λ ∈ Λ,

then F is well-defined.
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F (x , λ)(t) := ẋ(t)− f (t, x(t), λ) – the Nemytskii operator,

C0(R,Rd) := {x : R → Rd | x is continuous with lim
|t|→∞

x(t) = 0},

C 1
0 (R,Rd) := {x : R → Rd | x is of class C 1 with x , ẋ ∈ C0(R,Rd)},
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ẋ(t) = f (t, x(t), λ)
lim

t→±∞
xλ(t) = 0. (HP)

Consider F : C 1
0 (R,Rd)× Λ → C0(R,Rd) given by:
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Our strategy for studying the problem (HP)

1 For the following problem{
ẋ(t) = f (t, x(t), λ)
lim

t→±∞
xλ(t) = 0 (HP)

we can define the Nemytskii operator F : C 1
0 (R,Rd)×Λ → C0(R,Rd):

2 F (x , λ)(t) := ẋ(t)− f (t, x(t), λ).

3 F (0, λ) = 0.

4 x is a solution of (HP) if and only if F (x , λ) = 0.

5 We are looking for the non-trivial zeros of F , i.e., F (x , λ) = 0 with
x ̸= 0 for some λ ∈ Λ.

6 For this purpose we can apply the bifurcation theory.

7 A bifurcation point λ0 ∈ Λ =⇒ the existence of non-trivial solutions
of F .
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Bifurcation theory – when B(F ) ̸= ∅?
Definition
A point λ0 ∈ Λ is called a bifurcation point provided in any open neighborhood O of
(0, λ0) there is a point (x , λ) ∈ O such that x is a nontrivial solution of F (x , λ) = 0,
where F : X × Λ → Y . Then we write λ0 ∈ B(F ).

Remark

Recall that F (0, λ) = 0 for all λ ∈ Λ.

6

- Λ

X

q q (λ, x) a nontrivial solution

(λ0, 0)
&%
'$

a bifurcation point
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Historical beginning of bifurcation theory

1 The definition of a bifurcation point can be traced to Poincaré in his
studies of the equilibrium of rotating fluid masses:

H. Poincaré, Sur l’équilibre d’une masse fluide animée d’un
mouvement de rotation, Acta Math. 7 (1885), 259-380.

2 The first fundamental sufficient condition for the existence of a
bifurcation point was given by Krasnoselskii:

M.A. Krasnoselskii, On the problem of branch points (Russian),
Doklady Akad. Nauk SSSR (N.S.) 79 (1951), 389-392.

3 The Rabinowitz global bifurcation theorem was obtained in 1971:

P.H. Rabinowitz, Some global results for nonlinear eigenvalue
problems, J. Functional Anal. 7 (1971), 487-513.
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Bifurcation theory

Theorem (Krasnoselskii Local Bifurcation Theorem)

1 Let 0 ∈ U be an open subset of a Banach space X ,

2 Let F : U × (a, b) → X be given by F (x , λ) = x − λAx − G (x , λ),

3 A is a linear compact operator,

4 G (·, λ) : U → X is a compact (nonlinear) operator and

lim
x→0

G (x , λ)

∥x∥
= 0 for all λ ∈ (a, b).

If λ0 ∈ (a, b) is such that 1/λ0 is an eigenvalue of A and

ma

(
1

λ0

)
= dim

∞⋃
k=1

(I − λ0A)
k ∈ 2N+ 1 (algebraic multiplicity),

then λ0 is a bifurcation point of F .
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Bifurcation for Λ = (−2, 2)

Example

1 Let F : R× (−2, 2) → R be given by F (x , λ) = x − λx − x2.

2 A : R → R, G : R× (−2, 2) → R are given by Ax = x , G (x , λ) = x2.

3 Let λ0 = 1. Then 1/λ0 ∈ σ(A) and ma(1/λ0) = 1 is odd.

4 Thus λ0 = 1 is a bifurcation point of F .

Remark

F (x , λ) = 0 ⇐⇒ (x , λ) = (0, λ) or (x , λ) = (1− λ, λ), for all λ ∈ (0, 2).

