A non-autonomous model for a chemostat with periodic nutrient supply

Pablo Amster

Universidad de Buenos Aires - IMAS (CONICET)

IMDETA Seminar, November 2024

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-65-0)

[IM](#page-0-0)[D](#page-1-0)[ETA](#page-0-0) [Se](#page-1-0)[minar](#page-0-0)[,](#page-1-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Outline

A model with delay

Alternative model/Open problems/Future works

MDETA Seminar, November 2024

 \leftarrow \Box

K

The model

Chemostat (continuous stirred-tank reactor): continuous bioreactor with constant volume V, whose operating parameters allow to reproduce the essential features of simple microbial ecosystems. Namely, a spatially homogeneous environment, where a supply of nutrient is introduced in order to be consumed by a microbial species.

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0)

$$
\begin{cases}\ns'(t) = Ds^0 - Ds(t) - \mu(s(t))x(t) & t > 0, \\
x'(t) = \mu(s(t))x(t) - Dx(t) & t > 0.\n\end{cases} \tag{1}
$$

- $s(t)$ = density of the nutrient.
- $x(t)$ = density of the microbial species.
- $0 < s^0 :=$ nutrient supply.
- $0 < D :=$ dilution rate.

 $\mu: [0, +\infty) \to [0, +\infty) :=$ per-capita growth of the microbial species and its consumption of nutrient.

TMDETA Seminar November 2024

It is assumed that

(P) $\mu(\cdot)$ is C^1 , $\mu'(s) > 0$ for any $s \ge 0$ and $\mu(0) = 0$,

e.g. the Michaelis-Menten function:

$$
\mu(s) = \frac{\mu_{\max}s}{k_s + s} \quad \text{with } D < \mu_{\max} \text{ and } k_s > 0.
$$

 \leftarrow \Box

 $5/29$

TMDETA Seminar, November 2024

1 The solutions with $s(0)$, $x(0) \ge 0$ are globally defined and nonnegative for t *>* 0.

 \leftarrow \Box

- **1** The solutions with $s(0), x(0) \ge 0$ are globally defined and nonnegative for t *>* 0.
- \bullet The point $(s^0,0)$ is an equilibrium, called trivial or *washout*, which corresponds to the extinction of the species.

[IM](#page-8-0)[D](#page-9-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

- **1** The solutions with $s(0), x(0) \ge 0$ are globally defined and nonnegative for t *>* 0.
- \bullet The point $(s^0,0)$ is an equilibrium, called trivial or *washout*, which corresponds to the extinction of the species.
- **3** The problem admits a strictly positive equilibrium if and only if $\mu(\mathfrak{s}^0)>D.$

[IM](#page-8-0)[D](#page-9-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

- **1** The solutions with $s(0), x(0) \ge 0$ are globally defined and nonnegative for t *>* 0.
- \bullet The point $(s^0,0)$ is an equilibrium, called trivial or *washout*, which corresponds to the extinction of the species.
- **3** The problem admits a strictly positive equilibrium if and only if $\mu(\mathfrak{s}^0)>D.$

A more careful analysis allows to show that all the positive trajectories are attracted by the trivial equilibrium when $\mu(s^0)\leq D$, and by the nontrivial one if $\mu(\mathfrak{s}^0)>D.$

[IM](#page-8-0)[D](#page-9-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 $\mathsf{Non}\text{-} \mathsf{autonomous}$ case $\mathsf{s}^0 = \mathsf{s}^0(t)$

$$
\begin{cases}\ns'(t) = Ds^0(t) - Ds(t) - \mu(s(t))x(t) & t > 0, \\
x'(t) = \mu(s(t))x(t) - Dx(t) & t > 0.\n\end{cases}
$$

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0)

7 / 29

[IM](#page-10-0)[D](#page-11-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

(2)

 $\mathsf{Non}\text{-} \mathsf{autonomous}$ case $\mathsf{s}^0 = \mathsf{s}^0(t)$

$$
\begin{cases}\ns'(t) = Ds^{0}(t) - Ds(t) - \mu(s(t))x(t) & t > 0, \\
x'(t) = \mu(s(t))x(t) - Dx(t) & t > 0.\n\end{cases} \tag{2}
$$

 s^0 is *ω*-periodic ⇒ there exist positive *ω*-periodic solutions?

