Impact of noise in some MEMS models

Nikos I. Kavallaris

International Meetings on Differential Equations and Their Applications

May 18, 2023

Nikos I. Kavallaris (Karlstad University)

Stochastic MEMS models

May 18, 2023 1 / 23

Overview

MEMS devices

- 2 Deterministic MEMS Models
- Image: MEMS model with spatio-temporal noise
- MEMS models with temporal Brownian noise
- 5 Numerical Results
- 6 MEMS models with alternative types of temporal noises

References

< □ > < □ > < □ > < □ > < □ > < □ >

MEMS devices

	Automotive	Electronics	Medical	Communications	Defence
Cantilevered PT Inductor CMOS circuit chration energy harvester	Internal navigation sensors	Disk drive heads	Blood pressure sensor	Fibre-optic network components	Munitions guidance
	Air conditioning compressor sensor	Inkjet printer heads	Muscle stimulators & drug delivery systems	RF Relays, switches and filters	Surveillance
	Brake force sensors & suspension control accelerometers	Projection screen televisions	Implanted pressure sensors	Projection displays in portable communications devices and instrumentation	Arming systems
	Fuel level and vapour pressure sensors	Earthquake sensors	Prosthetics	Voltage controlled oscillators (VCOs)	Embedded sensors
	Airbag sensors	Avionics pressure sensors	Miniature analytical instruments	Splitters and couplers	Data storage
	"Intelligent" tyres	Mass data storage systems	Pacemakers	Tuneable lasers	Aircraft control

(a)

(b)

• MEMS (Micro-Electro-Mechanical Systems) : precision devices combine both mechanical processes with electrical circuits

Nikos I. Kavallaris (Karlstad University)

Stochastic MEMS models

Electrically actuated MEMS device - Configuration 1

Electrically actuated MEMS device - Configuration 2

- β : magnitude of spring force
- β_c : magnitude of external force (e.g gravity force).

Local model

$$u_t = \Delta u + rac{\lambda h(x)}{(1-u)^2}, \quad x \in \Omega, \ t > 0$$
 (1)

$$\frac{\partial u}{\partial \nu} + \beta u = \beta_c, \quad x \in \partial \Omega, \ t > 0$$
⁽²⁾

$$0 \le u(x,0) = u_0(x) < 1, \quad x \in \Omega$$
 (3)

- *u* =the displacement of the elastic membrane toward the ground plate
- $\lambda \propto V^2$, where V is the applied voltage
- $h(x) = dielectric profile of the elastic membrane, eg. <math>h(x) \equiv 1$
- Finite-time quenching: $\|u(\cdot,t)\|_{\infty} \to 1$ as $t \to T_q < \infty$.
- Quenching \implies Touching down (possible destruction of MEMS device)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Local model(Bifurcation 1-dimension)

- Finite-time quenching occurs only for "big" values of λ. (Guo 1991)
 Finite-time quenching occurs only for "large" enough initial values
 - $u_0(x)$. (Guo 1991)

Nonlocal model

$$u_{t} = \Delta u + \frac{\lambda}{(1-u)^{2} \left(1 + \alpha \int_{\Omega} \frac{1}{1-u} dx\right)^{2}}, \quad x \in \Omega, \ t > 0$$
(4)
$$\frac{\partial u}{\partial \nu} + \beta u = \beta_{c}, \quad x \in \partial \Omega, \ t > 0$$
(5)
$$0 \le u(x,0) = u_{0}(x) < 1, \quad x \in \Omega$$
(6)

- Purpose: extend the stable operation of MEMS device
- Implementation: addition of a series capacitance C_f
- $\alpha = \frac{C_0}{C_f}$, where C_0 denotes the capacitance of the undeflected device.