6

-

�
�
�
��

Λ

R

q
Bifurcation point
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Robert Skiba (Toruń) IMDETA 2024 08.05.2024 11 / 46



Bifurcation for Λ = (−2, 2)

Example

1 Let F : R× (−2, 2) → R be given by F (x , λ) = x − λx − x2.

2 A : R → R, G : R× (−2, 2) → R are given by Ax = x , G (x , λ) = x2.

3 Let λ0 = 1. Then 1/λ0 ∈ σ(A) and ma(1/λ0) = 1 is odd.

4 Thus λ0 = 1 is a bifurcation point of F .

Remark

F (x , λ) = 0 ⇐⇒ (x , λ) = (0, λ) or (x , λ) = (1− λ, λ), for all λ ∈ (0, 2).

6

-

�
�
�
��

Λ

R

q
Bifurcation point
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Question:

1 For the following problem{
ẋ(t) = f (t, x(t), λ)
lim

t→±∞
xλ(t) = 0 (HP)

we can define the Nemytskii operator F : C 1
0 (R,Rd)×Λ → C0(R,Rd):

F (x , λ)(t) := ẋ(t)− f (t, x(t), λ).

2 Is it possible to apply the Krasnoselskii Local Bifurcation Theorem to
the Nemytskii operator?

3 Answer: NO.

4 Fλ : X → Y , where X = C 1
0 (R,Rd) and Y = C0(R,Rd), whereas the

Krasnoselskii Local Bifurcation Theorem requires the operator to be
defined between the same spaces.
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A small digression.

1 For the following problem{
ẋ(t) = f (t, x(t), λ)
lim

t→±∞
xλ(t) = 0 (HP)

we can define the integral operator F : C 1
0 (R,Rd)× Λ → C 1

0 (R,Rd):

F (x , λ)(t) := x(t)−
∫ t

−∞
f (s, x(s), λ)ds.

2 It is clear that x(·) ∈ C 1
0 (R,Rd) =⇒ (Fx)(·) ∈ C 1(R,Rd).

3 When (Fx)(·) ∈ C 1
0 (R,Rd), i.e., lim

t→±∞
(Fx)(t) = 0?

4 Moreover, usually, the operator K (x , λ)(t) =
∫ t
−∞ f (s, x(s), λ)ds

(if it is well-defined) does not want to be compact.
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The second alternative: Fredholm theory

1 For the following problem{
ẋ(t) = f (t, x(t), λ)
lim

t→±∞
xλ(t) = 0. (HP)

we can define the Nemytskii operator F : C 1
0 (R,Rd)×Λ → C0(R,Rd):

F (x , λ)(t) := ẋ(t)− f (t, x(t), λ).

2 It is not possible to apply the Krasnoselskii Local Bifurcation
Theorem to the Nemytskii operator.

3 We try to apply the local bifurcation theorem for Fredholm maps.

Robert Skiba (Toruń) IMDETA 2024 08.05.2024 16 / 46



The second alternative: Fredholm theory

1 For the following problem{
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Fredholm maps

Definition

A Fredholm operator is a bounded linear operator L : X → Y between two
Banach spaces with finite-dimensional ker(L) and coker(L) := Y /im(L).
The index of L (denoted by ind(L)) is defined by

ind(L) = dim ker(L)− dim coker(L).

The set of Fredholm operators of index zero is denoted by Φ0(X ,Y ).

Definition

Let U ⊂ X be an open subset. We say that a function F : U → Y of class
C 1 is Fredholm of index zero if DF (x) : X → Y is a Fredholm operator of
index 0 for all x ∈ U , where X and Y are Banach spaces.
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Examples
1 Any linear map T : Rn → Rm is Fredholm of index ind(T ) = n −m.
2 L : C 1([a, b],R) → C ([a, b],R) given by

(Lx)(t) = ẋ(t)

is Fredholm of index 1.
3 L : C 1

0 (R,Rd) → C0(R,Rd) given by

(Lx)(t) = ẋ(t)− Ax(t),

is Fredholm of index 0, where A ∈ Rd×d is a hyperbolic matrix, i.e.,
σ(A) ∩ iR = ∅.

