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First of all I would like to thank the organizers for
giving me the opportunity to talk today. Today’s talk
is in part based on the papers

• T. Akyel and mldc, Mathematical Methods in the
Applied Sciences, 2022.

https://doi.org/10.1002/mma.8111

• T. Akyel and mldc, Studia Universitatis Babeş-Bolyai
Mathematica (to appear).

We plan to consider a linear transmission problem
for the Helmholtz equation in a domain with a small
inclusion, that is motivated by the analysis of time-
harmonic Maxwell’s Equations. Here we refer to

• M.S. Vogelius and D. Volkov, Mathematical Mod-
elling and Numerical Analysis, 34, (2000), 723–748.

We first introduce a Neumann problem for the Helmholtz
equation (and no transmission) in an

‘unperturbed domain’ Ωo ⊆ Rn (with no hole).
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We fix (throughout the talk) a number α ∈]0,1[.

The ‘unperturbed’ domain Ωo satisfies the following
assumption:

(DOM) It is a bounded open connected subset of
Rn, it has a connected exterior (and thus no holes),
it contains 0, it is of class C1,α.

Then we introduce a wave number

ko ∈ C\]−∞,0] , =ko ≥ 0 .

We also assume that k2
o is not a Neumann eigen-

value for −∆ in Ωo. Let

go ∈ C0,α(∂Ωo) .

Then we introduce the Neumann problem

(P )

{
∆uo + k2

ou
o = 0 in Ωo ,

∂
∂νΩo

uo = go on ∂Ωo .

Here νΩo denotes the outward unit normal to ∂Ωo.

Problem (P) is known to have a unique solution

ũo in C1,α(Ωo).
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Next we perturb singularly our problem. Let

Ωi ⊆ Rn

be a domain as in (DOM). Let ε0 ∈]0,1[ be small
enough so that

εΩi ⊆ Ωo ∀ε ∈ [−ε0, ε0] ,

and we consider the perforated domain

Ω(ε) ≡ Ωo \ εΩi ,

for |ε| ≤ ε0. Obviously,

∂Ω(ε) = ε∂Ωi ∪ ∂Ωo .

Also, if ε shrinks to 0, then

Ω(ε)︸ ︷︷ ︸
is of class C1,α

degenerates to Ωo \ {0}︸ ︷︷ ︸
is not of class C1,α

.
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Next we define a transmission problem in (εΩi,Ω(ε)).
To do so, we introduce the constants

mi,mo ∈]0,+∞[ , a ∈]0,+∞[ , b ∈ R ,

the wave number

ki ∈ C\]−∞,0] , =ki ≥ 0 ,

and the ‘jump’ datum for the normal derivatives

gi ∈ C0,α(∂Ωi) .

Then we consider the transmission problem

(Pε)



∆ui + k2
i u

i = 0 in εΩi ,

∆uo + k2
ou

o = 0 in Ω(ε) ,
uo(x)− aui(x) = b ∀x ∈ ε∂Ωi ,

− 1
mi

∂
∂ν
εΩi
ui(x) + 1

mo
∂

∂ν
εΩi
uo(x)

= gi(x/ε) ∀x ∈ ε∂Ωi ,
∂

∂νΩo
uo = go on ∂Ωo ,

in the unknown (ui, uo) ∈ C1,α(εΩi)×C1,α(Ω(ε))

for ε ∈]0, ε0[.
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The first step is prove the following existence and
uniqueness theorem for problem (Pε).

Theorem 1 (of existence and uniqueness) There
exists ε′ ∈]0, ε0[ such that if ε ∈]0, ε′[, then the
transmission problem (Pε) has one and only one
solution

(ui(ε, ·), uo(ε, ·)) ∈ C1,α(εΩi)× C1,α(Ω(ε)) .

• Kress, R., Roach, G. F. J. Mathematical Phys. 19
(1978), no. 6, 1433–1437. [case of a domain and
its exterior]

Then our goal is to understand the behavior of

(ui(ε, ·), uo(ε, ·)) as ε approaches 0

and of its rescaled version

(ui(ε, ε·), uo(ε, ε·)) as ε approaches 0
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More precisely, we plan to answer the following ques-
tions

(i) Let ξ be fixed in Ωi. What can be said on the
map ε 7→ ui(ε, εξ) when ε > 0 is close to 0?

(ii) Let ξm be fixed in Rn\Ωi. What can be said on
the map ε 7→ uo(ε, εξm) when ε > 0 is close to
0?

