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Unifying Continuous
and Discrete Analysis

"A major fask of mathematics E
today is to harmonize the continuous
and the discrete, to include them in
one comprehensive mathematics,
and to eliminate obscurity from both.”

E.T. Bell, 1937
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1 Time Scales
I,

If the time scale is

+ The set of all real numbers, the (delta)
derivative is the usual derivative

+ The set of all integers, the (delta)
derivative is the usual forward difference

+ The set of all nonnegative integer powers
of a number g>1, the (delta) derivative is
the usual Jackson derivative
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2 Jump Operators 3 Graininess
.

o(t) . =inf{s >t:secT}

t
Tt2
t

p(t) ;==sup{s<t:secT} . t

u(t) = o(t) —t
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4 Delta Derivative

[F(a(t)) = F()] = fFAD[o(t) — s]| < elo(t) - s

. f®) = f(s) Ay — Jlo(?) — f(H)
Fo0) = lim == PO="0

o — A
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6 Product Rule 7 Quotient Rule
-

(f9)2 =F2g+ 179
(i)A _9f2 - fg°

(t2)2 = (t-t)2 =t + o(t) (1)& 1
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8 Integrals
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9 The Exponential Function
-

L4+ umpt) =0 PO =D+ qT P4 poq= 13’:‘1
Hq

ep(,tO) yA — p(t)y y(to)zl
ep(t,s)ep(s,m) = ep(t,r) o
en(@()) = 1+ PO es(tis) L — €roq
€p€q = Epdq €q
eat cottes) = exp { [ pryar | (1 Oé)t ep(t,s):jﬁ:mp(f)]
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10 Variation of Parameters
]

2 = —p(t)z” + f(t), z(to) = 2o

t
2(t) = eop(t, to)zo + / eop(t, ) (T)AT

y> =p()y + f(t), y(to) = o

v(®) = eplt, w0 + [ eplt.a()f()AT
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Gronwall’s Inequality
e

Theorem 1.1 (See [8, Theorem 6.4]). Let y, f € Cq(Z,R) and p € Cq(Z, [0, 00)).
Then

t
y(t) < f(t) —I—/ y(s)p(s)As  forall tel
implies ’

y(t) < f(t) +/ ep(t,o(s))f(s)p(s)As  forall tel.
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Dynamic / Integral Equation
-

(1.1) PR (t) + pt)p(t) = f(t), teIv,
where T = [a,b] N T with a time scale T C R, a,b € T, a < b, p € Cwq(Z,R),
f € Cu(Z,X), and X is a Banach space.

Lemma 2.1. 9 solves (1.1) if and only if 1 satisfies the integral equation

(2.1) B(t) = zo — / (p(s)0(s) — f(s))As  forall teT

for some constant o € X.
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Uniqueness

Corollary 2.2. For xg € X, (1.1) has at most one solution 1 satisfying ¥(a) = xg.
Proof. Let xp € X. Assume that 11 and 15 are solutions of (1.1) with

Y1(a) = Pa(a) = xo.
Then, by Lemma 2.1, both 17 and 5 satisfy (2.1). This implies

11 () — a2 (t)]| g/ lo(s)| |01(s) — ¥a(s)|| As  forall teZ.

By Gronwall’s inequality, Theorem 1.1,
[1(t) —¥2(t)]| <0 forall teZ,

80 1 = Y. [
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Existence
-

Theorem 2.3. Assume that there exists a € (0,1) such that

t
(2.2) / p(s)|As<a forall teT.

