Explicit and implicit control problems. A fixed point approach

Radu Precup

Babeș-Bolyai University and

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy,
Cluj-Napoca, Romania
Łódź, 2023

General problem of control theory

Reconstitution of a (differential/integral) system, as a matter of fact some of its parameters viewed as control variables, from certain properties of solution.

$$
* * *
$$

Basic reference: JM Coron: Control and Nonlinearity, AMS 2007
RP: On some applications of the controllability principle for fixed point equations, Results in Applied Mathematics 13 (2022), 100236.

A Hofman, RP: On some control problems for Kolmogorov type systems, Mathematical Modelling and Control 2022, 2(3).

LG Parajdi, F Patrulescu, RP, IS Haplea: Two numerical methods for solving a nonlinear system of integral equations of mixed Volterra-Fredholm type arising from a control problem related to leukemia, Journal of Applied Analysis and Computation doi: 10.11948/20220197.

Outline of my talk

1. Some examples of control problems

- explicit
- implicit

2. General control problem of fixed point equations
3. Techniques of solving control problems

- basic fixed point principles (Banach,Schauder,Leray-Schauder...) An example: control of Lotka-Volterra system
- vector fixed point techniques (Perov ...)

An example: control of a Kolmogorov sistem

- approximation and numerical techniques:

Lower and upper solution method

Examples of explicit control problems

1) A control problem on the Lotka-Volterra prey-predator system

$$
\left\{\begin{array}{l}
x^{\prime}=a x(1-\lambda b y) \quad(\text { control of the attack rate } b) \\
y^{\prime}=-c y(1-d x) \\
x(0)=x_{0}, y(0)=y_{0}, \quad x(T)=x_{T}
\end{array}\right.
$$

2) Control by vaccination of the SIR epidemiologic model

$$
\left\{\begin{array}{l}
S^{\prime}=-a S I-\lambda \quad(\text { control of the infection rate }) \\
I^{\prime}=a S I-b I \\
R^{\prime}=b I \\
S(0)=S_{0}, I(0)=I_{0}, \quad R(T)=p N
\end{array}\right.
$$

Examples of implicit control problems

1) Nonlocal problems

$$
\left\{\begin{array}{l}
u^{\prime}=f(t, u), \quad t \in[0, T] \\
g(u)=0
\end{array}\right.
$$

Integration leads to fixed point equation

$$
\left\{\begin{array}{l}
u(t)=\lambda+\int_{0}^{t} f(s, u(s)) d s \quad(t \in[0, T]) \\
g(u)=0 \quad(\text { controllability condition })
\end{array}\right.
$$

where $\lambda=u(0)$
2) Radial solutions of Neumann BVP in annulus

$$
\begin{cases}-\operatorname{div}(\phi(|\nabla u|) \nabla u)+u=f(|x|, u) & \text { in } \Omega: R_{0}<|x|<R_{1} \\ \partial_{v} u=0 & \text { on } \partial \Omega\end{cases}
$$

$$
\phi:(-a, a) \rightarrow \mathbb{R} \text { - increasing homeomorphism }
$$

Radial solution: $u(x)=v(|x|)$

$$
\left\{\begin{array}{l}
-\left(r^{n-1} \phi\left(v^{\prime}\right)\right)^{\prime}+r^{n-1} v=r^{n-1} f(r, v) \text { in }\left(R_{0}, R\right) \\
v^{\prime}\left(R_{0}\right)=v^{\prime}(R)=0
\end{array}\right.
$$

Double integration leads to fixed point equation

$$
\begin{aligned}
v(r)= & \lambda+\int_{R_{0}}^{r} \phi^{-1}\left(s^{1-n} \int_{s}^{R} \tau^{n-1}(f(\tau, v)-v) d \tau\right) d s \quad\left(r \in\left[R_{0}, R\right]\right) \\
& \int_{R_{0}}^{R} r^{n-1}(f(r, v)-v) d r=0 \quad \text { (controllability condition) }
\end{aligned}
$$

where $\lambda=v\left(R_{0}\right)$
3) The nonlinear stationary Stokes system

$$
\left\{\begin{array}{l}
-\Delta u+\nabla p=\Phi(u) \text { in } \Omega \\
\operatorname{div} u=0 \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Physically: $u=$ fluid velocity

$$
p=\text { pressure due to the medium porosity }
$$ $\Phi(u)=$ external reaction force