Remark

The third example suggests that the Fredholm theory should be
appropriate for the problem (HP) and the Nemytskii operator
Fλ : C

1
0 (R,Rd) → C0(R,Rd) given by

Fλ(x)(t) := ẋ(t)− f (t, x(t), λ).
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is Fredholm of index 1.
3 L : C 1

0 (R,Rd) → C0(R,Rd) given by

(Lx)(t) = ẋ(t)− Ax(t),
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Bifurcation theorem for Fredholm maps and Λ = [a, b]

Theorem (Fitzpatrick, Pejsachowicz, Rabier)

1 Let F : U × [a, b] → Y be continuous and U ⊂ X be an open subset,

2 F (0, λ) = 0 for all λ ∈ [a, b],

3 (x , λ) 7→ DxF (x , λ) exists as continuous function,

4 DxF (x , λ) ∈ Φ0(X ,Y ),

5 DxF (0, a) and DxF (0, b) are invertible.

a Then for the map [a, b] ∋ λ
LF7−→ DxF (0, λ) one can define the parity

σ(LF , [a, b]) ∈ {−1, 1}.
b If σ(LF , [a, b]) = −1, then the set of bifurcation points for F is

nonempty.

Remark

Bartsch, Benevieri, Furi, Kryszewski, Mawhin and others studied
bifurcation problems for Fredholm maps.
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Bifurcation theorem for Fredholm maps and Λ = [a, b]

Theorem (Special case for the finite-dimensional spaces)

1 Let F : Rd × [a, b] → Rd be of class C 1,

2 F (0, λ) = 0 for λ ∈ [a, b], DxF (0, a) and DxF (0, b) are invertible.

3 Let LF (λ) := DxF (0, λ) for all λ ∈ [a, b].

4 If sgn det LF (a) · sgn det LF (b) = −1, then the set of bifurcation
points for F is nonempty.

Definition

Let LF : [a, b] → L(Rd) be continuous with LF (a), LF (b) ∈ GL(Rd). The
parity of LF on [a, b], which is denoted by σ(LF , [a, b]), is defined by

σ(LF , [a, b]) := sgn det LF (a) · sgn det LF (b) ∈ {−1, 1}.
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Example for Λ = [−1, 1]

Example

1 Let F : R× [−1, 1] → R be given by F (x , λ) = λx − x2.

2 LF (λ) := DxF (0, λ) = λ =⇒ LF (λ) ̸= 0 for λ ̸= 0,

3 sgn det LF (−1) · sgn det LF (1) = −1 · 1 = −1.

4 Then B(F ) ̸= ∅. But LF (λ) ̸= 0 for all λ ̸= 0. Thus B(F ) = {0}.

Remark

F (x , λ) = 0 ⇐⇒ (x , λ) = (0, λ) or (x , λ) = (λ, λ), for all λ ∈ [−1, 1].

6

-

�
�
�
��

Λ

R

q
Bifurcation point
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Parity for L : [a, b] → L(Rd)

Remark

Given metric spaces X and Y with X0 ⊂ X and Y0 ⊂ Y , the symbol
f : (X ,X0) → (Y ,Y0) denotes a continuous function f : X → Y with
f (X0) ⊂ Y0.

Definition

Let L : ([a, b], ∂[a, b]) → (L(Rd),GL(Rd)) be continuous. The parity of L
on [a, b], which is denoted by σ(L, [a, b]), is defined by

σ(L, [a, b]) := sgn det L(a) · sgn det L(b) ∈ {−1, 1}.

Remark

Parity is one of the simplest topological invariants that allows us to study
the existence of zeros for operators in infinite-dimensional spaces.
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Properties of the parity for L : [a, b] → L(Rd)

Lemma (Normalization property)

If T0 : [a, b] → GL(Rd), then σ(T0, [a, b]) = 1.

Theorem (Homotopy property)

Let L, S : ([a, b], ∂[a, b]) → (L(Rd),GL(Rd)) be continuous. Then the
following are equivalent:

(1) σ(L, [a, b]) = σ(S , [a, b]).

(2) There exists a homotopy H(t, λ) with the following properties:
1 H : ([0, 1]× [a, b], [0, 1]× {a, b}) → (L(Rd),GL(Rd)).
2 H(0, λ) = L(λ) and H(1, λ) = S(λ).

Then we write L ≃H S .

Corollary

σ(L, [a, b]) = 1 ⇐⇒ L ≃H T0.

Robert Skiba (Toruń) IMDETA 2024 08.05.2024 23 / 46



Properties of the parity for L : [a, b] → L(Rd)

Lemma (Normalization property)

If T0 : [a, b] → GL(Rd), then σ(T0, [a, b]) = 1.

