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Shape Optimization

Admissible shapes O,q - a family of admissible shapes.

e Bounded open sets contained in a design region D C R?. Additional
constraints - volume, perimeter, number of holes, convexity etc.
@ Class of polyhedra with given number of faces and given volume.

Shape functional
J: Oad —R.

Shape Optimization Problem

inf{J(Q): Q € O,q}.

o Classical isoperimetric inequality Of all planar domains of given
perimeter determining that which has the maximum area.

sup { Area(Q) : Q C R?, Per(Q) = L}.
e Faber-Krahn-Rayleigh inequality Of all planar vibrating drums of
given area determining that which has the lowest principal frequency.

inf {\(Q) : Q C R? Area(Q) = a
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Introduction
Classical Results

Isoperimetric inequality
e plane [? > 4rA.
@ space S3 > 367 V2.

1
o higher dimensions |89 > dw?|Q|'~4; wy volume of the unit ball.

Pélya-Szegé inequality (1 < p < o0)

/ [VulP dx 2/ |V u*|P dx for all u € W, P(Q).
Q Q-

Consequences

Faber-Krahn inequality, Sobolev inequality etc.
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Introduction
The Problem Setting - nonlocal functionals

Prinicipal Dirichlet eigenvalue for the fractional p-Laplacian

Q C R - bounded domain, d >1; 0<s < d

lux) — u()lP
e

= inf tue GP(Q) y uaéO},
/| )|Pdx

Principal eigenvalue for the Riesz potential operator

Q C R? - bounded domain, d > 1; 0 < a < d. For u € L?(Q)

—45-al((d—a)/2) u(y)
TG /Q = yla—a

max{// e u|gyadxdy cu € L2(Q), ||ulliz) = 1}.

ae. xe

(lau)(x) =

A1 ()
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Introduction

Connection between the Riesz potential operator y

fractional Laplacian

@ in R9The Riesz potential operator is the inverse of the fractional
Laplacian operator (—A)% .

@ in bounded domain The Riesz potential operator is the inverse of the
fractional Laplacian operator (—A)?% together with a non-local
boundary condition.
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Introduction
Main Results

@ Theorem 1 The equilateral triangle has the least first eigenvalue for
the fractional Dirichlet p-Laplacian among all triangles of given area.
The square has the least first eigenvalue for the fractional Dirichlet
p-Laplacian among all quadrilaterals of given area. Moreover, the
equilateral triangle and the square are the unique minimizers in the
above problems.

@ Theorem 2 The maximum of A;(Q2) among all triangles (open) of
given area is obtained when  is an equilateral triangle and only
when Q is an equilateral triangle. Similarly, the maximum of A;(Q)
among all quadrilaterals (open) of given area is obtained when Q is
a square and only when Q is a square.
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Main Ideas
Key Principles

Riesz's inequality under Steiner symmetrization Let f, g, and h be

non-negative Borel measurable functions that vanish at infinity on RY,
and let f*, g*, and h* be their respective Steiner symmetrizations with
respect to a given hyperplane H taken, as above, as {x € R?|xy = 0}.

Then, for I(f, g, h) ::/ / f(x)g(x — y)h(y) dxdy, we have
RY JR
I(f,g,h) < (", g", h").

Continuity of the eigenvalue with respect to the convergence in the
Hausdorff complementary distance Let B be a fixed compact set in R¢
and Q, be a family of nonempty convex open subsets of B which
converges, for the complementary Hausdorff distance, to a nonempty
convex open set Q. Then, A\;(Q2) = nlggo A1(2,).
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Main Ideas
Properties of the eigenvalue

Properties of A] ,

O (translation invariance) A] ,(2) = A ,(Q2 + x) for all x € R".

@ (invariance under orthonormal transformations)
1,(8) = A1 ,(T(Q)) for every orthonormal transformation T.

© (homothety law) A7 ,(tQ) = t=PA] () for t > 0.
@ (domain monotonicity) If A C B are open sets, then
A p(B) < A ,(A).
Properties of Ay

@ (translation invariance) A\;(Q) = A1(Q + x) for all x € RY.

@ (invariance under orthonormal transformations) A1(Q2) = A1 (T(R2))
for every orthonormal transformation T € O(n).

@ (homothety law) A1(kQ) = k*A1(2) for k > 0.

@ (domain monotonicity) Given bounded domains A and B in RY, if
A C B, then A\ (A) < M\i(B).
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Key Tools

Steiner symmetrization of sets and functions with respect

to the hyperplane x; = 0

Steiner symmetrization of sets

Q C RY - measurable set; for x¥’ € R9~1, we have the 1-d section of Q en

x'

Qx') = {x, e R: (X, xq) € Q},
The set

0% = x = (¢ x0) - 190 < x0 < 5120,

is the Steiner symmetrization of { with respect to the hyperplane x4 = 0.

Steiner symmetrization of functions Let f be a non-negative measurable
function defined on €, which vanishes on 9€2. The Steiner
symmetrization of f is the function f* defined on Q* by

f*(x)=sup{c:xe{yeQ:f(y)>c}}
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Key Tools
Basic properties for Steiner symmetrization

A convex body is a compact convex set. For a convex body A in R”, the
inradius r(A) is the supremum of the radii of balls contained in A and the
circumradius R(A) is the infimum of the radii of balls containing A. The
Steiner symmetrization of sets has the following properties. Let A, B be
convex bodies. Then,

Q AACB* IfACE.

