
A non-autonomous model for a chemostat with
periodic nutrient supply

Pablo Amster

Universidad de Buenos Aires - IMAS (CONICET)

IMDETA Seminar, November 2024

Pablo Amster (UBA-IMAS) A non-autonomous periodic chemostat
IMDETA Seminar, November 2024

1 / 29



Outline

1 Introduction

2 A model with delay

3 Alternative model/Open problems/Future works

Pablo Amster (UBA-IMAS) A non-autonomous periodic chemostat
IMDETA Seminar, November 2024

2 / 29



The model

Chemostat (continuous stirred-tank reactor): continuous bioreactor with
constant volume V , whose operating parameters allow to reproduce the
essential features of simple microbial ecosystems. Namely, a spatially
homogeneous environment, where a supply of nutrient is introduced in
order to be consumed by a microbial species.
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{
s ′(t) = Ds0 − Ds(t) − µ(s(t))x(t) t > 0,
x ′(t) = µ(s(t))x(t) − Dx(t) t > 0. (1)

s(t) = density of the nutrient.
x(t) = density of the microbial species.
0 < s0 := nutrient supply.
0 < D := dilution rate.
µ : [0,+∞) → [0,+∞) := per-capita growth of the microbial species and
its consumption of nutrient.
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It is assumed that
(P) µ(·) is C1, µ′(s) > 0 for any s ≥ 0 and µ(0) = 0,
e.g. the Michaelis-Menten function:

µ(s) = µmaxs
ks + s with D < µmax and ks > 0.
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Some rapid conclusions

1 The solutions with s(0), x(0) ≥ 0 are globally defined and
nonnegative for t > 0.

2 The point (s0, 0) is an equilibrium, called trivial or washout, which
corresponds to the extinction of the species.

3 The problem admits a strictly positive equilibrium if and only if
µ(s0) > D.

A more careful analysis allows to show that all the positive trajectories are
attracted by the trivial equilibrium when µ(s0) ≤ D, and by the nontrivial
one if µ(s0) > D.
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Non-autonomous case s0 = s0(t)

{
s ′(t) = Ds0(t) − Ds(t) − µ(s(t))x(t) t > 0,
x ′(t) = µ(s(t))x(t) − Dx(t) t > 0. (2)

s0 is ω-periodic =⇒ there exist positive ω-periodic solutions?

Remark: x(0) = 0 =⇒ x ≡ 0 and

s ′(t) = D(s0(t) − s(t)),

which has a unique ω-periodic solution v∗(t) > 0.

(v∗, 0) = washout (trivial) solution.
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(s, x) nontrivial periodic solution ⇒

(v∗ − s)′(t) > −D(v∗(t) − s(t))

⇒ s(t) < v∗(t).

Moreover,
x ′(t)
x(t) = µ(s(t)) − D ⇒ µ(s) := 1

ω

∫ ω
0 µ(s(t)) dt = D,

whence

µ(v∗) > D. (3)
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Good news

Proposition
Condition (3) is also sufficient.

Easy proof: (s∗, x∗) nontrivial ω-periodic solution ⇒ s∗ + x∗ = v∗. Thus,
it suffices to find a nontrivial ω-periodic solution of

x ′(t) = [µ(v∗(t) − x(t)) − D]x(t)

using e.g. the Poincaré map. Warning: avoid the zero solution. □

Furthermore, all the positive trajectories:

approach to (s∗, x∗) if (3) holds.
approach to the washout otherwise.
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using e.g. the Poincaré map. Warning: avoid the zero solution. □

Furthermore, all the positive trajectories:

approach to (s∗, x∗) if (3) holds.
approach to the washout otherwise.

Pablo Amster (UBA-IMAS) A non-autonomous periodic chemostat
IMDETA Seminar, November 2024

9 / 29



Outline

1 Introduction

2 A model with delay

3 Alternative model/Open problems/Future works

Pablo Amster (UBA-IMAS) A non-autonomous periodic chemostat
IMDETA Seminar, November 2024

10 / 29



The following model was firstly introduced in [3]{
s ′(t) = Ds0(t) − Ds(t) − µ(s(t))x(t)
x ′(t) = x(t) {µ(s(t − τ)) − D} , (4)

τ := time required by the microbial species to metabolize the nutrient.

