An improved range of exponents for absence of Lavrentiev phenomenon for double phase functionals

Piotr Gwiazda IMPAN

Joint work with Miroslav Bulíček and Jakub Skrzeczkowski

02.03.2022

Let 1 , consider

$$\mathcal{F}(u) = \int_{\Omega} |\nabla u|^p$$

as well as corresponding variational problem

$$\inf_{u\in u_0+W_0^{1,p}(\Omega)}\mathcal{F}(u).$$

Here, $u_0 \in C^{\infty}(\Omega)$ represents boundary data.

We consider the problem: $\inf_{u \in u_0 + W_0^{1,p}(\Omega)} \int_{\Omega} |\nabla u|^p$

- **1** Is there a minimizer? Yes, say u^* .
- ② Is there a sequence of functions $\{u_n\}_{n\in\mathbb{N}} \subset C_c^{\infty}(\Omega)$ such that $u_0 + u_n \rightarrow u^*$ and $\mathcal{F}(u_0 + u_n) \rightarrow \mathcal{F}(u^*)$? Standard density argument.
- What is regularity of the minimizer u*? De Giorgi - Nash - Moser theory...

Question 2 implies

$$\inf_{u_0+C_c^{\infty}(\Omega)}\int_{\Omega}|\nabla u|^p=\inf_{u_0+W_0^{1,\infty}(\Omega)}\int_{\Omega}|\nabla u|^p=\inf_{u\in u_0+W_0^{1,p}(\Omega)}\int_{\Omega}|\nabla u|^p.$$

Mania's example (1934)

Lavrentiev phenomenon is a situation when for some functional \mathcal{F} and two spaces X, Y

$$\inf_{u\in X}\mathcal{F}(u)<\inf_{u\in Y}\mathcal{F}(u).$$

Consider

$$\mathcal{F}(u) = \int_0^1 (u(t)^3 - t)^2 (u'(t))^6 dt$$

over functions with u(0) = 0, u(1) = 1.

The Lavrentiev phenomenon occurs between

$$X = W^{1,1}(0,1)$$
 and $Y = W^{1,\infty}(0,1).$

B. Mania. Sopra un esempio di Lavrentieff. Boll. Un. Mat. Ital., 13:147–153, 1934. It's not only an academic example.

F. Rindler. Calculus of variations. Springer, 2018.

Double phase functionals

Absence of LP is not trivial for functionals with *x*-dependent growth, the model example reads:

$$\mathcal{I}(u) = \int_{\Omega} |
abla u|^p + a(x) \, |
abla u|^q$$

with 1 .

Here, $a: \Omega \to \mathbb{R}^+$ is a continuous function vanishing on some part of Ω .

One usually assumes Holder regularity: $a \in C^{\alpha}(\Omega)$.

We cannot obtain any valuable L^q estimates on ∇u on the set

$$\{x\in\Omega:a(x)\neq 0\}.$$

The functional \mathcal{I} is strongly l.s.c. on both $W^{1,p}(\Omega)$ and $W^{1,q}(\Omega)$ and hence weakly l.s.c. by convexity.

There is a minimizer in $W^{1,p}(\Omega)$ (but not necessarily in $W^{1,q}(\Omega)$!).

It may happen that

$$\inf_{u\in u_0+W_0^{1,p}(\Omega)}\mathcal{I}(u)<\inf_{u\in u_0+W_0^{1,q}(\Omega)}\mathcal{I}(u).$$

Positive and negative results

$$\inf_{u \in u_0 + W_0^{1,p}(\Omega)} \mathcal{I}(u) = \inf_{u \in u_0 + W_0^{1,q}(\Omega)} \mathcal{I}(u).$$

• $q \leq p + \alpha \frac{p}{d}$ (simple mollification argument)

M. Colombo and G. Mingione. Regularity for double phase variational problems. ARMA, 2015.
A. Esposito, F. Leonetti, and P. Vincenzo Petricca. Absence of Lavrentiev gap for non-autonomous functionals with (p, q)-growth. Adv. Nonlinear Anal., 8(1):73–78, 2019.

• $q \le p + \alpha$ (complicated proof based on regularity of minimizers and additional boundedness assumption)

M. Colombo and G. Mingione. Bounded minimisers of double phase variational integrals. ARMA, 2015.

$$\inf_{u\in u_0+W_0^{1,p}(\Omega)}\mathcal{I}(u)<\inf_{u\in u_0+W_0^{1,q}(\Omega)}\mathcal{I}(u).$$

we discuss this at the end...