Remark: $x(0) = 0 \implies x \equiv 0$ and

$$
s'(t) = D(s^0(t) - s(t)),
$$

which has a unique ω -periodic solution $v^*(t)>0.$

$$
(v^*,0) = washout (trivial) solution.
$$

[IM](#page-10-0)[D](#page-11-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

$$
(v^* - s)'(t) > -D(v^*(t) - s(t))
$$

8 / 29

 \leftarrow \Box

[IM](#page-14-0)[D](#page-15-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

$$
(v^* - s)'(t) > -D(v^*(t) - s(t)) \Rightarrow s(t) < v^*(t).
$$

Moreover,

$$
\frac{x'(t)}{x(t)} = \mu(s(t)) - D
$$

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0)

[IM](#page-14-0)[D](#page-15-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024 8 / 29

 \leftarrow \Box \rightarrow K

$$
(v^*-s)'(t) > -D(v^*(t)-s(t)) \Rightarrow s(t) < v^*(t).
$$

Moreover,

$$
\frac{x'(t)}{x(t)} = \mu(s(t)) - D \Rightarrow \overline{\mu(s)} := \frac{1}{\omega} \int_0^{\omega} \mu(s(t)) dt = D,
$$

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0)

ś 8 / 29

4日下

[IM](#page-14-0)[D](#page-15-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

$$
(v^*-s)'(t) > -D(v^*(t)-s(t)) \Rightarrow s(t) < v^*(t).
$$

Moreover,

$$
\frac{x'(t)}{x(t)} = \mu(s(t)) - D \Rightarrow \overline{\mu(s)} := \frac{1}{\omega} \int_0^{\omega} \mu(s(t)) dt = D,
$$

whence

$$
\overline{\mu(v^*)} > D. \tag{3}
$$

4日下 8 / 29

[IM](#page-14-0)[D](#page-15-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0)

Proposition

Condition [\(3\)](#page-11-1) is also sufficient.

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0)

 \leftarrow \Box

[IM](#page-20-0)[D](#page-21-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Proposition Condition [\(3\)](#page-11-1) is also sufficient.

Easy proof: (s^*, x^*) nontrivial *ω*-periodic solution $\Rightarrow s^* + x^* = v^*$. Thus, it suffices to find a nontrivial *ω*-periodic solution of

$$
x'(t) = [\mu(v^*(t) - x(t)) - D]x(t)
$$

using e.g. the Poincaré map.

[IM](#page-20-0)[D](#page-21-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Proposition Condition [\(3\)](#page-11-1) is also sufficient.

Easy proof: (s^*, x^*) nontrivial *ω*-periodic solution $\Rightarrow s^* + x^* = v^*$. Thus, it suffices to find a nontrivial *ω*-periodic solution of

$$
x'(t) = [\mu(v^*(t) - x(t)) - D]x(t)
$$

using e.g. the Poincaré map. **Warning**: avoid the zero solution.

[IM](#page-20-0)[D](#page-21-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Proposition Condition [\(3\)](#page-11-1) is also sufficient.

Easy proof: (s^*, x^*) nontrivial *ω*-periodic solution $\Rightarrow s^* + x^* = v^*$. Thus, it suffices to find a nontrivial *ω*-periodic solution of

$$
x'(t) = [\mu(v^*(t) - x(t)) - D]x(t)
$$

using e.g. the Poincaré map. **Warning**: avoid the zero solution.

Furthermore, all the positive trajectories:

[IM](#page-20-0)[D](#page-21-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Proposition Condition [\(3\)](#page-11-1) is also sufficient.

Easy proof: (s^*, x^*) nontrivial *ω*-periodic solution $\Rightarrow s^* + x^* = v^*$. Thus, it suffices to find a nontrivial *ω*-periodic solution of

$$
x'(t) = [\mu(v^*(t) - x(t)) - D]x(t)
$$

using e.g. the Poincaré map. **Warning**: avoid the zero solution.

