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Standard minimization problem

Let 1 < p <∞, consider

F(u) =

∫
Ω
|∇u|p

as well as corresponding variational problem

inf
u∈u0+W 1,p

0 (Ω)
F(u).

Here, u0 ∈ C∞(Ω) represents boundary data.
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Absence of Lavrentiev phenomenon

We consider the problem: inf
u∈u0+W 1,p

0 (Ω)

∫
Ω |∇u|

p

1 Is there a minimizer? Yes, say u∗.
2 Is there a sequence of functions {un}n∈N ⊂ C∞c (Ω) such that

u0 + un → u∗ and F(u0 + un)→ F(u∗)?
Standard density argument.

3 What is regularity of the minimizer u∗?
De Giorgi - Nash - Moser theory...

Question 2 implies

inf
u0+C∞

c (Ω)

∫
Ω
|∇u|p = inf

u0+W 1,∞
0 (Ω)

∫
Ω
|∇u|p = inf

u∈u0+W 1,p
0 (Ω)

∫
Ω
|∇u|p.
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Mania’s example (1934)

Lavrentiev phenomenon is a situation when for some functional F
and two spaces X , Y

inf
u∈X
F(u) < inf

u∈Y
F(u).

Consider

F(u) =

∫ 1

0
(u(t)3 − t)2 (u′(t))6 dt

over functions with u(0) = 0, u(1) = 1.

The Lavrentiev phenomenon occurs between

X = W 1,1(0, 1) and Y = W 1,∞(0, 1).

B. Mania. Sopra un esempio di Lavrentieff. Boll. Un. Mat. Ital., 13:147–153, 1934.

It’s not only an academic example.
F. Rindler. Calculus of variations. Springer, 2018.
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Double phase functionals

Absence of LP is not trivial for functionals with x-dependent
growth, the model example reads:

I(u) =

∫
Ω
|∇u|p + a(x) |∇u|q

with 1 < p < q <∞.

Here, a : Ω→ R+ is a continuous function vanishing on some part
of Ω.

One usually assumes Holder regularity: a ∈ Cα(Ω).

We cannot obtain any valuable Lq estimates on ∇u on the set

{x ∈ Ω : a(x) 6= 0}.

Piotr Gwiazda Absence of Lavrentiev phenomenon



Lavrentiev phenomenon for double-phase functional

The functional I is strongly l.s.c. on both W 1,p(Ω) and W 1,q(Ω)
and hence weakly l.s.c. by convexity.

There is a minimizer in W 1,p(Ω) (but not necessarily in W 1,q(Ω)!).

It may happen that

inf
u∈u0+W 1,p

0 (Ω)
I(u) < inf

u∈u0+W 1,q
0 (Ω)

I(u).
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Positive and negative results

inf
u∈u0+W 1,p

0 (Ω)
I(u) = inf

u∈u0+W 1,q
0 (Ω)

I(u).

q ≤ p + α p
d (simple mollification argument)

M. Colombo and G. Mingione. Regularity for double phase variational problems. ARMA, 2015.

A. Esposito, F. Leonetti, and P. Vincenzo Petricca. Absence of Lavrentiev gap for

non-autonomous functionals with (p, q)-growth. Adv. Nonlinear Anal., 8(1):73–78, 2019.

q ≤ p + α (complicated proof based on regularity of
minimizers and additional boundedness assumption)
M. Colombo and G. Mingione. Bounded minimisers of double phase variational integrals.

ARMA, 2015.

inf
u∈u0+W 1,p

0 (Ω)
I(u) < inf

u∈u0+W 1,q
0 (Ω)

I(u).

we discuss this at the end...
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Main result

Our result concerns the positive part.

inf
u∈u0+W 1,p

0 (Ω)
I(u) = inf

u∈u0+W 1,q
0 (Ω)

I(u).

q ≤ p + α p
d (simple mollification argument)

q ≤ p + α (complicated proof based on regularity of
minimizers and additional boundedness assumption)

OUR RESULT: We show that a simple mollification argument
works if

q ≤ p + α max
(p
d
, 1
)
.
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Functional analytic setting

We would like to work in normed space of functions such that∫
Ω
|∇u|p + a(x) |∇u|q <∞

but it is hard to define the norm.

For Lp spaces there is an equivalent norm

‖f ‖p = inf
{
λ > 0 :

∫
Ω

∣∣∣∣ f (x)

λ

∣∣∣∣p ≤ 1
}

We define the norm with:

inf
{
λ > 0 :

∫
Ω

∣∣∣∣ f (x)

λ

∣∣∣∣p + a(x)

∣∣∣∣ f (x)

λ

∣∣∣∣q ≤ 1
}
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Functional analytic setting

We let
ϕ(x , ξ) = |ξ|p + a(x) |ξ|q.