Denoting $\lambda:=\nabla p$ the problem becomes

$$
\left\{\begin{array}{l}
u=(-\Delta)^{-1}(\Phi(u)-\lambda), \quad u \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \\
\operatorname{div} u=0 \quad(\text { controllability condition })
\end{array}\right.
$$

General control problem of fixed point equations

$$
\left\{\begin{array}{l}
w=N(w, \lambda) \tag{1}\\
w \in W, \quad \lambda \in P, \quad(w, \lambda) \in D
\end{array}\right.
$$

$w=$ state variable, $\lambda=$ control variable, $W=$ domain of the states, $P=$ domain of controls, $D=$ controllability domain/condition

$$
\Sigma:=\{(w, \lambda) \in W \times P: w=N(w, \lambda)\}
$$

1. Give expression of control variable λ in terms of state variable w :

$$
\lambda=\Lambda(w)
$$

2. Replace and get the fixed point equation without parameter:

$$
w=N(w, \Lambda(w))
$$

3. Find a fixed point w^{*}

$$
\left.\left(w^{*}, \Lambda\left(w^{*}\right)\right) \in \Sigma \cap D \quad \text { (i.e., a solution of the control problem }\right)
$$

Techniques of solving control problems

- Existence by basic fixed point principles

EXAMPLE: Control of Lotka-Volterra system

$$
\left\{\begin{array}{l}
x^{\prime}=a x(1-\lambda b y) \\
y^{\prime}=-c y(1-d x) \\
x(0)=x_{0}, \quad y(0)=y_{0}, \quad x(T)=x_{T}, x, y>0
\end{array}\right.
$$

Theorem

Let $x_{0}<x_{T}<2 x_{0}$. The system is controllable on a short time interval $[0, T]$ with

$$
\begin{aligned}
T & <\min \left\{\frac{1}{4 a}, \frac{1}{c}, \frac{2 x_{0}-x_{T}}{4 a x_{0}}\right\}, \\
1-2 a T & >2 c T\left(1-2 a T+d x_{T}\right) .
\end{aligned}
$$

PROOF: Assume $b=1$. Integrating gives

$$
\left\{\begin{array}{l}
x(t)=x_{0}+a \int_{0}^{t} x(s)(1-\lambda y(s)) d s \\
y(t)=y_{0}-c \int_{0}^{t} y(s)(1-d x(s)) d s
\end{array}\right.
$$

Using the controllability condition $x(T)=x_{T}$ we obtain the necessary form of the control parameter

$$
\lambda=\Lambda(x, y):=\frac{a \int_{0}^{T} x(s) d s-x_{T}+x_{0}}{a \int_{0}^{T} x(s) y(s) d s}
$$

Replacing gives

$$
\left\{\begin{array}{l}
x(t)=A(x, y):=x_{0}+a \int_{0}^{t} x(s)(1-\Lambda(x, y) y(s)) d s \\
y(t)=B(x, y):=y_{0}-c \int_{0}^{t} y(s)(1-d x(s)) d s .
\end{array}\right.
$$

We look for solution in the bounded set

$$
D_{0}:=\left\{(x, y) \in C\left([0, T] ; \mathbb{R}^{2}\right): m_{x} \leq x \leq M_{x}, m_{y} \leq y \leq M_{y}\right\}
$$

where

$$
\begin{array}{ll}
m_{x}=\frac{2 x_{0}(1-2 a T)-x_{T}}{1-2 a T}, & M_{x}=\frac{x_{T}}{1-2 a T}, \\
m_{y}=y_{0} \frac{1-2 c T\left(1+d M_{x}\right)}{1-c T\left(1+d M_{x}\right)}, & M_{y}=\frac{y_{0}}{1-c T\left(1+d M_{x}\right)} .
\end{array}
$$

Then the operator $N=(A, B)$ satisfies

$$
N\left(D_{0}\right) \subset D_{0}
$$

In addition, N is compact. Thus Schauder's fixed point theorem applies.