Furthermore, all the positive trajectories:

approach to (s^*, x^*) if [\(3\)](#page-11-1) holds.

[IM](#page-20-0)[D](#page-21-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Proposition Condition [\(3\)](#page-11-1) is also sufficient.

Easy proof: (s^*, x^*) nontrivial *ω*-periodic solution $\Rightarrow s^* + x^* = v^*$. Thus, it suffices to find a nontrivial *ω*-periodic solution of

$$
x'(t) = [\mu(v^*(t) - x(t)) - D]x(t)
$$

using e.g. the Poincaré map. **Warning**: avoid the zero solution.

Furthermore, all the positive trajectories:

- approach to (s^*, x^*) if [\(3\)](#page-11-1) holds.
- approach to the washout otherwise.

[IM](#page-20-0)[D](#page-21-0)[E](#page-0-0)[T](#page-1-0)[A](#page-20-0) [Se](#page-21-0)[m](#page-0-0)[in](#page-1-0)[ar](#page-20-0)[,](#page-21-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Outline

Pablo Amster (UBA-IMAS)

A non-autonomous periodic chemostat

 \leftarrow \Box

 $10/29$

MDETA Seminar, November 2024

$$
\begin{cases}\ns'(t) = Ds^{0}(t) - Ds(t) - \mu(s(t))x(t) \\
x'(t) = x(t) \{\mu(s(t-\tau)) - D\},\n\end{cases}
$$
\n(4)

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0)

11 / 29

4日下

[IM](#page-25-0)[D](#page-26-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

$$
\begin{cases}\ns'(t) = Ds^{0}(t) - Ds(t) - \mu(s(t))x(t) \\
x'(t) = x(t) \{\mu(s(t-\tau)) - D\},\n\end{cases}
$$
\n(4)

[IM](#page-25-0)[D](#page-26-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 \leftarrow \Box 11 / 29

τ := time required by the microbial species to metabolize the nutrient.

$$
\begin{cases}\ns'(t) = Ds^{0}(t) - Ds(t) - \mu(s(t))x(t) \\
x'(t) = x(t) \{\mu(s(t-\tau)) - D\},\n\end{cases}
$$
\n(4)

 τ := time required by the microbial species to metabolize the nutrient.

Difficulty: the system cannot be reduced to a (functional) scalar equation. However...

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0) [IM](#page-25-0)[D](#page-26-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024 11 / 29

 \leftarrow \Box

$$
\begin{cases}\ns'(t) = Ds^{0}(t) - Ds(t) - \mu(s(t))x(t) \\
x'(t) = x(t) \{\mu(s(t-\tau)) - D\},\n\end{cases}
$$
\n(4)

[IM](#page-25-0)[D](#page-26-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

11 / 29

 τ := time required by the microbial species to metabolize the nutrient.

Difficulty: the system cannot be reduced to a (functional) scalar equation. However...

Theorem

The system [\(4\)](#page-22-1) has a positive *ω*-periodic solution if and only if [\(3\)](#page-11-1) holds.

Sketch of the proof

Solve [\(4\)](#page-22-1) with an initial condition

$$
s|_{[-\tau,0]}=\varphi\geq 0,\qquad x(0)=x_0\geq 0
$$

and define

$$
P(\varphi, x_0)(t) := (s(t+\omega), x(\omega)) \qquad t \in [-\tau, 0].
$$

Assume w.l.o.g. $\tau \leq \omega$, then P is compact.

[IM](#page-28-0)[D](#page-29-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 \leftarrow \Box 12 / 29

Sketch of the proof

Solve [\(4\)](#page-22-1) with an initial condition

$$
s|_{[-\tau,0]}=\varphi\geq 0,\qquad x(0)=x_0\geq 0
$$

and define

$$
P(\varphi, x_0)(t) := (s(t+\omega), x(\omega)) \qquad t \in [-\tau, 0].
$$

Assume w.l.o.g. $\tau \leq \omega$, then P is compact.

Problem: find an invariant (bounded, closed, convex) region in the (strictly) positive cone of $C[-\tau,0] \times \mathbb{R}$.