Theorem (Homotopy property)

Let L, S : ([a, b], ∂[a, b]) → (L(Rd),GL(Rd)) be continuous. Then the
following are equivalent:

(1) σ(L, [a, b]) = σ(S , [a, b]).

(2) There exists a homotopy H(t, λ) with the following properties:
1 H : ([0, 1]× [a, b], [0, 1]× {a, b}) → (L(Rd),GL(Rd)).
2 H(0, λ) = L(λ) and H(1, λ) = S(λ).

Then we write L ≃H S .

Corollary

σ(L, [a, b]) = 1 ⇐⇒ L ≃H T0.
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Properties of the parity for L : [a, b] → L(Rd)

Theorem

Further properties:

(Additivity property) If c ∈ I = [a, b] and L(c) ∈ GL(Rd), then

σ(L, [a, b]) = σ(L, [a, c]) · σ(L, [c , d ]).

(Product property) If Rd = Rd1 × Rd2 and L = L1 × L2, then

σ(L, [a, b]) = σ(L1, [a, b]) · σ(L2, [a, b])

where
1 L(λ) = L1(λ)× L2(λ) for λ ∈ [a, b],

2 Li : ([a, b], ∂[a, b]) → (L(Rdi ),GL(Rdi ) for i = 1, 2.
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The construction of parity for Fredholm maps of index zero

Question

How to define the concept of parity for L : [a, b] → L(X ,Y ), where X and
Y are infinite-dimensional Banach spaces?

1 Let X ⊂ Y be two infinite-dimensional Banach spaces.

2 Let L : [a, b] → Φ0(X ,Y ) be a continuous family of Fredholm
operators of index 0, i.e., L(λ) ∈ Φ0(X ,Y ).

3 Then there exists a finite-dimensional subspace V ⊂ Y such that
im(L(λ)) + V = Y for all λ ∈ [a, b].

4 It may happen that 0 ∈ im(L(λ)) ∩ V ̸= {0} for some λ ∈ [a, b].

5 For any λ ∈ [a, b] we take Wλ := L(λ)−1(V ) ⊂ X .

6 L(λ) ∈ Φ0(X ,Y ) =⇒ dimWλ = dimV .

7 For simplicity, we assume that Wλ = V for λ ∈ [a, b].

8 For any λ ∈ [a, b] we get the restriction map: LV (λ) : V → V .

9 If Wλ
∼= V , then we take LV (λ) := V

Iso−→ Wλ
LW (λ)−→ V
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The construction of parity for Fredholm maps of index zero
1 Let L : [a, b] → Φ0(X ,Y ) with L(a), L(b) ∈ GL(X ,Y ).

2 Then we get LV : ([a, b], {a, b}) → (L(V ,V ),GL(V ,V )).

Recall the classical definition (for X = Y = Rd):

Definition

Let L : ([a, b], ∂[a, b]) → (L(Rd ,Rd),GL(Rd ,Rd)) be continuous. The
parity of L on [a, b], which is denoted by σ(L, [a, b]), is defined by

σ(L, [a, b]) := sgn det L(a) · sgn det L(b) ∈ {−1, 1}.

Now we are ready to put the following:

Definition

Let L : ([a, b], ∂[a, b]) → (Φ0(X ,Y ),GL(X ,Y )) be continuous. The parity
of L on [a, b], which is denoted by σ(L, [a, b]), is defined by

σ(L, [a, b]) := σ(LV , [a, b]) = sgn det LV (a) · sgn det LV (b) ∈ {−1, 1}.
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Robert Skiba (Toruń) IMDETA 2024 08.05.2024 26 / 46



The construction of parity for Fredholm maps of index zero
1 Let L : [a, b] → Φ0(X ,Y ) with L(a), L(b) ∈ GL(X ,Y ).

2 Then we get LV : ([a, b], {a, b}) → (L(V ,V ),GL(V ,V )).

Recall the classical definition (for X = Y = Rd):

Definition

Let L : ([a, b], ∂[a, b]) → (L(Rd ,Rd),GL(Rd ,Rd)) be continuous. The
parity of L on [a, b], which is denoted by σ(L, [a, b]), is defined by

σ(L, [a, b]) := sgn det L(a) · sgn det L(b) ∈ {−1, 1}.