- Vector fixed point techniques

EXAMPLE: Control of a Kolmogorov system

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x(t)\left[f(x(t), y(t))-\lambda_{1}\right] \\
y^{\prime}(t)=y(t)\left[g(x(t), y(t))-\lambda_{2}\right]
\end{array}\right.
$$

Controllability conditions: $\quad x(T)=x_{T}, \quad y(T)=y_{T}$ Denote $C_{1}:=\left|\ln x_{0}\right|+\left|\ln \left(x_{0} / x_{T}\right)\right|, \quad C_{2}:=\left|\ln y_{0}\right|+\left|\ln \left(y_{0} / y_{T}\right)\right|$

Theorem

Let $f, g:[0, \rho]^{2} \rightarrow \mathbb{R}$ be bounded by a constant M. Assume that for all $x, y, \bar{x}, \bar{y} \in[0, \rho]$:

$$
\begin{aligned}
|f(x, y)-f(\bar{x}, \bar{y})| & \leq a_{11}|x-\bar{x}|+a_{12}|y-\bar{y}| \\
|g(x, y)-g(\bar{x}, \bar{y})| & \leq a_{21}|x-\bar{x}|+a_{22}|y-\bar{y}|
\end{aligned}
$$

Then, if $0<T \leq \min \left\{\ln \rho-C_{1}, \ln \rho-C_{2}\right\} /(2 M)$ and the matrix $\mathcal{M}:=2 \rho T\left[a_{i j}\right]$ converges to zero, the problem has a unique solution $\left(x^{*}, y^{*}, \lambda_{1}^{*}, \lambda_{2}^{*}\right)$ with $\left\|x^{*}\right\|_{\infty} \leq \rho,\left\|y^{*}\right\|_{\infty} \leq \rho$.

PROOF: 1) Change of variables: $x=e^{u}, y=e^{v}, u_{0}=\ln x_{0}, v_{0}=\ln y_{0}$,

$$
u(T)=u_{T}=\ln x_{T}, \quad v(T)=v_{T}=\ln y_{T} .
$$

2) Substitution and integration gives

$$
\left\{\begin{array}{l}
u(t)=u_{0}+\int_{0}^{t} f\left(e^{u(s)}, e^{v(s)}\right) d s-\lambda_{1} t \\
v(t)=v_{0}+\int_{0}^{t} g\left(e^{u(s)}, e^{v(s)}\right) d s-\lambda_{2} t
\end{array}\right.
$$

3) Use the controllability condition to get the control expressions

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{T}\left(u_{0}-u_{T}+\int_{0}^{T} f\left(e^{u(s)}, e^{v(s)}\right) d s\right) \\
& \lambda_{2}=\frac{1}{T}\left(v_{0}-v_{T}+\int_{0}^{T} g\left(e^{u(s)}, e^{v(s)}\right) d s\right)
\end{aligned}
$$

4) Replace and get the fixed point system for the operator $N=(A, B)$ with:

$$
\begin{aligned}
A(u, v)(t) & =u_{0}-\frac{t}{T}\left(u_{0}-u_{T}\right)-\frac{t}{T} \int_{0}^{T} f\left(e^{u}, e^{v}\right) d s+\int_{0}^{t} f\left(e^{u}, e^{v}\right) d s \\
B(u, v)(t) & =v_{0}-\frac{t}{T}\left(v_{0}-v_{T}\right)-\frac{t}{T} \int_{0}^{T} g\left(e^{u}, e^{v}\right) d s+\int_{0}^{t} g\left(e^{u}, e^{v}\right) d s
\end{aligned}
$$

5) Apply Perov's fixed point theorem in the set

$$
D_{R}:=\left\{(u, v) \in C\left([0, T] ; \mathbb{R}^{2}\right):\|u\|_{\infty} \leq R,\|v\|_{\infty} \leq R\right\}
$$

where $R=\ln \rho$.