[IM](#page-28-0)[D](#page-29-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Sketch of the proof

Solve [\(4\)](#page-22-1) with an initial condition

$$
s|_{[-\tau,0]}=\varphi\geq 0,\qquad x(0)=x_0\geq 0
$$

and define

$$
P(\varphi, x_0)(t) := (s(t+\omega), x(\omega)) \qquad t \in [-\tau, 0].
$$

Assume w.l.o.g. $\tau \leq \omega$, then P is compact.

Problem: find an invariant (bounded, closed, convex) region in the (strictly) positive cone of $C[-\tau,0] \times \mathbb{R}$. **Spoiler**: this is hard.

[IM](#page-28-0)[D](#page-29-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Continuation of fixed points

Easy computation:

$$
0\leq \varphi\leq \varphi^*:=v^*|_{[-\tau,0]}\Rightarrow 0\leq s\leq v^*\quad t\geq 0.
$$

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0)

[IM](#page-30-0)[D](#page-31-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

4日下 13 / 29

Continuation of fixed points

Easy computation:

$$
0\leq \varphi\leq \varphi^*:=v^*|_{[-\tau,0]}\Rightarrow 0\leq s\leq v^*\quad t\geq 0.
$$

Thus, writing $P=(P_1,P_2)$ and taking $\mathcal{C}:=\{0\leq \varphi\leq \varphi^*\}$, it is seen that P_1 : $C \times [0, +\infty) \rightarrow C$,

namely

$$
\mathrm{Fix}_{x_0}:=\{\varphi:P_1(\varphi,x_0)=\varphi\}\neq\emptyset\qquad x_0\geq 0.
$$

[IM](#page-30-0)[D](#page-31-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 \leftarrow \Box 13 / 29

Theorem

For arbitrary $b \ge a \ge 0$ there exists a **continuum**

$$
\mathcal{C}\subset \bigcup_{x_0\in [a,b]}\mathrm{Fix}_{x_0}\times \{x_0\}
$$

that connects C_a with C_b .

 \leftarrow \Box

Theorem

For arbitrary $b > a > 0$ there exists a **continuum**

$$
\mathcal{C} \subset \bigcup_{x_0 \in [a,b]} \mathrm{Fix}_{x_0} \times \{x_0\}
$$

that connects C_a with C_b .

 ${\sf Application}\colon(\varphi,x_0)$ nontrivial fixed point of $P\Longleftrightarrow\varphi\in{\rm Fix}_{x_0}$ and $P_2(\varphi, x_0) = x_0 > 0$

[IM](#page-34-0)[D](#page-35-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 \leftarrow \Box 14 / 29

Theorem

For arbitrary $b > a > 0$ there exists a **continuum**

$$
\mathcal{C} \subset \bigcup_{x_0 \in [a,b]} \mathrm{Fix}_{x_0} \times \{x_0\}
$$

that connects C_a with C_b .

 ${\sf Application}\colon(\varphi,x_0)$ nontrivial fixed point of $P\Longleftrightarrow\varphi\in{\rm Fix}_{x_0}$ and $P_2(\varphi, x_0) = x_0 > 0$

$$
\iff \varphi \in \mathrm{Fix}_{x_0} \text{ and } F(\varphi, x_0) = 0,
$$

[IM](#page-34-0)[D](#page-35-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 \leftarrow \Box 14 / 29

Theorem

For arbitrary $b > a > 0$ there exists a **continuum**

$$
\mathcal{C} \subset \bigcup_{x_0 \in [a,b]} \mathrm{Fix}_{x_0} \times \{x_0\}
$$

that connects C_a with C_b .

 ${\sf Application}\colon(\varphi,x_0)$ nontrivial fixed point of $P\Longleftrightarrow\varphi\in{\rm Fix}_{x_0}$ and $P_2(\varphi, x_0) = x_0 > 0$

$$
\iff \varphi \in \text{Fix}_{x_0} \text{ and } F(\varphi, x_0) = 0,
$$

where $F(\varphi, x_0) := \overline{\mu(s)} - D$.