Q r(A) < r(A").

@ R(A*) < R(A).

Q@ V(A) = V(A*) where V(A) denotes the volume of A.
The Steiner symmetrization of functions has the following properties.

@ The definitions of A* y f* are consistent, i.e.,
xar = (xa) and {x: f(x) > t}* = {x: f*(x) > t}.

@ Let f be a nonnegative measurable function defined on Q vanishing
on 9. Let F: Rt — R be a measurable function. Then,

/QF(f(x))dx = / F(f*(x))dx.
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Key Tools
Minkowski sums and differences

Minkowski sum Given X, Y C RY is defined by

Xav:=|JX+y)
yey

Minkowski difference

XevY:=)(X-y)
yey

Inner parallel body at distance € of K is the subset K & B(0, €).

Some properties

o Let X,Z C RY with X C Z and let € > 0. Then
X e B(0,¢) € Z\((2\X) ® B(0,¢)).

o If B(0,r) C K C B(0,R) and 0 < e < I, then

R
(1—4r:> KcKoB(0,e)CK.
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Key Tools
Hausdorff complementary distance

Let K and C be two non-empty compact sets in RY. Then their
Hausdorff distance is defined as

d"(K,C)=inf{e>0; KC C® B(0,¢) and C C K@ B(0,¢)}

Let Oy, O, be two open subsets of a compact set B. Then the so called
complementary Hausdorff distance is defined by:

dy (01, 02) = d"(B\ 01, B\ 0s).
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Sketch of the proofs

Continuity of the eigenvalue with respect to the convergence in the Hausdorff

complementary distance
o Let B(0,r) CQ C B(0,R). Since, dn(2,,Q) — 0, given e >0
B\Q, C (B\Q) @ B(0,¢) for all n> n,.

From this we obtain
2

Qo B(0,¢) CQ, forall n > n. and so, for 0 < e < T6R’

(1—16%)QCQ@B(O,E)CQ,,foraIInZnE.

From this we get

A(Q) < lim Ay(£2n).

n—oo

o Similarly, starting from
B\Q C (B\Q,) ® B(0,¢) for all n > n,
we can also obtain

n_
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Sketch of the proofs
Construction of the Steiner symmetrizations

Case of triangles Let /A1 be an arbitrary open triangle of positive area a.
We successively define the open triangles A, 1 by taking the Steiner
symmetrization of A, with respect to the perpendicular bisector of a side
with respect to which there is no symmetry. It can be shown that that
the sequence A\, converges with respect to the complementary Hausdorff
distance to an open equilateral triangle A.

Case of quadrilaterals Apply Steiner symmetrization with respect to an
axis which is perpendicular to a diagonal of the quadrilateral, for which
the other two vertices aren't on the same side of this diagonal. The
resulting object is a convex quadrilateral which is symmetric with respect
to this axis. Next, we Steiner symmetrize with respect to a perpendicular
axis and thereby get a rhombus. This is to be followed by a Steiner
symmetrization with respect to an axis perpendicular to one of the sides
to produce a rectangle. The rectangle is then Steiner symmetrized with
respect to an axis perpendicular to a diagonal to get, again, a rhombus.
By repeating the procedures for the rhombus and rectangle we end up
with an infinite sequence of rhombi and rectangles which converge,
ultimately, in the complementary Hausdorff distance, to a square.
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Sketch of the proofs
Eigenvalue maximization for triangles of given area

Let 7, be an eigenfunction for A\;(A,). Let ¥ be the corresponding

Steiner symmetrization of f, (the extension of f, by zero outside A,)
which is a Borel measurable function vanishing at infinity. Applying
Riesz's inequality to the function 7, (taken twice) and with the function
in the middle taken as the Riesz potential we obtain

wed = 7 yf|2(yadd
// Ry

w(x)w(y) }
< max ———"~dxdy : |w =1
- WeLZ(AnH){/M/H+1 y|2 Saxdy :wlliza,.q)

— /\I(An+1)

for each n and so A\1(A1) < A1(A,) for all n. So by the continuity
property of the Riesz eigenvalue for the complementary Hausdorff
convergence we get

M(B1) < Tim A(B5) = M(A).

IN
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Sketch of the proofs
The equilateral triangle is the unique maximizer

Let A be an open triangle of given area which maximizes. If A is not already
an equilateral triangle, then there is at least one axis m (perpendicular to one
of its sides) such that A is not Steiner symmetric with respect to m. Let A*
be the Steiner symmetrization of A respect to m. We take f to be a
continuous positive eigenfunction of norm 1 (in the L? norm) associated to
A1(A). Let f* be the Steiner symmetrization of f (the extension of f by zero
outside A) with respect to m. We note that f* has to be supported on the
closure of A*. We note that f* also has norm 1 in the L? norm. So, by Riesz’s

inequality, we obtain
/ / F 1) (X)fi};) dxdy
arJas Ix— Y|

//|x— o

So, A1(A*) = A1(A) leading to the equahty case in Riesz's inequality.
Therefore, f is a translate of f* up to a set of measure 0. Furthermore, f* is a
maximizer for A\;(A*) and so, by Jentzsch’s theorem, is continuous and positive
on A*. We, therefore, have

A={xecA:f(x)>0}={xeR?: f (x—y)>0})=A+y-

\Y

Ar(A%)

\Y
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Sketch of the proofs

Thank you for your kind attention!
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Sketch of the proofs
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Sketch of the proofs
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