Now we are ready to put the following:

Definition

Let L : ([a, b], ∂[a, b]) → (Φ0(X ,Y ),GL(X ,Y )) be continuous. The parity
of L on [a, b], which is denoted by σ(L, [a, b]), is defined by

σ(L, [a, b]) := σ(LV , [a, b]) = sgn det LV (a) · sgn det LV (b) ∈ {−1, 1}.

Robert Skiba (Toruń) IMDETA 2024 08.05.2024 26 / 46



The construction of parity for Fredholm maps of index zero
1 Let L : [a, b] → Φ0(X ,Y ) with L(a), L(b) ∈ GL(X ,Y ).

2 Then we get LV : ([a, b], {a, b}) → (L(V ,V ),GL(V ,V )).

Recall the classical definition (for X = Y = Rd):

Definition

Let L : ([a, b], ∂[a, b]) → (L(Rd ,Rd),GL(Rd ,Rd)) be continuous. The
parity of L on [a, b], which is denoted by σ(L, [a, b]), is defined by

σ(L, [a, b]) := sgn det L(a) · sgn det L(b) ∈ {−1, 1}.

Now we are ready to put the following:

Definition

Let L : ([a, b], ∂[a, b]) → (Φ0(X ,Y ),GL(X ,Y )) be continuous. The parity
of L on [a, b], which is denoted by σ(L, [a, b]), is defined by

σ(L, [a, b]) := σ(LV , [a, b]) = sgn det LV (a) · sgn det LV (b) ∈ {−1, 1}.
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Parity for Fredholm maps

Definition

Let L : ([a, b], ∂[a, b]) → (Φ0(X ,Y ),GL(X ,Y )) be continuous. The parity
of L on [a, b], which is denoted by σ(L, [a, b]), is defined by

σ(L, [a, b]) := σ(LV , [a, b]) = sgn det LV (a) · sgn det LV (b) ∈ {−1, 1}.

Lemma

The above definition does not depend on the choice of V.

Remark

The concept of parity inherits all properties from the finite-dimensional
case.
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Bifurcation theorem for Fredholm maps and (HP)

Theorem (Fitzpatrick, Pejsachowicz, Rabier)

1 Let F : U × [a, b] → Y be continuous and U ⊂ X be an open subset,

2 F (0, λ) = 0 for all λ ∈ [a, b],

3 (x , λ) 7→ DxF (x , λ) exists as continuous function,

4 DxF (x , λ) ∈ Φ0(X ,Y ),

5 DxF (0, a) and DxF (0, b) are invertible.

a Then for the map [a, b] ∋ λ
LF7−→ DxF (0, λ) one can define the parity

σ(LF , [a, b]) ∈ {−1, 1}.
b If σ(LF , [a, b]) = −1, then the set of bifurcation points for F is

nonempty.

We want to apply the above theorem to the following problem:{
ẋ(t) = f (t, x(t), λ)
lim

t→±∞
x(t) = 0. (HP)
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ẋ(t) = f (t, x(t), λ)
lim

t→±∞
x(t) = 0. (HP)

Robert Skiba (Toruń) IMDETA 2024 08.05.2024 28 / 46



Bifurcation theorem for Fredholm maps and (HP)

Theorem (Fitzpatrick, Pejsachowicz, Rabier)

1 Let F : U × [a, b] → Y be continuous and U ⊂ X be an open subset,

2 F (0, λ) = 0 for all λ ∈ [a, b],

3 (x , λ) 7→ DxF (x , λ) exists as continuous function,

4 DxF (x , λ) ∈ Φ0(X ,Y ),

5 DxF (0, a) and DxF (0, b) are invertible.

a Then for the map [a, b] ∋ λ
LF7−→ DxF (0, λ) one can define the parity

σ(LF , [a, b]) ∈ {−1, 1}.
b If σ(LF , [a, b]) = −1, then the set of bifurcation points for F is

nonempty.

More exactly, we want to apply the above theorem to the Nemytskii
operator: F : C 1

0 (R,Rd)× [a, b] → C0(R,Rd) defined by

F (x , λ)(t) := ẋ(t)− f (t, x(t), λ).