- $N\left(D_{R} \subset D_{R}\right.$
- N is a Perov contraction:

$$
\left[\begin{array}{l}
\|A(u, v)-A(\bar{u}, \bar{v})\|_{\infty} \\
\|B(u, v)-B(\bar{u}, \bar{v})\|_{\infty}
\end{array}\right] \leq \mathcal{M}\left[\begin{array}{l}
\|u-\bar{u}\|_{\infty} \\
\|v-\bar{v}\|_{\infty}
\end{array}\right]
$$

where the matrix \mathcal{M} is assumed convergent to zero.

A second result based on Schauder's FPT:

Theorem

Let $f, g: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ be continuous and satisfy growth conditions

$$
\begin{aligned}
|f(x, y)| & \leq a_{11}|\ln x|+a_{12}|\ln y|+b_{1} \\
|g(x, y)| & \leq a_{21}|\ln x|+a_{22}|\ln y|+b_{2}
\end{aligned}
$$

for all $x, y \in(0, \infty)$. Then for each $T>0$ for which the matrix $\mathcal{M}=2 T\left[a_{i j}\right]$ is convergent to zero, the control problem has at least one positive solution $\left(x^{*}, y^{*}, \lambda_{1}^{*}, \lambda_{2}^{*}\right)$.

PROOF: Apply Schauder FPT in a set of the form

$$
D=B_{R_{1}} \times B_{R_{2}}
$$

where $B_{R_{i}}=\left\{w \in C\left([0, T] ; \mathbb{R}_{+}\right):\|w\|_{\infty} \leq R_{i}\right\}(i=1,2)$.
We need to prove that there are two positive numbers R_{1} and R_{2} such that the following invariance condition be satisfied:

$$
\|u\|_{\infty} \leq R_{1},\|v\|_{\infty} \leq R_{2} \quad \Rightarrow \quad\|A(u, v)\|_{\infty} \leq R_{1}, \quad\|B(u, v)\|_{\infty} \leq R_{2}
$$

Use the growth conditions to get in the vector form:

$$
\left[\begin{array}{l}
\|A(u, v)\|_{\infty} \\
\|B(u, v)\|_{\infty}
\end{array}\right] \leq \mathcal{M}\left[\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right]+\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]
$$

Thus it suffices to have

$$
\mathcal{M}\left[\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right]+\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \leq\left[\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right]
$$

equivalently:

$$
\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \leq(I-\mathcal{M})\left[\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right]
$$

If the matrix \mathcal{M} is convergent to zero, then $(I-\mathcal{M})^{-1} \in \mathcal{M}_{2 \times 2}\left(\mathbb{R}_{+}\right)$ and thus

$$
(I-\mathcal{M})^{-1}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \leq\left[\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right]
$$

This inequality allows the choice of the radii $R_{1}, R_{2}>0$ to guarantee the invariance condition. Thus Schauder's fixed point theorem can be applied in $B_{R_{1}} \times B_{R_{2}}$.

Approximation and numerical techniques

Lower and upper solution method

Assume a partition of the solution domain:

$$
W \times P=\underline{D} \cup \bar{D}, \quad \underline{D} \cap \bar{D}=D
$$

Thus the condition of controllability can be targeted from the left or from the right.

Definition

By a lower (upper) solution of problem (1) we mean a pair $(w, \lambda) \in \Sigma \cap \underline{D}(\Sigma \cap \bar{D})$.

Assume: W is a metric space, $P=\operatorname{conv}\left\{\underline{\lambda}_{0}, \bar{\lambda}_{0}\right\}$ is a segment of a normed space and the sets \underline{D}, \bar{D} are closed. In addition:
(h1) The problem has a lower solution ($\underline{w}_{0}, \underline{\lambda}_{0}$) and an upper solution $\left(\bar{w}_{0}, \bar{\lambda}_{0}\right)$
(h2) For each $\sigma \in[0,1]$, there is a unique $w=: S(\sigma) \in W$ with $(w, \lambda) \in \Sigma$ for $\lambda=\lambda(\sigma):=(1-\sigma) \underline{\lambda}_{0}+\sigma \bar{\lambda}_{0}$
(h3) The map $S:[0,1] \rightarrow W$ is continuous

