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Large global solutions of the parabolic-parabolic
Keller-Segel system in R and blowup for related toy
models

ur—Au+V-(uVy) = 0,
Te = Ay +u,
u(x,0) = up(x) >0,
(x,t) eRIx [0, T), d>2,

u(x,t) > 0 — the density of the population of microorganisms,
©(x, t) — the density of the chemical secreted by themselves that
attracts them and makes them to aggregate.
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attracts them and makes them to aggregate.

As T N\, 0 solutions of the above (PP) system converge to those of

the parabolic-elliptic KS system (PE) with Ao+ u =10

(A. Raczyniski 2009, PB + L. Brandolese 2009, P.-G.

Lemarié-Rieusset 2013, ... , M. Kurokiba + T. Ogawa 2020, ...).
What about 7 > 17



Motivations

e (an early result PB + L. Corrias + J. Dolbeault 2008)

The scaling transformation uy(t, x) = A2u(A\?t, Ax), pA(t,x) =
©(N\%t,A\x) for every X >0, leaves the Keller—Segel system
invariant. Each solution invariant under this scaling

u(t,x) = ux(t,x), ©(t,x) =par(t,x), A>0,is called

a self-similar solution to system KS. It has the form
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u(t,x) = ux(t,x), ©(t,x) =par(t,x), A>0,is called

a self-similar solution to system KS. It has the form

u(t, x) = %U QE) Cp(tx) =0 Q})

with U(x) = u(1,x) and ¢(x) = d(1,x).

In d =2 one has u(0,x) = Mdé with M € [0, M(7));

8m = M(t) for 7 € (0,1), M(7) /" o0 as T — oo,
Nonuniqueness of self-similar solutions for large 7 > 1 and
sufficiently large M.



For d > 3 if the limit up(x) = lim¢o %U (%) exists (for example,
in the sense of distributions), then the initial datum wup has to be
homogeneous of degree —2.

In particular, we will construct radial, nonnegative self-similar
solutions to system KS corresponding to initial data of the form
up(x) = % for some constant M > 0.

When 7 = 0 they exist for M € [0,2(d — 2)), while

uc(x) = 2(d — 2)|x|~2 is a discontinuous singular stationary
solution (C=Chandrasekhar).



For d > 3 if the limit up(x) = lim¢o %U (%) exists (for example,
in the sense of distributions), then the initial datum wup has to be
homogeneous of degree —2.

In particular, we will construct radial, nonnegative self-similar
solutions to system KS corresponding to initial data of the form
up(x) = % for some constant M > 0.

When 7 = 0 they exist for M € [0,2(d — 2)), while

uc(x) = 2(d — 2)|x|~2 is a discontinuous singular stationary
solution (C=Chandrasekhar).

Note that for sufficiently small, not necessarily radial but
homogeneous initial datum such a construction can be made using
a fixed point argument, in the framework of mild solutions. Even
for sign changing initial data.
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e For d =2 “big” means [ ug(x)dx > 8m [many results, various
approaches].
There is a (perfect) dichotomy:
If | up(x)dx < 8, then the solution is global-in-time and
unlformly bounded in any LP, 1 < p < o0.
e For d > 3 “big" means (when ug > 0) (PB + J. Zienkiewicz
2019)

sup Rz_d/ up(x)dx > 1.

R>0 {IxI<R}
This is the homogeneous Morrey space I\/IS(]Rd) norm with
S = %1 lulms = supgr>o, xerd RIC/ f{‘y x|<R}y 1Y |u(y)ldy.
Notice that the local existence of solutions to the Cauchy problem
requires some regularity of ug (up € M%(Rd)) and a size condition
on local singularities, i.e.

lim sup R2_d/ up(x) dx < (some constant)(d),
R—0 {|x|<R}



e For 7 > 0 blowup results are rather scarce, and they are obtained
under specific integrability conditions imposed on ug (M. Winkler
2013, 2020) such as [ ug log ug < oc.

Our goals:

e Show existence of global-in-time solutions with arbitrarily large
data (not very regular) and suitably big 7 (extending the result in
two dimensions by PB + |. Guerra + G. Karch 2015).

e Prove finite time blowup of solutions with even larger data.
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e For 7 > 0 blowup results are rather scarce, and they are obtained
under specific integrability conditions imposed on ug (M. Winkler
2013, 2020) such as [ ug log ug < oc.

Our goals:

e Show existence of global-in-time solutions with arbitrarily large
data (not very regular) and suitably big 7 (extending the result in
two dimensions by PB + |. Guerra + G. Karch 2015).

e Prove finite time blowup of solutions with even larger data.

The first goal is achieved.
The second goal is not.

