Hyers-Ulam and Hyers-Ulam-Rassias Stability of First-Order Linear and Nonlinear Dynamic Equations

Martin Bohner MISSOURI UNIVERSITY OF SCIENCE AND TECH MATHEMATICS & STATISTICS

bohner@mst.edu

http://web.mst.edu/~bohner

December 8, 2021

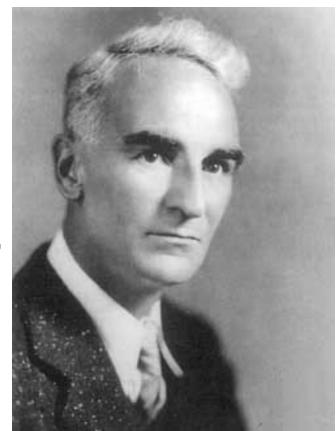
IMDETA Łódź

Formerly University of Missouri-Rolla

Unifying Continuous and Discrete Analysis

"A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both."

E.T. Bell, 1937



1 Time Scales

If the time scale is

- The set of all real numbers, the (delta) derivative is the usual derivative
- The set of all integers, the (delta) derivative is the usual forward difference
- The set of all nonnegative integer powers of a number q>1, the (delta) derivative is the usual Jackson derivative

$$\sigma(t) := \inf\{s > t : s \in \mathbb{T}\} \xrightarrow{t_1 \ t_2} \cdot \\ \rho(t) := \sup\{s < t : s \in \mathbb{T}\} \cdot \xrightarrow{t_3 \ t_4} \cdot \\ \mu(t) := \sigma(t) - t$$

$$|[f(\sigma(t)) - f(s)] - f^{\Delta}(t)[\sigma(t) - s]| \le \varepsilon |\sigma(t) - s|$$

$$f^{\Delta}(t) = \lim_{s \to t} \frac{f(t) - f(s)}{t - s} \qquad \qquad f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\mu(t)}$$

$$f^{\sigma} = f + \mu f^{\Delta} \quad \mathbf{5} \, \mathbf{SUF}$$

$$(fg)^{\Delta} = f^{\Delta}g + f^{\sigma}g^{\Delta}$$
$$\left(\frac{f}{g}\right)^{\Delta} = \frac{gf^{\Delta} - fg^{\Delta}}{gg^{\sigma}}$$
$$^{(t^{2})^{\Delta} = (t \cdot t)^{\Delta} = t + \sigma(t)} \quad \left(\frac{1}{t}\right)^{\Delta} = -\frac{1}{t\sigma(t)}$$

December 8, 2021

$$F^{\Delta} = f$$

$$\int_{r}^{s} f(t)\Delta t = F(s) - F(r)$$

December 8, 2021

9 The Exponential Function

$$\begin{array}{ll} {}^{1+\mu(t)p(t)\,\neq\,0} \ p\oplus q \mathrel{\mathop:}= p+q+\mu p q \quad p\oplus q \mathrel{\mathop:}= p+q} \\ {}^{p-q} \\ {}^{1+\mu(q)} \\ {}^{e_p(t,t_0)} \ y \overset{\Delta}{=} p(t)y \quad y(t_0) \mathrel{\mathop:}= 1 \\ {}^{e_p(t,s)e_p(s,r)\,=\,e_p(t,r)} \\ {}^{e_p(\sigma(t),s)\,=\,[1+\mu(t)p(t)]\,e_p(t,s)} \ \overset{P}{=} e_p \\ {}^{e_p(\sigma(t),s)\,=\,[1+\mu(t)p(t)]\,e_p(t,s)} \ \overset{P}{=} e_p \\ {}^{e_p(\sigma(t),s)\,=\,[1+\mu(t)p(t)]\,e_p(t,s)} \ \overset{P}{=} e_p \\ {}^{e_p(\sigma(t),s)\,=\,[1+\mu(t)p(t)]\,e_p(t,s)} \\ {}^{e_p(t,s)\,=\,[1+\mu(t)p(t)]\,e_p(t,s)} \ \overset{P}{=} e_p \\ {}^{e_p(t,s)\,=\,e_p\{\int_s^t p(\tau)d\tau\}} \ \underset{\text{IMDETA tódź}}{(1+\alpha)^t} \ {}^{e_p(t,s)\,=\,\prod_{r=s}^{t-1}[1+p(\tau)]} \\ {}^{e_p(t,s)\,=\,e_p\{\int_s^t p(\tau)d\tau\}} \ \underset{\text{IMDETA tódź}}{(1+\alpha)^t} \ {}^{e_p(t,s)\,=\,\prod_{r=s}^{t-1}[1+p(\tau)]} \\ {}^{e_p(t,s)\,=\,e_p\{\int_s^t p(\tau)d\tau\}} \ \underset{\text{IMDETA tódź}}{(1+\alpha)^t} \ {}^{e_p(t,s)\,=\,\prod_{r=s}^{t-1}[1+p(\tau)]} \\ {}^{e_p(t,s)\,=\,e_p(t,s$$