(iii) Let xM be fixed in Ωo \ {0}. What can be said
on the map ε 7→ uo(ε, xM) when ε > 0 is close
to 0?

In a sense, questions (i), (ii) concern the ‘micro-
scopic’ behavior of ui(ε, ·) and uo(ε, ·), whereas
question (iii) concerns the ‘macroscopic’ behavior of
uo(ε, ·).
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Questions of this type have long been investigated
with the methods of asymptotic analysis, which aim
at proving complete asymptotic expansions in terms
of the parameter ε.

• A.M. Il’in, Translations of Mathematical Monographs,
102. American Mathematical Society, Providence,
RI, 1992. [method of matching outer and inner asymp-
totic expansions]

• V.G. Mazya, S.A. Nazarov and B.A. Plamenewskii,
I, II, Oper. Theory Adv. Appl., 111, 112, Birkhäuser
Verlag, Basel, 2000.

[Compound Expansion Method (also known as Multi-
Scale Expansion Method): a systematic approach
for analyzing general Douglis and Nirenberg elliptic
boundary value problems in domains with perfora-
tions and corners.]
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For today’s problem:

• D. Cedio-Fengya, S. Moskow and M.S. Vogelius,
Inverse Problems 14 (1998) 553–595.

• M.S. Vogelius and D. Volkov, Mathematical Mod-
elling and Numerical Analysis, 34, (2000), 723–748.

• Hansen, D.J. , Poignard, C., Vogelius, M.S., Appl.
Anal. 86 (2007), no. 4, 433–458.
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Today, I have no word to add in the realm of asymp-
totic expansions.

What I want to say is that I and other collaborators:

M. Dalla Riva, P. Musolino, P. Luzzini, R. Pukhtaievych,
S. Gryshchuk and for today’s problem my co-author
T. Akyel

have tried to represent the dependence of the so-
lutions or eigenvalues of boundary value problems
upon a singular perturbation parameter ε around the
degenerate case ε = 0, in terms of

analytic functions

or

of other known functions of ε (such as log ε, 1/ log ε,
etc...)

and we are doing it today for ui(ε, ε·), uo(ε, ε·), uo(ε, ·).

For an introduction to this point of view, we refer to

•Dalla Riva, Matteo; mldc; Musolino, Paolo, Springer,
Cham, 2021.
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Below κn = 1 if n is even and κn = 0 if n is odd
and δ2,2 ≡ 1 and δ2,n ≡ 0 if n ≥ 3.

Theorem 2 Let xM ∈ Ωo \ {0}.

There exist εxM ∈]0, ε′[, an open neighbourhood Ũ
of (0,0) in R2

and a real analytic map UxM from ]− εxM , εxM [×Ũ
to C

such that

xM ∈ Ω(ε) ∀ε ∈]− εxM , εxM [ ,(
ε, κnε log ε,

δ2,n

log ε

)
∈]−εxM , εxM [×Ũ , ∀ε ∈]0, εxM [

and

uo(ε, xM) = UxM

[
ε, κnε log ε,

δ2,n

log ε

]
∀ε ∈]0, εxM [ .

Moreover,

UxM [0,0,0] = ũo(xM)

where ũo is the only solution of the ‘unperturbed’
Neumann problem (P).
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What does the previous theorem say?

It says that if xM ∈ Ωo \ {0}, then

• If n = 2, the solution uo(ε, ·) evaluated at xM
tends to ũo(xM) as ε tends to 0 and can be ex-
panded into a convergent power expansion of

ε, ε log ε, 1
log ε for ε > 0 small enough.

• If n ≥ 3 and n is even, then the solution uo(ε, ·)
evaluated at xM tends to ũo(xM) as ε tends to 0

and can be expanded into a convergent power ex-
pansion of

ε, ε log ε for ε > 0 small enough.

• If n ≥ 3 and n is odd, then the solution uo(ε, ·)
evaluated at xM tends to ũo(xM) as ε tends to 0

and can be expanded into a convergent power ex-
pansion of

ε for ε > 0 small enough.
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How about the explicit computation of the Taylor co-
efficients of the function UxM? We have proved no
result on today’s problem. However, for this type of
computation, we mention the work of

•Dalla Riva, M., Musolino, P., Rogosin,S.V.: Asymp-
tot. Anal. 92, 339–361 (2015)

for a singularly perturbed Dirichlet problem for the
Laplace operator.
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It turns out that the solution uo(ε, ·) and the rescaled
pair (ui(ε, ε·), uo(ε, ε·)) have a limit as ε tends to
zero that is related to the solutions of a ‘limiting bound-
ary value problem’ that we analyze in the following
statement.