If xo € X, then (1.1) has a unique solution v satisfying ¥ (a) = xg.
Proof. Fix xy € X. Define the operator T : C(Z,X) — C(Z,X) by

T () = 7o / (p(s)0(s) — f(s))As, teT.
For 11,19 € C(Z,X), we have

[Th1(t) — To2(t)[] < [J9h1 — d)zlloof [p(s)| As < afjhy =, teEL,

Hence, |71 — T2, < aljtr — 2]/, so T is a contraction. Therefore, 7" has
a unique fixed point ¢, which is the unique solution of (2.1) satisfying v (a) = xo.
Thus, by Lemma 2.1, v is the unique solution of (1.1) satisfying ¥ (a) = x. H
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Hyers-Ulam Stability
e

Definition 3.1 (Hyers—Ulam Stability). We say that (1.1) has Hyers—Ulam stabil-
ity if there exists a constant L > 0, a so-called HUS constant, with the following
property. For any ¢ > 0, if ¢ € C1,(Z,X) is such that

2 () + p(t)(t) — fF(B)|| < e forall teT*,
then there exists a solution ¢ : Z — X of (1.1) such that
lih(t) — p(t)|| < Le forall tel.
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HU Stability - Result
e

(H) For any zy € X, (1.1) has a solution ¢ satisfying ¢(a) = xo.

Theorem 3.2. If (H) holds, then (1.1) has Hyers—Ulam stability with HUS con-
stant

L:=(b—a)ey(b,a).
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Proof. Note that |p| € Cq(Z,[0,00)), and so L is well defined and L > 0. Let
e > 0. Suppose ¥ € CL4(Z,X) is such that

(3.1) |2 () + pt)p(t) — fB)]| <e forall teIn.

Defining A(t) := 92 (t) + @(t)¥(t) — f(t), we see that h € C.q(Z,X). Moreover, 1)
satisfies the equation

VA (t) + p()(t) = f(t) + h(t) forall teZ.

Let o = ¥(a). By Lemma 2.1,

(3.2)  w(t) = 0 — / (0()0(s) — (f(s) + h(s)))As forall teT.

By (H), there exists a solution ¢ of (1.1) satisfying ¢(a) = zo9. Equivalently, by
Lemma 2.1,

(3.3) B(t) = g — / (0(3)6(s) — f(s))As forall teT.

Subtracting (3.3) from (3.2), we find, for all t € Z,
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00 — o) = %<mw+/}xxa@—w@mm
< u/”h |As+/"m I I6(s) — 6(s)]l As
< et—a) /’m ) 1(s) — o(s)] As
< e(b-a) /’m N 1(s) — 6(s)]| As.

() — S0l < e@—a%+/fwﬂtd)ﬂp(ﬂ(b—®As

= ¢(b—a) (1 + /: e|o|(t,a(s)) [p(s)] As)

= E(b = CL) (1 -+ e|p|(t,a) = 6|m(t,t))
= (b—a)e(t,a)e < (b—a)e,(b,a)e = Le,
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HU Stability - More Results
e

Theorem 3.4. If g is regressive, then (1.1) has Hyers—Ulam stability.

Theorem 3.5. If there exists a € (0,1) such that (2.2) holds, then (1.1) has
Hyers—Ulam stability.
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Hyers-Ulam-Rassias Stability
I

Definition 4.1 (Hyers—Ulam-Rassias Stability). Let 2 be a family of positive
rd-continuous functions defined on Z. We say that (1.1) has Hyers—Ulam—Rassias
stability of type () if there exists a constant L > 0, a so-called HURSq constant,
with the following property. For any w € Q, if ¢» € C.,(Z,X) is such that

|02 (8) + p#)o(t) — f()|| <w(t) forall teI¥,
then there exists a solution ¢ : Z — X of (1.1) such that
|(t) — o(t)|| < Lw(t) forall telZ.

December 8, 2021 IMDETA todz 21



HUR Stability - Result
1

Theorem 4.2. Let
0" == {w € C(Z, (0,00)) : w is nondecreasing} .

If (H) holds, then (1.1) has Hyers—Ulam—Rassias stability of type ¥* with HURSq-
constant

L := (b—a)ey, (b, a).
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(4.1) |92 () + p()p(t) — f(b)]| <w(t) forall ¢eI"

-Ilw(t) /Ilh S)IIAS+/ o(s)] ll2(s) (S)IIAS-

(4.1)

: /w(s As+/|ps>|||w<) b(s)|| As
< [ w(t)As + f 0(5)] [(s) — 6(s) ]| As
< (b—aw(t)+ / 0(s)] [19(s) — (s)]| As.