Robert Skiba (Toruń) IMDETA 2024 08.05.2024 29 / 46



Bifurcation theorem for Fredholm maps and (HP)

Theorem (Fitzpatrick, Pejsachowicz, Rabier)

1 Let F : U × [a, b] → Y be continuous and U ⊂ X be an open subset,

2 F (0, λ) = 0 for all λ ∈ [a, b],

3 (x , λ) 7→ DxF (x , λ) exists as continuous function,

4 DxF (x , λ) ∈ Φ0(X ,Y ),

5 DxF (0, a) and DxF (0, b) are invertible.

a Then for the map [a, b] ∋ λ
LF7−→ DxF (0, λ) one can define the parity

σ(LF , [a, b]) ∈ {−1, 1}.
b If σ(LF , [a, b]) = −1, then the set of bifurcation points for F is

nonempty.

More exactly, we want to apply the above theorem to the Nemytskii
operator: F : C 1

0 (R,Rd)× [a, b] → C0(R,Rd) defined by
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Questions about the Nemytskii operator induced by (HP)

Let F : C 1
0 (R,Rd)× [a, b] → C0(R,Rd) be the Nemytski operator.

Question (Easy)

Whether F is continuous on C 1
0 (R,Rd)× [a, b] and differentiable with

respect to the first variable (in a continuous way)?

Question (Medium)

Whether F is the nonlinear Fredholm operator?

Question (Hard)

LF : [a, b] → Φ0(C
1
0 (R,Rd),C0(R,Rd)) is given by LF (λ) = DxF (0, λ).

When σ(LF , [a, b]) = −1?

Robert Skiba (Toruń) IMDETA 2024 08.05.2024 30 / 46



Questions about the Nemytskii operator induced by (HP)

Let F : C 1
0 (R,Rd)× [a, b] → C0(R,Rd) be the Nemytski operator.

Question (Easy)

Whether F is continuous on C 1
0 (R,Rd)× [a, b] and differentiable with

respect to the first variable (in a continuous way)?

Question (Medium)

Whether F is the nonlinear Fredholm operator?

Question (Hard)

LF : [a, b] → Φ0(C
1
0 (R,Rd),C0(R,Rd)) is given by LF (λ) = DxF (0, λ).

When σ(LF , [a, b]) = −1?
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The answer to Q1 (Pötzsche, Rabier, Stuart, Skiba):
Let F : C 1

0 (R,Rd)× [a, b] → C0(R,Rd) be the Nemytski operator induced
by {

ẋ(t) = f (t, x(t), λ)
lim

t→±∞
x(t) = 0. (HP)

If a continuous function f : R× Rd × [a, b] → Rd satisfies the conditions:

(a) Dx f exists and is continuous on R× Rd × [a, b],

(b) f (t, 0, λ) = 0 and Dx f is bounded on R× {0} × [a, b],

(c) there exists ε > 0 such that Dx f is uniformly continuous on
R× D(0, ε)× [a, b],

then

1 F is continuous on C 1
0 (R,Rd)× [a, b],

2 DxF exists and is continuous on C 1
0 (R,Rd)× [a, b].

Remark

In such a case, we will say that F is admissible.
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Preparations to give the answer to Q2.

Given a differential system:{
ẋ(t) = f (t, x(t), λ)
lim

t→±∞
x(t) = 0, (HP)

one can associate the linearization of (HP) at x ≡ 0 given by{
ẋ(t) = A(t, λ)x(t)
lim

t→±∞
x(t) = 0, (LHP)

where A(t, λ) = Dx f (t, 0, λ).

Remark

We will study the Fredholmness of F by using (LHP).
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Preparations to give the answer to Q2:

Definition

Consider a linear ODE
ẋ(t) = A(t)x(t) (L)

with a continuous function A : R → L(Rd) and an associated evolution
matrix U : R2 → L(Rd). Suppose that J ⊂ R is an unbounded interval.

1 An invariant projector is a function P : J → L(Rd) of projections
P(t) ∈ L(Rd) such that

U(t, s)P(s) = P(t)U(t, s) for all t, s ∈ J.

2 A linear ODE (L) has an exponential dichotomy on J with a projector
P if there exist constants K ≥ 1 and α > 0 such that

|U(t.s)P(s)| ≤ Ke−α(t−s), |U(s, t)(Id − P(t))| ≤ Keα(s−t)

for all s ≤ t with t, s ∈ J.
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Preparations to give the answer to Q2: Example of an ED
Consider a linear ODE

ẋ(t) = Ax(t) (L)

where A is an hyperbolic matrix, i.e., σ(A) ∩ iR = ∅.
1 An associated evolution matrix is given by U(t, s) = e(t−s)A.