Bisection algorithm

Initialization: $\underline{\sigma}_{0}=0$ and $\bar{\sigma}_{0}=1$.
For $k \geq 1$ execute
Step 1. Calculate

$$
\sigma:=\frac{\underline{\sigma}_{k-1}+\bar{\sigma}_{k-1}}{2}
$$

and find $S(\sigma)$.
Step 2. If $(S(\sigma), \lambda(\sigma)) \in D$, we are finished and $(S(\sigma), \lambda(\sigma))$ is a solution of the control problem; otherwise take
(a) $\underline{\sigma}_{k}:=\sigma, \quad \bar{\sigma}_{k}:=\bar{\sigma}_{k-1}$ if $\quad(S(\sigma), \lambda(\sigma)) \in \underline{D} \backslash D$;
(b) $\underline{\sigma}_{k}:=\underline{\sigma}_{k-1}, \bar{\sigma}_{k}:=\sigma \quad$ if $\quad(S(\sigma), \lambda(\sigma)) \in \bar{D} \backslash D$,
then set $k:=k+1$ and go to Step 1.

The algorithm leads either to a solution when it stops, or to two sequences $\left(\underline{\sigma}_{k}\right)$ and $\left(\bar{\sigma}_{k}\right)$ such that
(i) $0 \leq \underline{\sigma}_{1} \leq \cdots \leq \underline{\sigma}_{k} \leq \underline{\sigma}_{k+1} \leq \cdots \leq 1$ and $\left(S\left(\underline{\sigma}_{k}\right), \lambda\left(\underline{\sigma}_{k}\right)\right) \in \underline{D}$
(ii) $0 \leq \cdots \leq \bar{\sigma}_{k+1} \leq \bar{\sigma}_{k} \leq \cdots \leq \bar{\sigma}_{1} \leq 1$ and $\left(S\left(\bar{\sigma}_{k}\right), \lambda\left(\bar{\sigma}_{k}\right)\right) \in \bar{D}$
(iii) $0 \leq \bar{\sigma}_{k}-\underline{\sigma}_{k}=\frac{1}{2^{k}}$.

Then the sequences $\left(\underline{\sigma}_{k}\right)$ and $\left(\bar{\sigma}_{k}\right)$ are convergent, have the same limit σ^{*} and $\left(S\left(\sigma^{*}\right), \lambda\left(\sigma^{*}\right)\right) \in \underline{D}, \quad\left(S\left(\sigma^{*}\right), \lambda\left(\sigma^{*}\right)\right) \in \bar{D}$. Hence $\left(S\left(\sigma^{*}\right), \lambda\left(\sigma^{*}\right)\right) \in D$ that is $\left(S\left(\sigma^{*}\right), \lambda\left(\sigma^{*}\right)\right)$ solves the control problem.

Theorem

Under assumptions (h1)-(h3), the Algorithm is convergent to a solution (w^{*}, λ^{*}) of the control problem.

APPLICATION: control of cell evolution after bone marrow

 transplantation$$
\left\{\begin{array}{c}
x^{\prime}=\frac{a}{1+b(x+y+z)} \cdot \frac{x+y}{x+y+\lambda_{1} g z} x-c x \\
y^{\prime}=\frac{\lambda_{4} A}{1+B(x+y+z)} \cdot \frac{x+y}{x+y+\lambda_{2} G z} y-\lambda_{5} C y \\
z^{\prime}=\frac{a}{1+b(x+y+z)} \cdot \frac{z}{z+\lambda_{3} h(x+y)} z-c z
\end{array}\right.
$$

$x(t), y(t), z(t)=$ normal, leukemic, donor cells
$a, A \quad=$ growth rates of normal/ leukemic cells
$b, B \quad=$ sensibility rates
c, $C \quad=$ cell death rates of normal/ leukemic cells
$h, g, G=$ anti-graft/anti-host/ anti-cancer effects
Therapies: - immunosuppressive therapy (related to h)

- post-transplant consolidation chemotherapy (related to A, C)
- donor T-lymphocyte infusion (related to g, G)