Our result concerns the positive part.

$$\inf_{u \in u_0 + W_0^{1,p}(\Omega)} \mathcal{I}(u) = \inf_{u \in u_0 + W_0^{1,q}(\Omega)} \mathcal{I}(u).$$

- $q \leq p + \alpha \frac{p}{d}$ (simple mollification argument)
- q ≤ p + α (complicated proof based on regularity of minimizers and additional boundedness assumption)

OUR RESULT: We show that a simple mollification argument works if (p_{ij})

$$q \leq p + lpha \max\left(rac{p}{d}, 1
ight).$$

Functional analytic setting

We would like to work in normed space of functions such that

$$\int_{\Omega} |\nabla u|^p + \mathsf{a}(x) \, |\nabla u|^q < \infty$$

but it is hard to define the norm.

For L^p spaces there is an equivalent norm

$$\|f\|_{p} = \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{f(x)}{\lambda} \right|^{p} \le 1 \right\}$$

We define the norm with:

$$\inf\left\{\lambda > 0: \int_{\Omega} \left|\frac{f(x)}{\lambda}\right|^{p} + a(x) \left|\frac{f(x)}{\lambda}\right|^{q} \leq 1\right\}$$

Functional analytic setting

We let

$$\varphi(x,\xi) = |\xi|^p + a(x) \, |\xi|^q.$$

We define the norm with

$$\|f\|_{arphi} = \inf \left\{ \lambda > 0 : \int_{\Omega} \varphi\left(x, \left| rac{f(x)}{\lambda} \right|
ight) \leq 1
ight\}$$

and the related Banach space is

$$\begin{split} &W_0^{1,\varphi}(\Omega) = \{ u \in W_0^{1,1}(\Omega) : \|\nabla u\|_{\varphi} < \infty \}, \\ &W^{1,\varphi}(\Omega) = \{ u \in W^{1,1}(\Omega) : \|\nabla u\|_{\varphi} < \infty \}. \end{split}$$

and the norm

$$||u|| := ||u||_1 + ||\nabla u||_{\varphi}.$$

A space of integrable functions such that

$$\int_{\Omega} |\nabla u|^{p} + a(x) |\nabla u|^{q} < \infty.$$

A space between $W^{1,p}$ and $W^{1,q}$:

$$W^{1,p}(\Omega)\subset W^{1,arphi}(\Omega)\subset W^{1,q}(\Omega).$$

For convergence $u_n \to u$ in $W^{1,\varphi}(\Omega)$ we need

- $u_n \rightarrow u$ in L^1 ,
- $\nabla u_n \rightarrow \nabla u$ wrt $\|\cdot\|_{\varphi}$

I. Chlebicka, P. Gwiazda, A. Wróblewska-Kamińska, and A. Świerczewska-Gwiazda. Partial Differential Equations in anisotropic Musielak-Orlicz spaces. Springer Monographs in Mathematics, 2021. We want to rewrite problem of Lavrentiev phenomenon in the setting of Musielak-Orlicz-Sobolev spaces.

Theorem. Let $\{f_n\}_{n\in\mathbb{N}} \subset L^1(\Omega)$ and f be a measurable function. Then, $f_n \to f$ in $L^1(\Omega)$ if and only if $f_n \to f$ in measure and $\{f_n\}_{n\in\mathbb{N}}$ is uniformly integrable, i.e.

$$\forall \varepsilon > 0 \, \exists \delta > 0 \, \forall A \subset \Omega \qquad \lambda(A) < \delta \implies \sup_{n \in \mathbb{N}} \int_{A} |f_n| \, \mathrm{d}\lambda < \varepsilon.$$

Think about $f_n = n \mathbb{1}_{[0,1/n]}$.

Suppose that

• $f_n \rightarrow f$ in measure,

• there are g_n such that $|f_n| \le g_n$ and $g_n \to g$ in L^1 . Then, $f_n \to f$ in L^1 .

Compare with dominated covergence...

We have

$$\|f-f_n\|_{\varphi} \to 0 \iff \int_{\Omega} \varphi(x, |f-f_n|) \to 0$$

i.e.

$$\int_{\Omega} |f - f_n|^p + a(x) |f - f_n|^q \to 0.$$

More on convergence in $\|\cdot\|_{\varphi}$

$$\|f - f_n\|_arphi o 0$$
 with $\|f\|_arphi < \infty$ if and only if

$$I_n \to f \text{ in measure,}$$

② { $\varphi(x, f_n)$ }_{n∈ℕ} is uniformy integrable.

$$\varphi(x, f_n - f) = \varphi\left(x, 2\frac{f_n - f}{2}\right) \le 2^q \varphi\left(x, \frac{f_n - f}{2}\right).$$

Then, we use convexity

$$\varphi\left(x, \frac{f_n-f}{2}\right) = \varphi\left(x, \frac{f_n}{2}-\frac{f}{2}\right) \leq \frac{1}{2}\varphi\left(x, f_n\right) + \frac{1}{2}\varphi\left(x, f\right)$$

The opposite direction in a similar manner.