10 Variation of Parameters

$$x^{\Delta} = -p(t)x^{\sigma} + f(t), \quad x(t_0) = x_0$$
$$x(t) = e_{\ominus p}(t, t_0)x_0 + \int_{t_0}^t e_{\ominus p}(t, \tau)f(\tau)\Delta\tau$$
$$y^{\Delta} = p(t)y + f(t), \quad y(t_0) = y_0$$
$$y(t) = e_p(t, t_0)y_0 + \int_{t_0}^t e_p(t, \sigma(\tau))f(\tau)\Delta\tau$$

December 8, 2021

DYNAMIC EQUATIONS ON TIME SCALES

AN INTRODUCTION WITH APPLICATIONS

MARTIN BOHNER ALLAN PETERSON

BIRKHÄUSER

Martin Bohner · Svetlin G. Georgiev

Multivariable Dynamic Calculus on Time Scales

This is joint work with Maryam Alghamdi Alaa Aljehani Alaa Hamza

(University of Jeddah, Saudi Arabia)

Publ. Inst. Math. (Beograd) (N.S.) 109(123), 2021, 83-93.

December 8, 2021

Gronwall's Inequality

Theorem 1.1 (See [8, Theorem 6.4]). Let $y, f \in C_{rd}(\mathcal{I}, \mathbb{R})$ and $\wp \in C_{rd}(\mathcal{I}, [0, \infty))$. Then

$$y(t) \le f(t) + \int_{a}^{t} y(s)\wp(s)\Delta s \quad \text{for all} \quad t \in \mathcal{I}$$

implies

$$y(t) \leq f(t) + \int_{a}^{t} e_{\wp}(t, \sigma(s)) f(s) \wp(s) \Delta s \quad \text{for all} \quad t \in \mathcal{I}.$$

December 8, 2021

Dynamic / Integral Equation

(1.1)
$$\psi^{\Delta}(t) + \wp(t)\psi(t) = f(t), \quad t \in \mathcal{I}^{\kappa},$$

where $\mathcal{I} = [a, b] \cap \mathbb{T}$ with a time scale $\mathbb{T} \subset \mathbb{R}$, $a, b \in \mathbb{T}$, a < b, $\wp \in C_{rd}(\mathcal{I}, \mathbb{R})$, $f \in C_{rd}(\mathcal{I}, \mathbb{X})$, and \mathbb{X} is a Banach space.

Lemma 2.1. ψ solves (1.1) if and only if ψ satisfies the integral equation

(2.1)
$$\psi(t) = x_0 - \int_a^t (\wp(s)\psi(s) - f(s))\Delta s \quad \text{for all} \quad t \in \mathcal{I}$$

for some constant $x_0 \in \mathbb{X}$.

December 8, 2021

Uniqueness

Corollary 2.2. For $x_0 \in \mathbb{X}$, (1.1) has at most one solution ψ satisfying $\psi(a) = x_0$. *Proof.* Let $x_0 \in \mathbb{X}$. Assume that ψ_1 and ψ_2 are solutions of (1.1) with $\psi_1(a) = \psi_2(a) = x_0$.

Then, by Lemma 2.1, both ψ_1 and ψ_2 satisfy (2.1). This implies

$$\|\psi_1(t) - \psi_2(t)\| \le \int_a^t |\wp(s)| \|\psi_1(s) - \psi_2(s)\| \Delta s \quad \text{for all} \quad t \in \mathcal{I}$$

By Gronwall's inequality, Theorem 1.1,

$$\psi_1(t) - \psi_2(t) \| \le 0$$
 for all $t \in \mathcal{I}$,

so $\psi_1 = \psi_2$.