2 Rd = E s ⊕ Eu, where

E s =
⊕

{λi∈σ(A)|Reλi<0}

Eig(λi ) and Eu =
⊕

{λj∈σ(A)|Reλj>0}

Eig(λj).

3 Let P : Rd → Rd be a projection with ImP = E s and KerP = Eu.

One can show that

1 e(t−s)AP = Pe(t−s)A for all t, s ∈ R.
2 there exist constants K ≥ 1 and α > 0 such that

|e(t−s)AP| ≤ Ke−α(t−s), |e(s−t)A(Id − P)| ≤ Keα(s−t)

for all s ≤ t with t, s ∈ R.
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A recommended book about an exponential dichotomy

Remark

Significant contributions to the study of an ED are made by Perron,
Massera, Schaeffer, Coppel, Sacker, Sell, Palmer, Pötzsche and others.

Figure: Anagnostopoulu, Pötzsche, Rasmusen, Nonautonomous bifurcation theory
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The answer to Q2:

Question (Medium)

Whether F : C 1
0 (R,Rd)× [a, b] → C0(R,Rd) is Fredholm?

Theorem (Palmer (Analysis+FA) or Pejsachowicz (Analysis+Top):)

Assume that

1 F is admissible (i.e.,continuous and differentiable with respect to x),

2 the system {
ẋ(t) = A(t, λ)x(t)
lim

t→±∞
x(t) = 0 (LHP)

has an ED on R±, where A(t, λ) = Dx f (t, 0, λ).

Then F is Fredholm. If there exists λ0 such that (LHP) has only the
trivial solution, then the Fredholm index ind(Fλ) = 0 for all λ ∈ [a, b].
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The answer to Q3 – a new criterion for bifurcation

Question (Hard)

LF : [a, b] → Φ0(C
1
0 (R,Rd),C0(R,Rd)) is given by LF (λ) = DxF (0, λ).

When σ(LF , [a, b]) = −1?

Theorem (C. Pötzsche and RS)

Assume that

1 (LHP) has an ED on R±,

2 (LHP) only has a trivial solution for λ = a and λ = b.

Then the Evans function E : [a, b] → R admits the following properties:

a σ(LF , [a, b]) = sgn E (a) · sgn E (b),

b if sgn E (a) · sgn E (b) = −1, then B(F ) ̸= ∅.

Remark

The construction of the Evans function E will be on the following slides.
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Theorem (C. Pötzsche and RS)

Assume that

1 (LHP) has an ED on R±,

2 (LHP) only has a trivial solution for λ = a and λ = b.

Then the Evans function E : [a, b] → R admits the following properties:

a σ(LF , [a, b]) = sgn E (a) · sgn E (b),

b if sgn E (a) · sgn E (b) = −1, then B(F ) ̸= ∅.

Remark

The construction of the Evans function E will be on the following slides.
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The construction of the Evans function

Theorem (CP and RS)

We assume that a linear differential system{
ẋ(t) = A(t, λ)x(t)
lim

t→±∞
x(t) = 0. (LHP)

has an ED on R±. Then

E s :=
⋃

λ∈[a,b]

{λ} × E s(λ), Eu :=
⋃

λ∈[a,b]

{λ} × Eu(λ)

are the vector bundles over Λ = [a, b].

Remark

E s(λ) := {x(0) ∈ Rd | ẋ(t) = A(t, λ)x(t) and limt→+∞ x(t) = 0},
Eu(λ) := {x(0) ∈ Rd | ẋ(t) = A(t, λ)x(t) and limt→−∞ x(t) = 0}.
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The Evans function - a crucial step for bifurcation

Theorem

There exist continuous functions:

γ1, ..., γp : [a, b] → E s and η1..., ηq : [a, b] → Eu with p + q = d

such that

1 γ1(λ), ..., γp(λ) ∈ E s(λ) ⊂ Rd is a base of E s(λ),

2 η1(λ), ..., ηq(λ) ∈ Eu(λ) ⊂ Rd is a base of Eu(λ).