[(t) =0l < (b—a)w(t)+ / elp|(t,(5)) [p(s)| (b — a)w(s)As
< (b—a)w(t) + / elp|(t,a(s)) [p(s)] (b — a)w(t)As

= (b—a)w(t) (1 —l—f e|p|(t,a(s)) [p(s)| As)
= (b—a)ey(t,a)w(t) < (b—a)e, (b, a)w(t) = Lw(t).
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HUR Stability - More Results
e

t

Q, = {w € Cu(Z. (0,0 |

a

wP(s)As < WwP(t) for all t € I} .

Theorem 4.3. If (H) holds, then (1.1) has Hyers—Ulam—Rassias stability of type
Q"N Qy with HURSq*~q, constant

L := e (b, a).
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Discrete Case
-

Remark 4.4. Note that for T = Ny, Q" Ny = 4, since any w € 2 satisfies
t
wt+1) 2> w(s) >w(t) for teI"

Therefore, by Theorem 4.3, if T = Ny and (H) holds, then (1.1) has Hyers—Ulam—
Rassias stability of type 2; with HURSq, constant

L=T[0+0(s)
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HUR Stability - More Results
e

Theorem 4.5. If (H) holds, then (1.1) has Hyers—Ulam—Rassias stability of type
2 with HURSq, constant

L:=1+e;(ba)lpl,, where |mm:=ﬁ§man.

o (t) — S(0)] /WzHM+fMJHW 9l As

ey / m+/m)ww 5)| As

/muwww 5)| As.

[p(t) — o)l < w(t)+ fejm(t,c’( ) [p(s)|w(s)As

IA

{4w+qmwﬁnmm/ﬂdgas
< Lw(t),
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HUR Stability - More Results
e

Theorem 4.6. If (H) holds, then (1.1) has Hyers—Ulam—Rassias stability of type
Qy with HURSq, constant

L:=vb—a+ (b—a)ey (b, a)lp|,

o t) fuh IIAS+/|50 ) l1(s) — o(s)]| As

s / As+/|@ ) ll(s) — 6(s)| As

< \/—t—a\/ wZ As+/|p ) () — d(s)[| As

< VE—aJ/e' +/|go(s\||w) o(s)]| As

- [ 10(3)] [(s) — 6(s)]| As,
[0 60 < VE= @0+ [ et I0()] VE— asls)s

Vb — aw(t) + e (b, a) |p|,, Vb —a /(w(s)As

Lw(t),
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HUR Stability - More Results

Theorem 4.7. Letp > 1 and q :==p/(p—1). If (H) holds, then (1.1) has Hyers—
Ulam—Rassias stability of type 2, with HURSq, constant

L:=b—a+ (b—a)*%e(ba)lpl|,, -

Theorem 4.8. If o is regressive, then (1.1) has Hyers—Ulam—Rassias stability of
types (1" and 2, for all p > 1.

Theorem 4.9. If there exists a € (0,1) such that (2.2) holds, then (1.1) has
Hyers—Ulam—Rassias stability of types Q0 and (2, for all p > 1.
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Dynamic / Integral Equation
-

(1.1)  ¥2(t) = pt)(t) + F(t, v(t), k(@ (1)) + f(), t€I®, ¥(a)=ap€X,

Theorem 2.1. If p € R, then v solves (1.1) if and only if

(21) () = ep(t,a)ag + / eo(t, 0(3))[F (s, 0(5), h((s))) + f(s)]As, t €T,
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Existence/Uniqueness

pERandeCrd.
F and h satisfy Lipschitz conditions with constants 8 and 7, respectively.
For any ag € X, (1.1) has a solution ¢ satisfying ¢(a) = ayg.

t

1
B(l+7y)

= Sup/ leo(t,0(s))|As <
ZJa
1

Theorem 2.2. Assume (Hy), (Hz), and (Hy). If ag € X, then (1.1) has a unique
solution v satisfying ¥ (a) = ay.