< □ > < □ > < □ > < □ > < □ > < □ >

Nonlocal model(Bifurcation 1-dimension)

- Finite-time quenching occurs only for "big" values of λ . (Drosinou, K., Nikolopoulos 2021)
- Finite-time quenching occurs only for "large" enough initial values $u_0(x)$. (Drosinou, K., Nikolopoulos 2021)

Nikos I. Kavallaris (Karlstad University)

Local stochastic model

• $\lambda \rightarrow \lambda + \text{noise}$ then model (4)-(6) can take the form, **(K. 2016)**,

$$u_t = \Delta u + \frac{\lambda}{(1-u)^2} + \sigma(u)\partial_t W, \quad x \in \Omega, \ t > 0$$
 (7)

$$\frac{\partial u}{\partial \nu} + \beta u = \beta_c, \quad x \in \partial \Omega, \ t > 0$$
(8)

$$0 \le u(x,0) = u_0(x) < 1, \quad x \in \Omega$$
 (9)

•
$$W(x,t) = \sum_{i=1}^{\infty} \mu_i^{1/2} \chi_i(x) B_i(t)$$
 : Wiener process

- $\sigma(\cdot)$ locally Lipschitz with linear growth
- $\sigma(u)\partial_t W(x,t)$: multiplicative spatial-temporal noise

イロト イポト イヨト イヨト

Quenching for model (7)-(9)

• Finite-time quenching: $\limsup_{t \to T_q} \mathbb{E}\left[\|u(\cdot, t)\|_{\infty} \right] = 1$

Theorem 1(K. 2016)

Given that $\mathbb{E}[||u_0(\cdot)||_{\infty}] < 1$ then the solution of (7)-(9) quenches in finite time for "big" values of λ .

Theorem 2(K. 2016)

Take $\lambda > 0$ and $\mathbb{E}[||u_0(\cdot)||_{\infty}] < 1$ then the solution of (7)-(9) quenches in finite time provided that $\mathbb{E}\left[\int_{\Omega} u_0(x)\phi_1(x) dx\right] > \zeta$ where ζ is the largest root of the equation $g(\tau) = \frac{\lambda}{(1-\tau)^2} - \mu_1 \tau = 0$ and (μ_1, ϕ_1) first eigenpair of $-\Delta_R$.

• If finite-time quenching occurs then all solution moments quench.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MEMS model with Brownian noise

$$z_t = \Delta z - \frac{\lambda}{z^2} - \kappa z dB_t, \quad x \in \Omega, \ t > 0$$
(10)

$$\frac{\partial z}{\partial \nu} + \beta z = 0, \quad x \in \partial \Omega, \ t > 0$$
(11)

$$0 < z(x,0) = z_0(x) \le 1, \quad x \in \Omega$$
 (12)

z := 1 − *u*

- B_t one-dimensional Brownian motion
- κ postive constant
- $\beta = \beta_c$
- $\kappa z dB_t$: multiplicative linear temporal noise

An equivalent RPDE model

0

- Finite-time quenching for (10)-(12): $\lim_{t\to\tau} \inf_{x\in\Omega} |z(x,t)| = 0, \quad \text{a.s. on the event} \quad \{\tau < \infty\},$
- Set $v = e^{\kappa B_t} z$ $0 \le t < \tau$ then we derive the equivalent RPDE problem

$$v_t = \Delta v - rac{\kappa^2}{2}v + \lambda e^{3\kappa B_t}v^{-2}$$
 $x \in \Omega, t > 0,$ (13)

$$\frac{\partial v}{\partial \nu} + \beta v = 0, \quad \text{on} \quad x \in \partial \Omega, t > 0,$$
 (14)

$$v(x,0) = z_0(x), \quad x \in \Omega \tag{15}$$

- The solution to (13)-(15) should be understood trajectorywise
- z quenches in time τ if and only if v quenches in random time τ .

< □ > < □ > < □ > < □ > < □ > < □ >

Finite-time quenching

Theorem 3(Drosinou, K., Nikolopoulos 2022) The (weak) solution of problem

$$\begin{aligned} z_t &= \Delta z - \frac{\lambda}{z^2} - \kappa z dB_t, \quad x \in \Omega, \ t > 0\\ \frac{\partial z}{\partial \nu} + \beta z &= 0, \quad x \in \partial \Omega, \ t > 0\\ 0 &< z(x,0) = z_0(x) \le 1, \quad x \in \Omega, \end{aligned}$$

quenches in finite time with probability one, i.e. almost surely, regardless the size of its initial condition as well as that of parameter λ .