Definition

A function E : [a, b] → R given by

E (λ) := det(γ1(λ), ..., γp(λ), η1(λ), ..., ηq(λ))

is called the Evans function.
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Historical notes about the Evans function
1 John Evans wrote his seminal papers in the 1970s in which the

concept of the Evans function appeared.
2 Initially, it was used in the stability analysis of travelling waves in

evolutionary PDEs.
3 Nowadays, the Evans function is used in many types of differential

equations in various modified forms.
4 Todd Kapitula, Keith Promislow, Spectral and Dynamical Stability of

Nonlinear Waves, Springer 2013.
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Bifurcation for ẋ(t) = f (t, x(t), λ), limt→±∞ x(t) = 0

Example

Consider the following problem:{
ẋ(t) = A(t, λ)x + g(x , λ)
lim

t→±∞
x(t) = 0, (HP)

where

1 g : R2 × [−1, 1] → R2 is of class C 1 with g(0, λ) = 0, Dxg(0, λ) = 0,

2 A(t, λ) :=

(
a(t) 0
λ3 −a(t)

)
,

3 a : R → R is continuous with a(t) −−−−→
t→±∞

±1.

Then (LHP) has the following form:{
ẋ(t) = A(t, λ)x
lim

t→±∞
x(t) = 0. (LHP)
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Bifurcation for ẋ(t) = f (t, x(t), λ), limt→±∞ x(t) = 0

Example (Continuation)

Linear ODE {
ẋ(t) = A(t, λ)x
lim

t→±∞
x(t) = 0, (LHP)

has the following stable and unstable manifolds:

a E s(λ) =
{
ξ
(
1, −λ3

2

)
∈ R2 | ξ ∈ R

}
,

b Eu(λ) =
{
ξ
(
1, λ

3

2

)
∈ R2 | ξ ∈ R

}
.

Then

a γ1 : [−1, 1] → R2 is given by γ1(λ) = (1, −λ3

2 ) ∈ E s(λ),

b η1 : [−1, 1] → R2 is given by η1(λ) = (1, λ
3

2 ) ∈ Eu(λ).
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Bifurcation for ẋ(t) = f (t, x(t), λ), limt→±∞ x(t) = 0

Example (Continuation)

1 The Evans function has the following form:

E (λ) = det(γ1(λ), η1(λ)) = det

(
1 1

−1
2λ

3 1
2λ

3

)
= λ3

2 Observe that sgn E (−1) · sgn detE (1) = −1 · 1 = −1.

3 Consequently, B(F ) ̸= ∅.
4 Since E (λ) ̸= 0 for all λ ̸= 0, it follows that B(F ) = {0}.

Remark

One can show that E (λ) ̸= 0, then λ ̸∈ B(F ).
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1 The Evans function has the following form:

E (λ) = det(γ1(λ), η1(λ)) = det

(
1 1

−1
2λ

3 1
2λ

3

)
= λ3

2 Observe that sgn E (−1) · sgn detE (1) = −1 · 1 = −1.

3 Consequently, B(F ) ̸= ∅.
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Bifurcation for ẋ(t) = f (t, x(t), λ), limt→±∞ x(t) = 0

Corollary

Since B(F ) = {0}, one can conclude that for every neighbourhood Uλ∗ of
the point λ∗ = 0, there is λ ∈ Uλ∗ and a non-trivial homoclinic solution
xλ(t) to the equation:{

ẋ(t) = A(t, λ)x + g(x , λ)
lim

t→±∞
x(t) = 0, (HP)

where λ ∈ [−1, 1].
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Concluding remarks

Remark
1 Talk is based on the article: C. Pötzsche, R. Skiba, Evans function,

parity and nonautonomous bifurcation of bounded entire solutions,
manuscript 2024.

2 One can study a local bifurcation of bounded solutions for Λ := [a, b],
where f (t, x , λ) is a Caratheodory function.

3 Then we must use the Nemytskii operator on the spaces
W 1,∞(R,Rd) and L∞(R,Rd).

4 One can study a local bifurcation of bounded solutions for compact
subsets Λ ⊂ Rk .

5 Then we must extend the concept of the Evans function by using
K-theory. This is a joint project with

a D. Strzelecki (Warsaw University and NCU, Poland),
b N. Waterstraat (Martin-Luther-Universitat Halle-Wittenberg,

Germany).
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Robert Skiba (Toruń) IMDETA 2024 08.05.2024 45 / 46



Concluding remarks

Remark
1 Talk is based on the article: C. Pötzsche, R. Skiba, Evans function,
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Thank you very much for your attention!
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