Density of $C_c^{\infty}(\Omega)$ in $W_0^{1,\varphi} \implies$ absence of LP.

Let $u_0 \in W^{1,q}(\Omega)$. We want to prove

$$\inf_{u\in u_0+W_0^{1,p}(\Omega)}\mathcal{I}(u)=\inf_{u\in u_0+W_0^{1,q}(\Omega)}\mathcal{I}(u).$$

Inequality \leq is trivial. To see \geq , we take $u^* \in W_0^{1,p}(\Omega)$ to be a minimizer of \mathcal{I} .

• $u^* \in W^{1,\varphi}$ because $\mathcal{I}(u) < \infty$,

2)
$$u_0 \in W^{1,arphi}$$
 because $u_0 \in W^{1,arphi}$

③ $u^* - u_0 \in W_0^{1,\varphi}$ so there is a sequence of $\{u_n\}_{n \in \mathbb{N}}$ such that $u_n + u_0 \to u^*$ in $W^{1,\varphi}$ i.e. $\mathcal{I}(u_n + u_0) \to \mathcal{I}(u^*)$

4 Then,

$$\inf_{u \in u_0 + W_0^{1,p}(\Omega)} \mathcal{I}(u) = \mathcal{I}(u^*) = \lim_{n \to \infty} \mathcal{I}(u_n + u_0) \ge \inf_{u \in u_0 + C_c^{\infty}(\Omega)} \mathcal{I}(u).$$

Density of $W_0^{1,\varphi}(\Omega) \cap L^{\infty}(\Omega)$ in $W_0^{1,\varphi}(\Omega)$.

Let $u \in W^{1,\varphi}(\Omega)$. Consider truncation operator

$$T_k(u) := egin{cases} u & ext{if } |u| \leq k, \ rac{u}{|u|}k & ext{if } |u| > k. \end{cases}$$

CLAIM: Then, $T_k(u) \to u$ in $W^{1,\varphi}(\Omega)$.

Indeed,
$$\nabla T_k(u) = \mathbb{1}_{|u| \le k} \nabla u \to \nabla u$$
 a.e. As
 $\varphi(x, |\nabla T_k(u)|) \le \varphi(x, |\nabla u|),$

the sequence $\{\varphi(x, \nabla T_k(u))\}_{k \in \mathbb{N}}$ is uniformly integrable.

This is actually the main novelty of our work.

Proof of density $\overline{C_c^{\infty}(\Omega)}$ in $W_0^{1,\varphi}(\Omega) \cap L^{\infty}(\Omega)$

Let $u \in W_0^{1,\varphi}(\Omega)$ and u^{ε} be its usual mollification.

We will prove that the sequence $\{\varphi(x, \nabla u^{\varepsilon})\}_{\varepsilon>0}$ is uniformly integrable.

As $\nabla u^{\varepsilon} \rightarrow \nabla u$ a.e., we obtain

$$\|\nabla u^{\varepsilon} - \nabla u\|_{\varphi} \to 0.$$

Does it prove $C_c^{\infty}(\Omega)$ is dense in $W_0^{1,\varphi}(\Omega)$?

 $\{\varphi(x, \nabla u^{\varepsilon})\}_{\varepsilon>0}$ is uniformly integrable.

$$egin{aligned} 0 &\leq arphi(x,
abla u^arepsilon) = arphi\left(x, \int_{B_arepsilon}
abla u(x-y) \, \eta_arepsilon(y) \mathsf{d}y
ight) \ &\leq \int_{B_arepsilon} arphi\left(x,
abla u(x-y) \,
ight) \eta_arepsilon(y) \mathsf{d}y \end{aligned}$$

If we could replace $\varphi(x, \nabla u(x - y))$ with $\varphi(x - y, \nabla u(x - y))$, the (RHS) is

$$\int_{B_{\varepsilon}} \varphi(x-y, \nabla u(x-y)) \eta_{\varepsilon}(y) dy = \varphi(x, \nabla u(x)) * \eta_{\varepsilon}.$$

As $\varphi(x, \nabla u(x)) \in L^1(\Omega)$, its mollification converges in $L^1(\Omega)$ and $\{\varphi(x, \nabla u^{\varepsilon})\}_{\varepsilon>0}$ is uniformly integrable.