However, we proposed two toy models, both consisting of two
parabolic equations, for which the above scenario is confirmed.
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ur = Au+ u? in a way similar to that as (PP) is related to (PE).
ur = Au— ulp,
Tor = Ao + u, xeRY t>0, (TM)
U(O) = Uo, SO(O) = ¥0,

uy = Au+ (Ap)?,
T = Ap + u, xeRY, t>0, (TM")
U(O) = U, (10(0) = ¥0,

= Au+ 02,
{”t v x€R?, t>0. (NLH)

u(0) = wp,

(TM) is obtained by omitting the term —Vu - Vg in (PP)/(PE).
And for 7 = 0 the term —uly is just u?, as is for (TM").
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There are many results on blowup for (NLH) obtained with the use
of various methods (moment = eigenfunction method, convexity =
energy method, monotonicity) based on specific properties of the
single parabolic equation (NLH) (such as variational structure).

Surprisingly, for the systems of two parabolic equations those
approaches (almost) fail.

Instead, we applied a Fourier transform argument showing that a
singularity may appear for (., t).

Cross-diffusion structures of (PP), (TM) make their analyses
delicate.
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B(u, 2)(t) / Velt=92 . (4(s)Lz(s)) ds,
Pseudomeasures
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Vo= {u € Li5(0,00:8'(RY)) - sup e DZg?[a(g, 1) < oo},
t>0, (R4

Vi_o =X = 1°°(0, 00; PM72). Clearly, # € PM9—2,

Theorem Let d > 2, ug € PM972 g =0, 7 > €3,

If ||uo|lppga—2 < 33kg 7/(eInT)3, then (PP) has a global-in-time

solution. This solution belongs to X' N Vy_4/1,~, and is unique in

the ball of Vy_4/1n, centered at the origin, with radius
0<r<7/(InT)3.
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Besov spaces
Almost optimal spaces, optimal initial data: &, :=

{u€ (0, 00; LP(R)), [Jull, := supes /2P ] < oo }
Theorem Let d > 2, max(d/2, 2d/(d + 1)) < p < 2d,
ug € B‘,&i‘d/") and ¢g = 0. Let g such that

1/p—1/d| <1/q <min(l/p,1-1/p),  1/q<1/d.

Then there exist constants Cp g, <p,q > 0, independent of 7 and
ug, such that if

HUOHB‘ng/p) < Cp,qu/27d/2(1/pil/q)7

then (PP) has a mild solution u € &, such that
llull, < #p,glluoll 5-@-a/n - Moreover, mild solutions of (PP)
p,00

satisfying
‘Hu‘”p S R7 R < Kp,qCp,q 7_1/2—d/2(]_/p_]_/q)’

are unique.



Existence results for toy models (TM) and (TM")

Almost the same as for (PP), with similar proofs.



Blowup of large solutions for both toy models
We are interested in nonnegative solutions of big size, say ~ 7.

An idea of S. Montgomery-Smith for “cheap” Navier-Stokes
equations: blowup of the Fourier transform of solutions of (TM).



Blowup of large solutions for both toy models
We are interested in nonnegative solutions of big size, say ~ 7.

An idea of S. Montgomery-Smith for “cheap” Navier-Stokes
equations: blowup of the Fourier transform of solutions of (TM).

Consider wp € L?(R?) defined by wp(¢) = 1p,(£), where 1¢
denotes the indicator function of a measurable set E, and By is the
ball with center 3(1,0...,0) and radius 1. Thus, the support of
Wo is contained in the annulus Ey = {% <|-] <1}
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We are interested in nonnegative solutions of big size, say ~ 7.

An idea of S. Montgomery-Smith for “cheap” Navier-Stokes
equations: blowup of the Fourier transform of solutions of (TM).

Consider wp € L?(R?) defined by wp(¢) = 1p,(£), where 1¢
denotes the indicator function of a measurable set E, and By is the
ball with center 3(1,0...,0) and radius 1. Thus, the support of
Wo is contained in the annulus Ey = {% <|-] <1}

Theorem  Let 7 >0, A> 0, and up € S(R?), such that

uo(§) = Awp(§).

Let t* be the maximal lifetime of the (unique) classical solution to
(TM). There exists a constant kg > 0 (only dependent on d) such
that if

A> Ky et/ T,

then t* < 1.



Notice that the right-hand side above behaves like 7 as 7 > 1.
Thus, the best possible size condition to be put on the initial data,
in order to obtain the global existence for (TM), would be of the
form ||up|| < 7, no matter the choice of the norm, and
irrespectively of the functional setting where one constructs the
solution.



Notice that the right-hand side above behaves like 7 as 7 > 1.
Thus, the best possible size condition to be put on the initial data,
in order to obtain the global existence for (TM), would be of the
form ||up|| < 7, no matter the choice of the norm, and
irrespectively of the functional setting where one constructs the
solution.

Finally, consider (TM’) in a smooth bounded domain Q C R,
supplemented with

u(x,t) =¢(x,t) =0 for each x€9Q, t=>0.