[IM](#page-34-0)[D](#page-35-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

$$
F(\varphi^*,0)=\overline{\mu(v^*)}-D>0.
$$

[IM](#page-38-0)[D](#page-39-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024 \leftarrow \Box \rightarrow Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0) 15 / 29

$$
F(\varphi^*,0)=\overline{\mu(v^*)}-D>0.
$$

On the other hand, take $L > 0$ and $\varphi \in Fix_L$, then

$$
x' \geq -Dx \Rightarrow x(t) \geq Le^{-Dt}
$$

[IM](#page-38-0)[D](#page-39-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

4 0 3 15 / 29

$$
F(\varphi^*,0)=\overline{\mu(v^*)}-D>0.
$$

On the other hand, take $L > 0$ and $\varphi \in Fix_L$, then

$$
x' \geq -Dx \Rightarrow x(t) \geq Le^{-Dt}
$$

$$
D\int_0^{\omega}(s^0(t)-s(t))dt=\int_0^{\omega}\mu(s(t))x(t)dt\geq L\omega e^{-D\omega}\overline{\mu(s)},
$$

that is

$$
\overline{\mu(s)}\leq \frac{k}{L}
$$

[IM](#page-38-0)[D](#page-39-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 \leftarrow \Box 15 / 29

$$
F(\varphi^*,0)=\overline{\mu(v^*)}-D>0.
$$

On the other hand, take $L > 0$ and $\varphi \in Fix_L$, then

$$
x' \geq -Dx \Rightarrow x(t) \geq Le^{-Dt}
$$

$$
D\int_0^{\omega}(s^0(t)-s(t))dt=\int_0^{\omega}\mu(s(t))x(t)dt\geq L\omega e^{-D\omega}\overline{\mu(s)},
$$

$$
\overline{\mu(s)}\leq \frac{\kappa}{L}
$$

Conclusion: F changes sign on $C = C_{0,L}$.

that is

[IM](#page-38-0)[D](#page-39-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 \leftarrow \Box 15 / 29

Assume $\overline{\mu({\sf v}^*)} < D.$ Then the washout solution $({\sf v}^*(t),0)$ of [\(4\)](#page-22-1) is globally asymptotically stable for any initial condition $\varphi(t) \geq 0$, $x_0 \geq 0$, that is

$$
\lim_{t\to+\infty}\left(s(t)-v^*(t)\right)=0\quad\text{and}\quad\lim_{t\to+\infty}x(t)=0,
$$

for any solution $(s(t),x(t))$ with initial condition (φ, x_0) .

[IM](#page-39-0)[D](#page-40-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Sketch

=⇒

Let $(s(t),x(t))$ be a nontrivial solution of [\(4\)](#page-22-1). A simple argument shows: $\forall \varepsilon > 0 \exists T := T_{\varepsilon} > 0$ such that

$$
s(t) \le v^*(t) + \varepsilon \quad \text{for any} \quad t > T_{\varepsilon}.
$$

\nIf, moreover, $\overline{\mu(v^*)} < D \Longrightarrow \exists \varepsilon_0 > 0 \text{ s. t.}$
\n
$$
\frac{1}{\omega} \int_0^{\omega} \mu(v^*(t) + \varepsilon_0) dt < D
$$

$$
\int_{t}^{t+\omega} [\mu(s(\xi-\tau))-D]d\xi \leq c_0 < 0 \qquad t \gg 0
$$

whence $\ln x(t) \leq \ln x_0 + \lfloor t/\omega \rfloor c_0 + (||\mu \circ s||_{\infty} - D)\omega \to -\infty.$

[IM](#page-40-0)[D](#page-41-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

€⊡ 17 / 29

Assume $\overline{\mu({\sf v}^*)} > D.$ Then the positive ω -periodic solution $({\sf s}^*(t),{\sf x}^*(t))$ of [\(4\)](#page-22-1) is unique when the delay $\tau > 0$ is sufficiently small.

€⊡

Assume $\overline{\mu({\sf v}^*)} > D.$ Then the positive ω -periodic solution $({\sf s}^*(t),{\sf x}^*(t))$ of [\(4\)](#page-22-1) is unique when the delay $\tau > 0$ is sufficiently small.