The impact of noise is vital into quenching! Note that the corresponding deterministic problem quenches only for "big" λ or "large enough" initial data z₀(x).

Nikos I. Kavallaris (Karlstad University)

Regularizing effect

Theorem 4(Drosinou, K., Nikolopoulos 2022) The (weak) solution of problem

$$z_t = \Delta z - rac{\lambda e^{-3\gamma t}}{z^2} - \kappa z dB_t, \quad x \in \Omega, \ t > 0$$
 (16)

$$\frac{\partial z}{\partial \nu} + \beta z = 0, \quad x \in \partial \Omega, \ t > 0, \tag{17}$$

$$0 < z(x,0) = z_0(x) \le 1, \quad x \in \Omega.$$
 (18)

• quenches in finite time with positive probability $\mathbb{P}[\tau < +\infty] \ge \frac{1}{\Gamma(-\mu)} \int_0^{\theta} e^{-y} y^{-\mu-1} dy$, for given θ , when $\gamma \ge \mu_1 + \frac{\kappa^2}{2}$,

• quenches in finite time almost surely provided that $\gamma < \mu_1 + \frac{\kappa^2}{2}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Global existence

Theorem 5(Drosinou, K., Nikolopoulos 2022)

Consider initial data $0 < z_0(x) \le 1$ such that

$$\int_0^\infty e^{3\kappa B_r}\rho^{-3}(r)\,dr<\frac{1}{4\lambda},$$

where $\rho(t) := \inf_{x \in \Omega} e^{\gamma t} S_t v_0(x) > 0$. Then, with probability 1, problem (16)-(18) admits a global in time solution satisfying

$$0 < e^{\gamma t - \kappa B_t} \mathcal{S}_t v_0(x) \mathcal{G}(t) \leq z(x, t) < 1, \ x \in \Omega, t \geq 0,$$

where $\mathcal{G}(t) := \left[1 - 4\lambda \int_0^t e^{3\kappa B_r} \mu^{-3}(r) dr\right]^{1/4} < 1$ and \mathcal{S}_t stands for the semigroup generated by $-\Delta_R$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Estimates of Quenching time

Theorem 6(Drosinou, K., Nikolopoulos 2022)

Consider now $v_0(x) = K_1 e^{-\mu_1 \eta} \phi_1(x)$, for some $K_1, \eta > 0$ then the quenching time (stopping time) τ for problem (16)-(18) is bounded by $\tau_* < \tau < \tau^*$ where

$$\tau_* := \inf\left\{t > 0: \int_0^t e^{3[(\mu_1 - \gamma)s + \kappa B_s]} ds \ge \frac{K_1^3 \left(\inf_{x \in \Omega} \phi_1(x)\right)^3 e^{-3\lambda_1 \eta}}{4\lambda}\right\},$$

and

$$\tau^* := \inf\left\{t > 0: \int_0^t e^{3[(\mu_1 - \gamma)s + \kappa B_s]} ds \ge \frac{K_1^3 e^{-3\lambda_1 \eta} \left(\int_\Omega \phi_1^2(x) dx\right)^3}{3\lambda}\right\}.$$

(日)

Numerical Results

Figure 1: (a) Realisation of the numerical solution of problem (10)-(12) for $\lambda = 0.3$, $\kappa = 1$, initial condition u(x, 0) = c x(1 - x) for c = 0.1 and with $\beta = \beta_c = 1$ in the nonhomogeneous boundary condition. (b) Plot of $||u(\cdot, t)||_{\infty}$. The quenching behaviour is apparent.

Numerical Results - Cont.

Figure 2: (a) Realisation of the $||u(\cdot, t)||_{\infty}$ of the numerical solution of problem (10)-(12) or $\lambda = 2$, $\kappa = 1$ and initial condition u(x, 0) = c x(1 - x) for c = 0.1. (b) Plot of $u(x, t_i)$ from a different realization with the same values of the parameters at five time instants.