We define the norm with

‖f ‖ϕ = inf
{
λ > 0 :

∫
Ω
ϕ

(
x ,

∣∣∣∣ f (x)

λ

∣∣∣∣) ≤ 1
}

and the related Banach space is

W 1,ϕ
0 (Ω) = {u ∈W 1,1

0 (Ω) : ‖∇u‖ϕ <∞},

W 1,ϕ(Ω) = {u ∈W 1,1(Ω) : ‖∇u‖ϕ <∞}.

and the norm
‖u‖ := ‖u‖1 + ‖∇u‖ϕ.
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What is W 1,ϕ(Ω)?

A space of integrable functions such that∫
Ω
|∇u|p + a(x) |∇u|q <∞.

A space between W 1,p and W 1,q:

W 1,p(Ω) ⊂W 1,ϕ(Ω) ⊂W 1,q(Ω).

For convergence un → u in W 1,ϕ(Ω) we need
un → u in L1,
∇un → ∇u wrt ‖ · ‖ϕ

I. Chlebicka, P. Gwiazda, A. Wróblewska-Kamińska, and A. Świerczewska-Gwiazda. Partial Differential

Equations in anisotropic Musielak-Orlicz spaces. Springer Monographs in Mathematics, 2021.

Piotr Gwiazda Absence of Lavrentiev phenomenon



Vitali convergence theorem

We want to rewrite problem of Lavrentiev phenomenon in the
setting of Musielak-Orlicz-Sobolev spaces.

Theorem. Let {fn}n∈N ⊂ L1(Ω) and f be a measurable function.
Then, fn → f in L1(Ω) if and only if fn → f in measure and
{fn}n∈N is uniformly integrable, i.e.

∀ε > 0 ∃δ > 0 ∀A ⊂ Ω λ(A) < δ =⇒ sup
n∈N

∫
A
|fn| dλ < ε.

Think about fn = n1[0,1/n].
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One consequence of VCT

Suppose that
fn → f in measure,
there are gn such that |fn| ≤ gn and gn → g in L1.

Then, fn → f in L1.

Compare with dominated covergence...
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Convergence in ‖ · ‖ϕ

We have

‖f − fn‖ϕ → 0 ⇐⇒
∫

Ω
ϕ (x , |f − fn|)→ 0

i.e. ∫
Ω
|f − fn|p + a(x) |f − fn|q → 0.
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More on convergence in ‖ · ‖ϕ

‖f − fn‖ϕ → 0 with ‖f ‖ϕ <∞ if and only if
1 fn → f in measure,
2 {ϕ(x , fn)}n∈N is uniformy integrable.

ϕ(x , fn − f ) = ϕ

(
x , 2

fn − f

2

)
≤ 2q ϕ

(
x ,

fn − f

2

)
.

Then, we use convexity

ϕ

(
x ,

fn − f

2

)
= ϕ

(
x ,

fn
2
− f

2

)
≤ 1

2
ϕ (x , fn) +

1
2
ϕ (x , f )

The opposite direction in a similar manner.
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Density of C∞c (Ω) in W 1,ϕ
0 =⇒ absence of LP.

Let u0 ∈W 1,q(Ω). We want to prove

inf
u∈u0+W 1,p

0 (Ω)
I(u) = inf

u∈u0+W 1,q
0 (Ω)

I(u).

Inequality ≤ is trivial. To see ≥, we take u∗ ∈W 1,p
0 (Ω) to be a

minimizer of I.
1 u∗ ∈W 1,ϕ because I(u) <∞,
2 u0 ∈W 1,ϕ because u0 ∈W 1,q

3 u∗ − u0 ∈W 1,ϕ
0 so there is a sequence of {un}n∈N such that

un + u0 → u∗ in W 1,ϕ i.e. I(un + u0)→ I(u∗)

4 Then,

inf
u∈u0+W 1,p

0 (Ω)
I(u) = I(u∗) = lim

n→∞
I(un+u0) ≥ inf

u∈u0+C∞
c (Ω)

I(u).
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Density of W 1,ϕ
0 (Ω) ∩ L∞(Ω) in W 1,ϕ

0 (Ω).

Let u ∈W 1,ϕ(Ω). Consider truncation operator

Tk(u) :=

{
u if |u| ≤ k,
u
|u|k if |u| > k.

CLAIM: Then, Tk(u)→ u in W 1,ϕ(Ω).

Indeed, ∇Tk(u) = 1|u|≤k∇u → ∇u a.e. As

ϕ(x , |∇Tk(u)|) ≤ ϕ(x , |∇u|),

the sequence {ϕ(x ,∇Tk(u))}k∈N is uniformly integrable.