Very recent result: the nontrivial solution is attractive.

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0)

[IM](#page-43-0)[D](#page-44-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Assume $\overline{\mu({\sf v}^*)} > D.$ Then the positive ω -periodic solution $({\sf s}^*(t),{\sf x}^*(t))$ of [\(4\)](#page-22-1) is unique when the delay $\tau > 0$ is sufficiently small.

Very recent result: the nontrivial solution is attractive.

Proofs are based on the non-delayed case:

Lemma (Wolkowicz-Zhao)

The positive ω -periodic solution $(s_0^*(t), x_0^*(t))$ for $\tau = 0$ is unique and globally asymptotically stable.

[IM](#page-43-0)[D](#page-44-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Small delays

Let
$$
\mathcal{A} := \{(s, x) : 0 < s < v^*, x > 0\}
$$
 and $\Phi : \mathcal{A} \times \mathbb{R} \to C_{\omega} \times C_{\omega}$,
\n
$$
\Phi(s, x, \tau)(t) := (s'(t), x'(t)) - N(s, x)(t).
$$

with $N(s, x)(t) =$ Nemitskii operator. Then

$$
D_{(s,x)}\Phi(s,x,0)(\varphi,\psi)=\Big(\varphi'+a\varphi+b\psi,\psi'+c\varphi+d\psi\Big),
$$

where

$$
a(t) = D + \mu'(s(t))x(t), b(t) = \mu(s(t))
$$

$$
c(t) = -x(t)\mu'(s(t)), d(t) = -[\mu(s(t)) - D].
$$

[IM](#page-44-0)[D](#page-45-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 \leftarrow \Box 19 / 29 It is verified that

 $D_{(\mathsf{s}, \mathsf{x})} \Phi(\mathsf{s}_0^*, x_0^*, 0) : C^1_\omega \times C^1_\omega \to C_\omega \times C_\omega$ isomorphism.

[IM](#page-46-0)[D](#page-47-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024 \leftarrow \Box Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0) 20 / 29

It is verified that

 $D_{(\mathsf{s}, \mathsf{x})} \Phi(\mathsf{s}_0^*, x_0^*, 0) : C^1_\omega \times C^1_\omega \to C_\omega \times C_\omega$ isomorphism.

Implicit Function Theorem \Rightarrow ∃ (locally unique) continuous branch of positive *ω*-periodic solutions $(s(\tau), x(\tau))$ for τ small.

Suppose $\tau_n \to 0$ and $(s_n^1, s_n^1) \neq (s_n^2, x_n^2)$ positive \mathcal{C}_{ω} -solutions \Longrightarrow we may assume $(s_n^j, x_n^j) \rightarrow (s^j, x^j)$ uniformly, with (s^j, x^j) solutions for $\tau = 0$.

$$
\overline{\mu(s_n^j)} = D \text{ for all } n \Longrightarrow s^j \neq v^* \text{ and by (WZ):}
$$

$$
(s^1, x^1) = (s_0^*, x_0^*) = (s^2, x^2).
$$

Thus, for $n \gg 0$ both sequences enter into the neighbourhood provided by the Implicit Function Theorem, a contradiction.

[IM](#page-46-0)[D](#page-47-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Remark: v^* does not depend on μ .

Remark: v^* does not depend on μ .

In the previous context, write $\mu = \lambda \mu_D$, where $\mu_D(\nu^*) = D$, that is:

$$
\mu_D(s):=D\frac{\mu(s)}{\mu(v^*)}.
$$

[IM](#page-49-0)[D](#page-50-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 \leftarrow \Box 21 / 29 **Remark**: v^* does not depend on μ .

In the previous context, write $\mu = \lambda \mu_D$, where $\mu_D(\nu^*) = D$, that is:

$$
\mu_D(s):=D\frac{\mu(s)}{\overline{\mu(v^*)}}.
$$

Then, nontrivial (positive) solutions exist if and only if *λ >* 1.