Fix $x \in \Omega$ and consider

$$\widetilde{\varphi}(\xi) = \inf_{y \in B_{\varepsilon}(x) \cap \Omega} \varphi(x, \xi).$$

By continuity, there is $x^* \in B_{arepsilon}(x) \cap \Omega$ such that

$$\widetilde{\varphi}(\xi) = \varphi(x^*, \xi).$$

It follows that $\xi \mapsto \widetilde{\varphi}(\xi)$ is convex.

I

Let
$$|x - z| \le \varepsilon$$
 and $\xi = \nabla u^{\varepsilon}(x)$. Then,

$$\frac{\varphi(x,\xi)}{\varphi(z,\xi)} = \frac{|\xi|^p + a(x) \, |\xi|^q}{|\xi|^p + a(z) \, |\xi|^q} = \frac{1 + a(x) \, |\xi|^{q-p}}{1 + a(z) \, |\xi|^{q-p}} = \frac{1 + a(z) \, |\xi|^{q-p} - a(z) \, |\xi|^{q-p} + a(x) \, |\xi|^{q-p}}{1 + a(z) \, |\xi|^{q-p}} \le 1 + |a(x) - a(z)| \, |\xi|^{q-p} \le 1 + |a|_{\alpha} \, |x - z|^{\alpha} \, |\xi|^{q-p}$$

As $|x-z| \leq \varepsilon$, we need $\|\nabla u^{\varepsilon}\|_{\infty}^{q-p} \leq C \varepsilon^{-\alpha}$.

Estimate on convolution

We need $\|\nabla u^{\varepsilon}\|_{\infty}^{q-p} \leq C \varepsilon^{-\alpha}$.

Young's convolutional inequality:

$$\|f * g\|_{\infty} \le \|f\|_{p} \|g\|_{q}, \qquad 1 = \frac{1}{p} + \frac{1}{q}.$$

Application of $u \in L^{\infty}$:

$$\|u * \nabla \eta_{\varepsilon}\|_{\infty} \leq \|u\|_{\infty} \|\nabla \eta_{\varepsilon}\|_{1} \leq \|u\|_{\infty} \frac{C}{\varepsilon} \leq C\varepsilon^{-\alpha/(q-p)}$$

need $q - p \leq \alpha$

Application of $\nabla u \in L^p$:

We

 $\|\nabla u * \eta_{\varepsilon}\|_{\infty} \leq \|\nabla u\|_{p} \|\eta_{\varepsilon}\|_{p'} \leq \varepsilon^{-d/p} \|\nabla u\|_{p} \leq C\varepsilon^{-\alpha/(q-p)}$

We need $q - p \leq \alpha \frac{p}{d}$.

Under this exponent regime we have

$$\varphi(x,\xi) \leq C \,\widetilde{\varphi}(\xi).$$

Then, we estimate

$$\begin{split} 0 &\leq \varphi(x, \nabla u^{\varepsilon}) \leq \widetilde{\varphi}(\nabla u^{\varepsilon}) \\ &= \widetilde{\varphi}\left(\int_{B_{\varepsilon}} \nabla u(x-y) \,\eta_{\varepsilon}(y) \mathsf{d}y\right) \\ &\leq \int_{B_{\varepsilon}} \widetilde{\varphi}\left(\nabla u(x-y)\right) \eta_{\varepsilon}(y) \mathsf{d}y \\ &\leq \int_{B_{\varepsilon}} \varphi\left(x-y, \nabla u(x-y)\right) \eta_{\varepsilon}(y) \mathsf{d}y \end{split}$$

as $x - y \in B_{\varepsilon}(x)$.

We don't observe Lavrentiev phenomenon if

$$q - p \leq lpha \max\left(1, rac{p}{d}
ight).$$

Counterexamples exists when

$$q - p > \alpha \max\left(1, \frac{p-1}{d-1}\right).$$

A. K. Balci, L. Diening, and M. Surnachev. New examples on Lavrentiev gap using fractals. Calc. Var. PDE 2020. Our work is optimal when $p\leq d$

For p > d there is still some room for improvement.

- The presented proof is in fact inaccurate. Some care is needed to make functions compactly supported.
- After some modifications, the reasoning can be extended to variable exponent functionals

$$\mathcal{H}(u) = \int_{\Omega} |\xi|^{p(x)} + a(x) \, |\xi|^{q(x)}.$$

S As φ(x, |∇u|) depends only on the length of the gradient ∇u, the reasoning can be extended to vectorial problems

THANK YOU!