Corollary 2.3. Assume (Hy), (Hz), and (Hs). If ag € X, then (1.1) has a unique
solution.
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HU Stability - Result
e

Theorem 3.2. If (Hy), (Hz2), and (Hs) hold, then (1.1) has Hyers—Ulam stability
with HUS constant

(3.5) L := (b— a)e,(b, a')eﬁ(1+’r)€|p|(b,a) (b,a).

Hy(t) := F(t,¥(t), h(¥(t))) + f(1)
gy () == 2 (t) — p(t)¥(t) — Hy(t)
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Proof. Let € > 0. Suppose ¥ € C!;(Z,X) is such that (3.3) holds. Then

PR) = p(t)u(t) + Hy(t) + o= (t) — p(t)(t) — Hy(t)
= p()Y(t) + Hy(t) + gy(t)-
Set ag = 1¥(a). By Theorem 2.1,

(3.6) 0(t) = et @)a + [ eu(t.() [Ho(s) + 90(5)] As.

By (Hjz), there exists a unique solution ¢ of (1.1) with ¢(a) = ag, that is, by
Theorem 2.1,

(3.7) ¢(t) = ep(t,a)ag +/ ep(t,o(s))Hy(s)As, tel.

Subtracting (3.7) from (3.6), we find, for all ¢t € Z,

() = 00 < | [ eplto(s)guls) s

+

/ e, (t, 0 (5)) [F (s, 9(5), h(w(s))) — F(s, 8(s), h(d(s)))] As

Since ||gy ()] < € holds for ¢ € Z and taking into account (Hz), we get
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|wm—¢mnfze]W%@m@MAs

+/ leo(t,0(s))| Bl[w(s) = @(s)ll + |R(¥(s)) — h(e(s))]l] As

IA

5/ e (t,o(s))| As

+/I%UJGMﬁmwﬁ—éwm+7WM@—M@MAS
e E/ leo(t,0(s))| As
+/W%um@M5u+¢ww@—¢@MAs

t
< (b aeigi(b.a) + AL+ Derpi(bia) [ () — os)] A
Thus, by Gronwall’s inequality, Theorem 1.3, we deduce that
l(2) — @)l < e(b— a)ejy) (b, a)es1ivy)e;, (b,a)(bsa) = Le.
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HU Stability - More Results
e

Corollary 3.4. Assume (Hy) and (Hs). In addition, assume (Hy) or (Hs). Then
(1.1) has Hyers—Ulam stability with constant L.

Ezample 3.5. We now give an example such that (H;), (Hs), and (Hs) are statisfied,
so that, for example, Corollary 3.4 applies. Consider

oo

T =P := |2k 2k +1]
k=0

and let

1
. =2 1 .
meN, a=0, b=2m+1, 5€<0’(2m+1)(26)m+1>

Moreover, we let f € C.q, p(t) =1, and
F(t,z,y) = B(sinx +y), h(z)=cosz.
Equation (1.1) then takes the form

Y (t) = 9(t) + B (sin(y(t)) + cos($(t))) + f(2).

We note that (H;) is satisfied because p € R and f € C,q. We also note that
(HT.) ia aaticfhind horatian T ia Tinachitr cantiniinng with Tinachitsr canatant R and
\le/ 10 Sauidliivu wuctuaudno J 1o ulyoblllbb vuliviiiuuus ywiuvlil JJIPD\_/ILIUL vuliouvaliiv /\J aliul

h is Lipschitz continuous with Lipschitz constant v = 1. Finally, according to [5,
Example 2.58],
e1(b,a) = e1(2m +1,0) = 2me™ L,
Hence,
(b— a)eyy(ba) = (2m + 1)2mem+l « = — 1
L 28 B+7)

and thus (Hs) is satisfied as well.
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HUR Stability - Result
1