[IM](#page-49-0)[D](#page-50-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 \leftarrow \Box 21 / 29

Assume that μ is C^2 . Then,

- $(1, v^*, 0)$ is a (unique) bifurcation point.
- There exists exactly one unbounded connected component C_+ of nontrivial (positive) triples, whose closure contains $(1, v^*, 0)$, and satisfies the following properties:
	- ► Every $(\lambda, s, x) \in C_+$ verifies $\lambda > 1$, $0 < s < v^*$ and $x > 0$,
	- ► In a neighborhood of $(1, v^*, 0)$, every nontrivial triple belongs to \mathcal{C}_+ .

[IM](#page-51-0)[D](#page-52-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Assume that μ is C^2 . Then,

- $(1, v^*, 0)$ is a (unique) bifurcation point.
- There exists exactly one unbounded connected component C_+ of nontrivial (positive) triples, whose closure contains $(1, v^*, 0)$, and satisfies the following properties:
	- ► Every $(\lambda, s, x) \in C_+$ verifies $\lambda > 1$, $0 < s < v^*$ and $x > 0$,
	- ► In a neighborhood of $(1, v^*, 0)$, every nontrivial triple belongs to \mathcal{C}_+ .

The proof in [\[1\]](#page-63-1) is based on a Crandall-Rabinowitz theorem.

[IM](#page-51-0)[D](#page-52-0)[E](#page-20-0)[T](#page-21-0)[A](#page-54-0) [Se](#page-55-0)[m](#page-20-0)[in](#page-21-0)[ar](#page-54-0)[,](#page-55-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

MDETA Seminar, November 2024 $23/29$

 \leftarrow \Box \rightarrow

Furthermore,

$$
\overline{s}+\overline{x}=\overline{v^*}
$$

and $s \to 0$ uniformly as $\lambda \to +\infty$.

4日下 **TMDETA Seminar, November 2024** $23/29$

Furthermore,

$$
\overline{s}+\overline{x}=\overline{v^*}
$$

and $s \to 0$ uniformly as $\lambda \to +\infty$. More precisely, $s \sim O(1/\lambda)$.

TMDETA Seminar, November 2024 $23/29$

€⊡

Outline

A model with delay

3 Alternative model/Open problems/Future works

 \leftarrow \Box

 $24/29$

MDETA Seminar, November 2024

Non-uniqueness for *τ* large?

- Non-uniqueness for *τ* large?
- Chaotic behavior?

4 0 3

- Non-uniqueness for *τ* large?
- Chaotic behavior?
- Discrete analogue (undelayed):

$$
\begin{cases}\nU_{t+1} = (1 - E)(1 + f(S_t)) U_t, \\
S_{t+1} = (1 - E)S_t - (1 - E)f(S_t)U_t + ES_t^0.\n\end{cases}
$$
\n(6)

[IM](#page-59-0)[D](#page-60-0)[E](#page-54-0)[T](#page-55-0)[A Se](#page-65-0)[m](#page-54-0)[in](#page-55-0)[ar,](#page-65-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

←□ 25 / 29

- Non-uniqueness for *τ* large?
- Chaotic behavior?
- Discrete analogue (undelayed):

$$
\begin{cases}\nU_{t+1} = (1 - E)(1 + f(S_t)) U_t, \\
S_{t+1} = (1 - E)S_t - (1 - E)f(S_t)U_t + ES_t^0.\n\end{cases}
$$
\n(6)

The role of v^* is played by Σ^* , the unique (positive) ω -periodic solution of

$$
\Sigma_{t+1} = (1 - E)\Sigma_t + ES_t^0. \tag{7}
$$

25 / 29

[IM](#page-59-0)[D](#page-60-0)[E](#page-54-0)[T](#page-55-0)[A Se](#page-65-0)[m](#page-54-0)[in](#page-55-0)[ar,](#page-65-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

An alternative model:

$$
\begin{cases}\ns'(t) = D(t)s^{0}(t) - D(t)s(t) - \mu(s(t))x(t) \\
x'(t) = \mu(s(t-\tau))x(t-\tau)e^{-\int_{t-\tau}^{t} D(\xi) d\xi} - D(t)x(t),\n\end{cases}
$$
\n(8)