Theorem 3 The limiting boundary value problem

∆u
i,r
1 = 0 in Ωi ,

∆u
o,r
1 = 0 in Ωi− ,

∆uo + k2
ou

o = 0 in Ωo ,

u
o,r
1 (x) + uo(0)− aui,r1 (x) = b ∀x ∈ ∂Ωi ,

− 1
mi

∂
∂νΩi

u
i,r
1 (x) + 1

mo
∂

∂νΩi
u
o,r
1 (x) = 0 ∀x ∈ ∂Ωi ,

∂
∂νΩo

uo = go on ∂Ωo ,

lim
ξ→∞

u
o,r
1 (ξ) = 0 ,

has one and only one solution (ũi,r1 , ũ
o,r
1 , ũo) in

C1,α(Ωi)× C1,α
loc (Ωi−)× C1,α(Ωo).
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We now state our main result on the microscopic
behaviour of ui(ε, ·), i.e., of ui(ε, ε·).

Theorem 4 Let ξ ∈ Ωi. There exist an open neigh-
bourhood Ũ of (0,0) in R2 and real analytic maps
U i1 ,U

i
2 from ]− ε′, ε′[×Ũ to C such that

ui(ε, εξ) = U i1

[
ε, κnε log ε,

δ2,n

log ε

]
(5)

+(κnε log2 ε)U i2

[
ε, κnε log ε,

δ2,n

log ε

]
for all ε ∈]0, ε′[. Moreover,

U i1[0,0,0] = ũ
i,r
1 (ξ) , U i2[0,0,0] = 0 , (6)

where ũi,r1 has been defined in Theorem 3.

16



What does the previous theorem say?

It says that if ξ ∈ Ωi, then

• If n = 2, then ui(ε, εξ) tends to ũi,r1 (ξ) as ε tends
to 0 and can be expanded into a convergent power
expansion of

ε, ε log ε, 1
log ε, ε log2 ε for ε > 0 small enough.

• If n ≥ 3 and n is even, then ui(ε, εξ) tends to
ũ
i,r
1 (ξ) as ε tends to 0 and can be expanded into a

convergent power expansion of

ε, ε log ε, ε log2 ε for ε > 0 small enough.

• If n ≥ 3 and n is odd, then ui(ε, εξ) tends to
ũ
i,r
1 (ξ) as ε tends to 0 and can be expanded into a

convergent power expansion of

ε for ε > 0 small enough.
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We now state our main result on the microscopic
behaviour of uo(ε, ·), i.e., of uo(ε, ε·).

Theorem 7 Let ξm ∈ Rn \Ωi. Then there exist an
open neighbourhood Ũ of (0,0) in R2 and εm ∈
]0, ε′[, and two real analytic maps

Uom,1 ,U
o
m,2 : ]− εm, εm[×Ũ → C

such that

εξm ∈ Ω(ε) ∀ε ∈]− εm, εm[ , (8)

uo(ε, εξm) = Uom,1

[
ε, κnε log ε,

δ2,n

log ε

]
(9)

+(κnε log2 ε)Uom,2

[
ε, κnε log ε,

δ2,n

log ε

]
for all ε ∈]0, εm[. Moreover,

Uom,1[0,0,0] = ũo(0) + ũ
o,r
1 (ξm) ,

Uom,2[0,0,0] = 0 ,

where ũo,r1 has been defined in Theorem 3.
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What does the previous theorem say?

It says that if ξm ∈ Rn \Ωi, then

• If n = 2, then uo(ε, εξm) tends to ũo(0)+ũ
o,r
1 (ξm)

as ε tends to 0 and can be expanded into a conver-
gent power expansion of

ε, ε log ε, 1
log ε, ε log2 ε for ε > 0 small enough.

• If n ≥ 3 and n is even, then uo(ε, εξm) tends
to ũo(0) + ũ

o,r
1 (ξm) as ε tends to 0 and can be

expanded into a convergent power expansion of

ε, ε log ε, ε log2 ε for ε > 0 small enough.

• If n ≥ 3 and n is odd, then uo(ε, εξm) tends to
ũo(0) + ũ

o,r
1 (ξm) as ε tends to 0 and can be ex-

panded into a convergent power expansion of

ε for ε > 0 small enough.
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THANK YOU FOR YOUR ATTENTION!
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