Difficulty: the system cannot be reduced to a (functional) scalar
equation. However...

Theorem

The system (4) has a positive ω-periodic solution if and only if (3) holds.
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Sketch of the proof

Solve (4) with an initial condition

s|[−τ,0] = φ ≥ 0, x(0) = x0 ≥ 0

and define

P(φ, x0)(t) := (s(t + ω), x(ω)) t ∈ [−τ, 0].

Assume w.l.o.g. τ ≤ ω, then P is compact.

Problem: find an invariant (bounded, closed, convex) region in the
(strictly) positive cone of C [−τ, 0] × R. Spoiler: this is hard.
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Continuation of fixed points

Easy computation:

0 ≤ φ ≤ φ∗ := v∗|[−τ,0] ⇒ 0 ≤ s ≤ v∗ t ≥ 0.

Thus, writing P = (P1,P2) and taking C := {0 ≤ φ ≤ φ∗}, it is seen that

P1 : C × [0,+∞) → C ,

namely
Fixx0 := {φ : P1(φ, x0) = φ} ≠ ∅ x0 ≥ 0.
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A theorem by F. Browder

Theorem
For arbitrary b ≥ a ≥ 0 there exists a continuum

C ⊂
⋃

x0∈[a,b]
Fixx0 × {x0}

that connects Ca with Cb.

Application: (φ, x0) nontrivial fixed point of P ⇐⇒ φ ∈ Fixx0 and
P2(φ, x0) = x0 > 0

⇐⇒ φ ∈ Fixx0 and F (φ, x0) = 0,

where F (φ, x0) := µ(s) − D.
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In particular, Fix0 = {φ∗} and

F (φ∗, 0) = µ(v∗) − D > 0.

On the other hand, take L > 0 and φ ∈ FixL, then

x ′ ≥ −Dx ⇒ x(t) ≥ Le−Dt

D
∫ ω

0
(s0(t) − s(t))dt =

∫ ω

0
µ(s(t))x(t)dt ≥ Lωe−Dωµ(s),

that is
µ(s) ≤ k

L < D L ≫ 0.

Conclusion: F changes sign on C = C0,L.
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You’d better washout...

Theorem

Assume µ(v∗) < D. Then the washout solution (v∗(t), 0) of (4) is globally
asymptotically stable for any initial condition φ(t) ≥ 0, x0 ≥ 0, that is

lim
t→+∞

(s(t) − v∗(t)) = 0 and lim
t→+∞

x(t) = 0,

for any solution (s(t), x(t)) with initial condition (φ, x0).
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Sketch

Let (s(t), x(t)) be a nontrivial solution of (4). A simple argument shows:
∀ ε > 0 ∃ T := Tε > 0 such that

s(t) ≤ v∗(t) + ε for any t > Tε. (5)

If, moreover, µ(v∗) < D =⇒ ∃ ε0 > 0 s. t.

1
ω

∫ ω

0
µ(v∗(t) + ε0) dt < D

=⇒ ∫ t+ω

t
[µ(s(ξ − τ)) − D]dξ ≤ c0 < 0 t ≫ 0

whence ln x(t) ≤ ln x0 + ⌊t/ω⌋c0 + (||µ ◦ s||∞ − D)ω → −∞.
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Non-extinction scenario

Theorem

Assume µ(v∗) > D. Then the positive ω-periodic solution (s∗(t), x∗(t)) of
(4) is unique when the delay τ > 0 is sufficiently small.

Very recent result: the nontrivial solution is attractive.

Proofs are based on the non-delayed case:

Lemma (Wolkowicz-Zhao)

The positive ω-periodic solution (s∗
0 (t), x∗

0 (t)) for τ = 0 is unique and
globally asymptotically stable.
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Small delays

Let A := {(s, x) : 0 < s < v∗, x > 0} and Φ : A × R → Cω × Cω,

Φ(s, x , τ)(t) := (s ′(t), x ′(t)) − N(s, x)(t).

with N(s, x)(t) = Nemitskii operator. Then

D(s,x)Φ(s, x , 0)(φ,ψ) =
(
φ′ + aφ+ bψ,ψ′ + cφ+ dψ

)
,

where
a(t) = D + µ′(s(t))x(t), b(t) = µ(s(t))
c(t) = −x(t)µ′(s(t)), d(t) = −[µ(s(t)) − D].
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It is verified that

D(s,x)Φ(s∗
0 , x∗

0 , 0) : C1
ω × C1

ω → Cω × Cω isomorphism.