Figure 1: Border between the basins of attraction of the two asymptotically stable equilibria, "good" and "bad"

A good indicator of the location in the "bad" or "good" basin is:

$$
\frac{z}{x}<\sqrt{\frac{h}{g}} \text { ("bad" basin) } \frac{z}{x}>\sqrt{\frac{h}{g}} \quad \text { ("good" basin) }
$$

Figure 2: showing that the basin of
attraction of the good equilibrium becomes larger by changing parameters
Assume that at transplant time $t=0$ patient's condition $(x(0), y(0), z(0))$ is in the "bad" basin i.e. $\frac{z(0)}{x(0)}<\sqrt{\frac{h}{g}}$

The aim is that in a short time T, his condition is brought into the good "basin" i.e. $\frac{z(T)}{x(T)}>\sqrt{\frac{h}{g}}$

For a lower solution $\left(\underline{x}_{0}, \underline{y}_{0}, \underline{z}_{0}, \underline{\lambda}_{0}\right)$ we take the vector $\underline{\lambda}_{0}=(1,1,1,1,1)$ which corresponds to the absence of any post-transplant therapy. Then

$$
\frac{\underline{z}_{0}(T)}{\underline{x}_{0}(T)}<\sqrt{\frac{h}{g}}
$$

An upper solution $\left(\bar{x}_{0}, \bar{y}_{0}, \bar{z}_{0}, \bar{\lambda}_{0}\right)$ is chosen by checking several vectors λ to have

$$
\frac{\bar{z}_{0}(T)}{\bar{x}_{0}(T)}>\sqrt{\frac{h}{g}} .
$$

The algorithm continues until the first step k at which, for $\lambda=\lambda\left(\bar{\sigma}_{k}\right)$, one has

$$
\frac{z(T)}{x(T)} \leq \sqrt{\frac{h}{g}}+\delta
$$

for an acceptable margin $0<\delta<\bar{z}_{0}(T) / \bar{x}_{0}(T)-\sqrt{h / g}$. Then the vector $\lambda\left(\bar{\sigma}_{k}\right)=\left(1-\bar{\sigma}_{k}\right) \underline{\lambda}_{0}+\bar{\sigma}_{k} \bar{\lambda}_{0}$ can be a good approximation for the control λ.

Referring to the general framework, we have:

$$
\begin{aligned}
& W=C\left([0, T] ;(0,+\infty)^{3}\right), w=(x, y, z) \\
& \Lambda=\{\lambda(\sigma): \sigma \in[0,1]\}, \text { where } \lambda(\sigma)=(1-\sigma) \underline{\lambda}_{0}+\sigma \bar{\lambda}_{0}
\end{aligned}
$$

$$
\begin{aligned}
& D=\left\{(w, \lambda): \frac{z(T)}{x(T)}=\sqrt{\frac{h}{g}}\right\} \\
& \underline{D}=\left\{(w, \lambda): \frac{z(T)}{x(T)} \leq \sqrt{\frac{h}{g}}\right\} \\
& \bar{D}=\left\{(w, \lambda): \frac{z(T)}{x(T)} \geq \sqrt{\frac{h}{g}}\right\}
\end{aligned}
$$

IS Haplea, LG Parajdi, RP: On the controllability of a system modeling cell dynamics related to leukemia, Symmetry 2021, 13, 1867.

RP: On some applications of the controllability principle for fixed point equations, Results in Applied Mathematics 13 (2022), 100236.

A Hofman, RP: On some control problems for Kolmogorov type systems, Mathematical Modelling and Control 2022, 2(3).

LG Parajdi, F Patrulescu, RP, IS Haplea: Two numerical methods for solving a nonlinear system of integral equations of mixed Volterra-Fredholm type arising from a control problem related to leukemia, Journal of Applied Analysis and Computation 2022, doi:
10.11948/20220197

LG Parajdi, RP, IS Haplea: Method of lower and upper solutions for control problems and application to a model of bone marrow transplantation, submitted.

A Hofman, RP: Vector approach to control of Kolmogorov differential systems, in preparation.

Thank you for your attention!