M* :={w € C.q(Z, (0,00)) : w is nondecreasing}

Theorem 4.2. If (Hy), (H3), and (Hs) hold, then (1.1) has Hyers—Ulam—Rassias
stability of type M™ with HURS -~ constant

(4'3) L= (b - a)elgo\(ba a) (1 + (b - a)ﬁ(l + ’7)€|p|(ba &)66(1+'y)e|p|(b,a)(ba OL)) :
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[p(t) — o) < / lep(t,0(s))] llgy(s) As
/ leo(t,a(s))| | F(s,%(s), h(1p(s))) — F(s,9(s), h(¢(s)))|| As
< epo(bya) / (5)As + 1) (b, a)B(1 + ) f (s) - #(s)] s
< (b—a)ey (b, a)w(t) + B(1+7)e, (b, a)/ |l(s) — @(s)|| As.
[(t) — o(t)|| < (b—a)e,(b,a)w(t)
+/ €B(1+47)e | (b.a) (£ 0(8)) (b — a)eyy (b, a)w(s)B(1 + Ve (b, a)As
= (b— a)em(b, a)w(t)

(b— a (6“01 b a,))zﬁ 1 —|—’}/ / 65(14_7)6'@'(5’&)@,O‘(S))M(S)AS

(b—a)e,(b,a)w(t
+(b— a)? (1) (0, @))” B+ V€014~ ), (ha) (b D) (t)
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HUR Stability - More Results
e

t
My, = {w € Cra(Z,(0,0)) : / wP(s)As < wWP(t) for all t € I}

Theorem 4.3. If (H1), (H2), and (H3) hold, then (1.1) has Hyers—Ulam—Rassias
stability of type M* N My with HURS pm=Apm, constant

(4.4) L := e,(b,a) (1 + (b —a)B(1 + v)e, (b, a)€5(1+7)elsvl(b?a)(b’ a)) ;

December 8, 2021 IMDETA todz 38



HUR Stability - More Results
e

Theorem 4.4. If (Hy), (H2), and (Hs) hold, then (1.1) has Hyers—Ulam—Rassias
stability of type My with HURSA, constant

(45) L := € ol (ba a) (]— S )8(1 S ’7)6]@ (ba a)€5(1+’y)e|p|(b,a) (ba CL)) g

[(t) —o@)] < / leo(t, a(5))] llgw (s)]| As
/ leo(t, o () IF(s,9(s), h(1(s))) — F(s,8(s), h(¢(s))) ]| As

IN

%Mbw/ (ﬁx+qmw@51+v/Ww 6(5)]| As

IN

et (b a)e(t) + AL+ ey () [ [(s) — 9(s)] As.

[9(t) =l < e)p)(b,a)w(t)

+/ B1+7)erp (b,a) (T (8))€)p) (b, a)w(s) B(L + 7)e (b, a) As
€)p| (b; a)w(t)

+ (elpi (6, @) BO+7)ep(1 4710, (5.0) (b1 @) /atw(S)As

ejp) (b a)w(t) + (e)y) (b, a))2 BL+7)es1r)ey (b.a) (b @)w ()
Lw(t).
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HUR Stability - More Results
e

Theorem 4.5. Let p > 1 and q :=p/(p—1). If (H1), (H2), and (Hs) hold, then
(1.1) has Hyers—Ulam—Rassias stability of type My, with HURSAr, constant

(4.6) L :=eb,a)Vb—a (1 + B(1 4+ 7)e)p) (b, a) Vb — aeg114)e;y (b,a) (b a)) .

p

t
M. = {w € Cra(Z, (0,00)) : / wP(s)As < rwP(t) for all t € I}

Theorem 4.6. If (Hy), (Hs), and (Hs3) hold, then (1.1) has Hyers—Ulam—-Rassias
stability of type M, with HURS My, constant
(4.7)

L :=e)g)(b,a) Vb —a/r (1 + B(L+7)Vb = af/rejg (b a)esry)e, (b,a) (b, &)) -
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