Pablo Amster (UBA-IMAS) [A non-autonomous periodic chemostat](#page-0-0)

26 / 29

 \leftarrow \Box \rightarrow

[IM](#page-62-0)[D](#page-63-2)[E](#page-54-0)[T](#page-55-0)[A Se](#page-65-0)[m](#page-54-0)[in](#page-55-0)[ar,](#page-65-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

An alternative model:

$$
\begin{cases}\ns'(t) = D(t)s^{0}(t) - D(t)s(t) - \mu(s(t))x(t) \\
x'(t) = \mu(s(t-\tau))x(t-\tau)e^{-\int_{t-\tau}^{t} D(\xi) d\xi} - D(t)x(t),\n\end{cases}
$$
\n(8)

Theorem

Let c *>* 0 be the unique *ω*-periodic solution of the linear problem

$$
c'(t) = -D(t)c(t) + c(t-\tau)\mu(v^*(t-\tau))e^{-\int_{t-\tau}^t D(\xi) d\xi}, \qquad c(0) = 1
$$

and

$$
\psi(t):=\frac{c(t)}{c(t+\tau)}e^{-\int_t^{t+\tau}D(\xi)\,d\xi}.
$$

Then the system [\(8\)](#page-60-1) is persistent if and only if $\mu(\nu^*)\psi > \overline{D}$.

[IM](#page-62-0)[D](#page-63-2)[E](#page-54-0)[T](#page-55-0)[A Se](#page-65-0)[m](#page-54-0)[in](#page-55-0)[ar,](#page-65-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

 \leftarrow \Box 26 / 29

An alternative model:

$$
\begin{cases}\ns'(t) = D(t)s^{0}(t) - D(t)s(t) - \mu(s(t))x(t) \\
x'(t) = \mu(s(t-\tau))x(t-\tau)e^{-\int_{t-\tau}^{t} D(\xi) d\xi} - D(t)x(t),\n\end{cases}
$$
\n(8)

Theorem

Let c *>* 0 be the unique *ω*-periodic solution of the linear problem

$$
c'(t) = -D(t)c(t) + c(t-\tau)\mu(v^*(t-\tau))e^{-\int_{t-\tau}^t D(\xi)\,d\xi}, \qquad c(0) = 1
$$

and

$$
\psi(t):=\frac{c(t)}{c(t+\tau)}e^{-\int_t^{t+\tau}D(\xi)\,d\xi}.
$$

Then the system [\(8\)](#page-60-1) is persistent if and only if $\mu(\nu^*)\psi > \overline{D}$.

Using Horn fixed point theorem, the existence of an attractive *ω*-periodic solution is deduced.

[IM](#page-62-0)[D](#page-63-2)[E](#page-54-0)[T](#page-55-0)[A Se](#page-65-0)[m](#page-54-0)[in](#page-55-0)[ar,](#page-65-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

Some references

- P. Amster and P. Benevieri, Global bifurcation results for a delay differential system representing a chemostat model. Submitted.
- P. Amster, G. Robledo and D. Sepúlveda, *Dynamics of a chemostat* with periodic nutrient supply and delay in the growth, Nonlinearity 33, 11 (2020), 5839–5860.
- J. Caperon, Time lag in population growth response of isochrysis galbana to a variable nitrate environment, Ecology 50 (1969), 188–192.
- 譶 Ellermeyer S F 1991 Delayed Growth Response in Models of Microbial Growth and Competition in Continuous Culture, Ph.D. thesis, Dept. of Math. and Comput. Sci., Emory University, Atlanta, GA

[IM](#page-63-2)[D](#page-64-0)[E](#page-54-0)[T](#page-55-0)[A Se](#page-65-0)[m](#page-54-0)[in](#page-55-0)[ar,](#page-65-0) [Nove](#page-0-0)[mbe](#page-65-0)r 2024

- F Smith HL, Waltman P 1995 The Theory of the Chemostat (Cambridge: Cambridge University Press)
- Wolkowicz GSK and Zhao XQ 1998 N-species competition in a R periodic chemostat.

€⊡

 $28/29$

TMDETA Seminar, November 2024

Thanks for your attention!