Implicit Function Theorem =⇒ ∃ (locally unique) continuous branch of
positive ω-periodic solutions (s(τ), x(τ)) for τ small.

Suppose τn → 0 and (s1
n , x1

n ) ̸= (s2
n , x2

n ) positive Cω-solutions =⇒ we may
assume (s j

n, x j
n) → (s j , x j) uniformly, with (s j , x j) solutions for τ = 0.

µ(s j
n) = D for all n =⇒ s j ̸= v∗ and by (WZ):

(s1, x1) = (s∗
0 , x∗

0 ) = (s2, x2).

Thus, for n ≫ 0 both sequences enter into the neighbourhood provided by
the Implicit Function Theorem, a contradiction.
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Implicit Function Theorem =⇒ ∃ (locally unique) continuous branch of
positive ω-periodic solutions (s(τ), x(τ)) for τ small.

Suppose τn → 0 and (s1
n , x1

n ) ̸= (s2
n , x2

n ) positive Cω-solutions =⇒ we may
assume (s j

n, x j
n) → (s j , x j) uniformly, with (s j , x j) solutions for τ = 0.

µ(s j
n) = D for all n =⇒ s j ̸= v∗ and by (WZ):

(s1, x1) = (s∗
0 , x∗

0 ) = (s2, x2).

Thus, for n ≫ 0 both sequences enter into the neighbourhood provided by
the Implicit Function Theorem, a contradiction.
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Bifurcation

Remark: v∗ does not depend on µ.

In the previous context, write µ = λµD, where µD(v∗) = D, that is:

µD(s) := D µ(s)
µ(v∗)

.

Then, nontrivial (positive) solutions exist if and only if λ > 1.
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Theorem

Assume that µ is C2. Then,
(1, v∗, 0) is a (unique) bifurcation point.
There exists exactly one unbounded connected component C+ of
nontrivial (positive) triples, whose closure contains (1, v∗, 0), and
satisfies the following properties:

▶ Every (λ, s, x) ∈ C+ verifies λ > 1, 0 < s < v∗ and x > 0,
▶ In a neighborhood of (1, v∗, 0), every nontrivial triple belongs to C+.

The proof in [1] is based on a Crandall-Rabinowitz theorem.
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λ0 = 1, p = (v∗, 0)

Furthermore,
s + x = v∗

and s → 0 uniformly as λ → +∞. More precisely, s ∼ O(1/λ).
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Outline

1 Introduction

2 A model with delay

3 Alternative model/Open problems/Future works
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Some questions:
Non-uniqueness for τ large?

Chaotic behavior?
Discrete analogue (undelayed):

Ut+1 = (1 − E ) (1 + f (St)) Ut ,

St+1 = (1 − E )St − (1 − E )f (St)Ut + ES0
t .

(6)

The role of v∗ is played by Σ∗, the unique (positive) ω-periodic
solution of

Σt+1 = (1 − E )Σt + ES0
t . (7)
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An alternative model:{
s ′(t) = D(t)s0(t) − D(t)s(t) − µ(s(t))x(t)
x ′(t) = µ(s(t − τ))x(t − τ)e−

∫ t
t−τ

D(ξ) dξ − D(t)x(t),
(8)

Theorem
Let c > 0 be the unique ω-periodic solution of the linear problem

c ′(t) = −D(t)c(t) + c(t − τ)µ(v∗(t − τ))e−
∫ t

t−τ
D(ξ) dξ

, c(0) = 1

and
ψ(t) := c(t)

c(t + τ)e−
∫ t+τ

t D(ξ) dξ.

Then the system (8) is persistent if and only if µ(v∗)ψ > D.

Using Horn fixed point theorem, the existence of an attractive ω-periodic
solution is deduced.
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Thanks for your attention!
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