There exist positive solutions of system (TM') for 7 > 2 with
ug > 0, o > 0 of order 72, T, resp., satisfying moreover

/ P(x)up(x)dx > §)\T2,
Q 2

[ 000 ax = 5
Q

where ¢ > 0 is the normalized eigenfunction of A with the first
eigenvalue A, which cannot be continued past a moment 7 > 0.



The proof of that result involves the equation for ¢
T = (T + 1)Ap; — D20 + (Ap)?
and the evolution of moment J(t fQ ©(x, t)dx is studied
mJ(£) = ~A(r + 1)(e) = V() + / v(Be)
Q

> =A(T +1)J(t) = A2J(t) + A2J(1)".



References

Piotr Biler p—
SINGULARITIES OF BEans

SOLUTIONS TO CHEMOTAXIS [
SYSTEMS

‘The Keller-Segel model for chemotaxis is a prototype of nonlocal systems De Gruyter Serles In Mathematics and Life
describing conc ion phenom physics and biology. While the two- Balson: &
dimensional theory is by now quite complete, the questions of glommn -time xiv, 207 pages, 3 Figures (ow)
solvability and are largely ope :;’;"2'[;'] e
1n this book, global-i-tme soloions are consiructed under (oearly) optimal
assumptions on initial data and rigorous blowup criteria are derived. 158N 978 510597889
eBook:
o An authoritative book on the formation of singularities in the Keller-Segel RRP *€ [D]10395 /"US$ 119.99 /

! 2
chemotaxis system POF ISBN 978-511-059953-4

o rs both the two-dimensional case as well as higher dimensions EPUB ISBN 978-3-11-059862-9
o Of interest to researchers in partial differential equations and Date :
biology Language of Publication: English
Subjects:
Piotr Biler, University of Wroclaw, Poland. Analysis
Cell Biokogy

Difforential Equations and Dynamical

Of interest to: Resesrchers and graduste
students in partial differential equations.
and mathematical biology.

P. Biler, Singularities of solutions in chemotaxis systems,
Series in Mathematics and Life Sciences, De Gruyter, Berlin, 2020.
ISBN 978-3-11-059789-9.



P. Biler, A.Boritchev, L. Brandolese, Large global solutions of the
parabolic-parabolic Keller—Segel system in higher dimensions, 1-23.
arXiv: 2203.09130. hal.archives-ouvertes.fr/hal-03609520.

P. Biler, A. Boritchev, L. Brandolese, Sharp well-posedness and
blowup results for parabolic systems of the Keller-Segel type, 1-24.
arXiv:220610399. hal.archives-ouvertes.fr/hal-03699868.

P. Biler, L. Corrias, J. Dolbeault, Large mass self-similar solutions
of the parabolic-parabolic Keller—Segel model, J. Math. Biology 63
(2011), 1-32.



P. Biler, |. Guerra, G. Karch, Large global-in-time solutions of the
parabolic-parabolic Keller-Segel system on the plane, Commun.
Pure Appl. Analysis 14 (2015), 2117-2126.

P. Biler, G. Karch, J. Zienkiewicz, Large global-in-time solutions to
a nonlocal model of chemotaxis, Adv. Math. 330 (2018),
834-875.

P. Biler, J. Zienkiewicz, Blowing up radial solutions in the minimal
Keller-Segel model of chemotaxis, J. Evol. Equ. 19 (2019),
71-90.  arXiv:1807.02633.



V. Calvez, L. Corrias, M. A. Ebde, Blow-up, concentration
phenomenon and global existence for the Keller-Segel model in
high dimension, Commun. Partial Differential Equations, 37
(2012), 561-584.

P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for
the parabolic-parabolic and parabolic-elliptic Keller—Segel equations
in the whole space, Adv. Differ. Eq. 18 (2013), 1189-1208.

S. Montgomery-Smith, Finite time blow up for a Navier-Stokes like
equations, Proc. Amer. Math. Soc. 129 (2001), 3025-3029.

Y. Naito, Blow-up criteria for the classical Keller-Segel model of
chemotaxis in higher dimensions, J. Differential Equations 297
(2021), 144-174.



P. Quittner, Ph. Souplet, Superlinear parabolic problems.
Blow-up, global existence and steady states, 2nd ed., 2019,
Birkhauser/Springer, Cham, xvi+-725; ISBN: 978-3-030-18220-5.

Ph. Souplet, M. Winkler, Blow-up profiles for the parabolic-elliptic
Keller-Segel system in dimensions n > 3, Comm. Math. Phys.
367 (2019), 665—681.

T. Takeuchi, The Keller-Segel system of parabolic-parabolic type
in homogeneous Besov spaces framework, J. Differential Equations
298 (2021), 609-640.

M. Winkler, Single-point blow-up in the Cauchy problem for the
higher-dimensional Keller-Segel system, Nonlinearity, 33, 2020,
5007-5048.