This is actually the main novelty of our work.
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Proof of density C∞c (Ω) in W 1,ϕ
0 (Ω) ∩ L∞(Ω)

Let u ∈W 1,ϕ
0 (Ω) and uε be its usual mollification.

We will prove that the sequence {ϕ(x ,∇uε)}ε>0 is uniformly
integrable.

As ∇uε → ∇u a.e., we obtain

‖∇uε −∇u‖ϕ → 0.

Does it prove C∞c (Ω) is dense in W 1,ϕ
0 (Ω)?
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{ϕ(x ,∇uε)}ε>0 is uniformly integrable.

0 ≤ ϕ(x ,∇uε) = ϕ

(
x ,

∫
Bε

∇u(x − y) ηε(y)dy
)

≤
∫
Bε

ϕ (x ,∇u(x − y) ) ηε(y)dy

If we could replace ϕ (x ,∇u(x − y) ) with ϕ (x − y ,∇u(x − y) ),
the (RHS) is∫

Bε

ϕ (x − y ,∇u(x − y) ) ηε(y)dy = ϕ(x ,∇u(x)) ∗ ηε.

As ϕ(x ,∇u(x)) ∈ L1(Ω), its mollification converges in L1(Ω) and
{ϕ(x ,∇uε)}ε>0 is uniformly integrable.
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Autonomous approximation

Fix x ∈ Ω and consider

ϕ̃(ξ) = inf
y∈Bε(x)∩Ω

ϕ(x , ξ).

By continuity, there is x∗ ∈ Bε(x) ∩ Ω such that

ϕ̃(ξ) = ϕ(x∗, ξ).

It follows that ξ 7→ ϕ̃(ξ) is convex.
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Comparing ϕ̃(ξ) with ϕ(x , ξ)

Let |x − z | ≤ ε and ξ = ∇uε(x). Then,

ϕ(x , ξ)

ϕ(z , ξ)
=
|ξ|p + a(x) |ξ|q

|ξ|p + a(z) |ξ|q
=

1 + a(x) |ξ|q−p

1 + a(z) |ξ|q−p
=

=
1 + a(z) |ξ|q−p − a(z) |ξ|q−p + a(x) |ξ|q−p

1 + a(z) |ξ|q−p

≤ 1 + |a(x)− a(z)| |ξ|q−p ≤ 1 + |a|α |x − z |α |ξ|q−p

As |x − z | ≤ ε, we need ‖∇uε‖q−p∞ ≤ C ε−α.
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Estimate on convolution

We need ‖∇uε‖q−p∞ ≤ C ε−α.

Young’s convolutional inequality:

‖f ∗ g‖∞ ≤ ‖f ‖p ‖g‖q, 1 =
1
p

+
1
q
.

Application of u ∈ L∞:

‖u ∗ ∇ηε‖∞ ≤ ‖u‖∞ ‖∇ηε‖1 ≤ ‖u‖∞
C

ε
≤ Cε−α/(q−p)

We need q − p ≤ α

Application of ∇u ∈ Lp:

‖∇u ∗ ηε‖∞ ≤ ‖∇u‖p ‖ηε‖p′ ≤ ε−d/p‖∇u‖p ≤ Cε−α/(q−p)

We need q − p ≤ α p
d .
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The final proof

Under this exponent regime we have

ϕ(x , ξ) ≤ C ϕ̃(ξ).

Then, we estimate

0 ≤ ϕ(x ,∇uε) ≤ ϕ̃(∇uε)

= ϕ̃

(∫
Bε

∇u(x − y) ηε(y)dy
)

≤
∫
Bε

ϕ̃ (∇u(x − y) ) ηε(y)dy

≤
∫
Bε

ϕ (x − y ,∇u(x − y) ) ηε(y)dy

as x − y ∈ Bε(x).
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Conclusion

We don’t observe Lavrentiev phenomenon if

q − p ≤ α max
(
1,

p

d

)
.

Counterexamples exists when

q − p > α max
(
1,

p − 1
d − 1

)
.

A. K. Balci, L. Diening, and M. Surnachev. New examples on Lavrentiev gap using fractals. Calc. Var.

PDE 2020.

Our work is optimal when p ≤ d

For p > d there is still some room for improvement.
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Final comments

1 The presented proof is in fact inaccurate. Some care is needed
to make functions compactly supported.

2 After some modifications, the reasoning can be extended to
variable exponent functionals

H(u) =

∫
Ω
|ξ|p(x) + a(x) |ξ|q(x).

3 As ϕ(x , |∇u|) depends only on the length of the gradient ∇u,
the reasoning can be extended to vectorial problems

Piotr Gwiazda Absence of Lavrentiev phenomenon



THANK YOU!
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