Fractional Brownian noise

$$\begin{split} & z_t = \Delta z - \lambda e^{-\gamma t} z^{-2} - \kappa z dB_t^H, \quad x \in \Omega, \ t > 0, \\ & \frac{\partial z}{\partial \nu} + \beta z = 0, \quad x \in \partial \Omega, \ t > 0, \\ & 0 < z(x,0) = z_0(x) \le 1, \quad x \in \Omega. \end{split}$$

(Drosinou, Nikolopoulos, Matzavinos, K., (2023))

- B_t^H one-dimensional fractional Brownian motion with Hurst index H.
- $H > \frac{1}{2}$ long-range effects, stochastic integral is defined as a Riemann-Stieltje integral
- Estimation of quenching probability
- Estimation of quenching time
- Estimation of probability of global existence

Nonlocal diffusion and mixed noise

$$\begin{aligned} z_t &= -\frac{1}{2}k^2(t)\mathcal{L}z - g(x,z) - zdN_t, \quad x \in \Omega, \ t > 0, \\ \mathcal{N}z(x,t) + \beta(x)z(x,t) &= 0, \quad x \in \Omega^c := \mathbb{R}^d \setminus \Omega, \ t > 0, \\ 0 &\leq z(x,0) = z_0(x) < 1, \quad x \in \Omega, \end{aligned}$$

(K., Nikolopoulos, Yannacopoulos (2023))

•
$$\mathcal{L}u(x,t) := p.v. \int_{\mathbb{R}^d} (u(x,t) - u(y,t))k(x,y)dy, \quad x \in \mathbb{R}^d,$$

$$\widetilde{\Lambda}^{-1} \nu(x-y) \leq k(x,y) \leq \widetilde{\Lambda} \nu(x-y), \ \ x,y \in \mathbb{R}^d, \ \widetilde{\Lambda} > 0,$$

 $\nu : \mathbb{R}^{d} \setminus \{0\} \to [0, \infty) \text{ density of a symmetric Lévy measure.}$ • $\mathcal{N}u(y, t) := \int_{\Omega} (u(y, t) - u(x), t)k(x, y)dx, \quad y \in \Omega^{c}$ • $g(x, z) = \lambda\zeta(x)z^{-2} - \gamma z \text{ for } \gamma, \lambda, \zeta(x) > 0 \text{ and } g \to \infty \text{ as } z \to 0$ • $N_t := \int_0^t a(s)dB_s + \int_0^t b(s)dB_s^H, \ H > \frac{1}{2}$

Key References

- [Guo 91] J-S. Guo, On a quenching problem with the Robin boundary condition, Nonlinear Analysis: Theory, Methods & Applications, **17**9, (1991), 803–809.
- [Drosinou, K., Nikolopoulos 2021] O. Drosinou, N.I. Kavallaris & C.V. Nikolopoulos A study of a nonlocal model with Robin boundary conditions arising from technology, Math. Meth. Appl. Sciences 44 (13), (2021).
- [Drosinou, K., Nikolopoulos 2022] O. Drosinou, N.I. Kavallaris & C.V. Nikolopoulos Impacts of noise on quenching of some models arising in MEMS technology, Eur. Jour. Appl. Mathematics (2022), doi.org/10.1017/S0956792522000262
- [Drosinou, Nikolopoulos, Matzavinos, K., 2023] O. Drosinou, C.V. Nikolopoulos, A. Matzavinos & N.I. Kavallaris, A stochastic parabolic model of MEMS driven by fractional Brownian motion, Jour. Math. Biology 86, Article number: 73 (2023).
- [K., 2016] N.I. Kavallaris, Quenching of solutions of a stochastic parabolic problem arising in electrostatic MEMS control, Math. Meth. Appl. Sciences, 41 (3), (2016), 1074-1082, doi.org/10.1002/mma.4176
- [K., Nikolopoulos, Yannacopoulos, 2023] N.I. Kavallaris, C.V. Nikolopoulos & A.N. Yannacopoulos, On the impact of noise on quenching for a nonlocal diffusion model driven by a mixture of Brownian and fractional Brownian motions, arXiv:2305.05946.

Nikos I. Kavallaris (Karlstad University)

Thank you for your attention!

Nikos I. Kavallaris (Karlstad University)

Stochastic MEMS models

May 18, 2023 23 / 23

э

Image: A match a ma