Existence

Theorem 2.3. Assume that there exists $\alpha \in (0,1)$ such that

(2.2)
$$\int_{a}^{t} |\wp(s)| \Delta s \leq \alpha \quad \text{for all} \quad t \in \mathcal{I}.$$

If $x_0 \in \mathbb{X}$, then (1.1) has a unique solution ψ satisfying $\psi(a) = x_0$. *Proof.* Fix $x_0 \in \mathbb{X}$. Define the operator $T : C(\mathcal{I}, \mathbb{X}) \to C(\mathcal{I}, \mathbb{X})$ by

$$T\psi(t) := x_0 - \int_a^t (\wp(s)\psi(s) - f(s))\Delta s, \quad t \in \mathcal{I}.$$

For $\psi_1, \psi_2 \in C(\mathcal{I}, \mathbb{X})$, we have

$$||T\psi_1(t) - T\psi_2(t)|| \le ||\psi_1 - \psi_2||_{\infty} \int_a^t |\wp(s)| \Delta s \le \alpha ||\psi_1 - \psi_2||_{\infty}, \quad t \in \mathcal{I},$$

Hence, $||T\psi_1 - T\psi_2||_{\infty} \leq \alpha ||\psi_1 - \psi_2||_{\infty}$, so *T* is a contraction. Therefore, *T* has a unique fixed point ψ , which is the unique solution of (2.1) satisfying $\psi(a) = x_0$. Thus, by Lemma 2.1, ψ is the unique solution of (1.1) satisfying $\psi(a) = x_0$.

December 8, 2021

Hyers-Ulam Stability

Definition 3.1 (Hyers–Ulam Stability). We say that (1.1) has Hyers–Ulam stability if there exists a constant L > 0, a so-called HUS constant, with the following property. For any $\varepsilon > 0$, if $\psi \in C^1_{rd}(\mathcal{I}, \mathbb{X})$ is such that

$$\left\|\psi^{\Delta}(t)+\wp(t)\psi(t)-f(t)\right\|\leq \varepsilon \quad \text{for all} \quad t\in\mathcal{I}^{\kappa},$$

then there exists a solution $\phi : \mathcal{I} \to \mathbb{X}$ of (1.1) such that

 $\|\psi(t) - \phi(t)\| \le L\varepsilon$ for all $t \in \mathcal{I}$.

HU Stability - Result

(H) For any $x_0 \in \mathbb{X}$, (1.1) has a solution ϕ satisfying $\phi(a) = x_0$.

Theorem 3.2. If (H) holds, then (1.1) has Hyers–Ulam stability with HUS constant

 $L := (b - a)e_{|\wp|}(b, a).$

December 8, 2021

Proof. Note that $|\wp| \in C_{rd}(\mathcal{I}, [0, \infty))$, and so L is well defined and L > 0. Let $\varepsilon > 0$. Suppose $\psi \in C^1_{rd}(\mathcal{I}, \mathbb{X})$ is such that

(3.1)
$$\|\psi^{\Delta}(t) + \wp(t)\psi(t) - f(t)\| \le \varepsilon \quad \text{for all} \quad t \in \mathcal{I}^{\kappa}.$$

Defining $h(t) := \psi^{\Delta}(t) + \wp(t)\psi(t) - f(t)$, we see that $h \in C_{rd}(\mathcal{I}, \mathbb{X})$. Moreover, ψ satisfies the equation

$$\psi^{\Delta}(t) + \wp(t)\psi(t) = f(t) + h(t) \text{ for all } t \in \mathcal{I}.$$

Let $x_0 = \psi(a)$. By Lemma 2.1,

(3.2)
$$\psi(t) = x_0 - \int_a^t (\wp(s)\psi(s) - (f(s) + h(s)))\Delta s \quad \text{for all} \quad t \in \mathcal{I}.$$

By (H), there exists a solution ϕ of (1.1) satisfying $\phi(a) = x_0$. Equivalently, by Lemma 2.1,

(3.3)
$$\phi(t) = x_0 - \int_a^t (\wp(s)\phi(s) - f(s))\Delta s \quad \text{for all} \quad t \in \mathcal{I}.$$

Subtracting (3.3) from (3.2), we find, for all $t \in \mathcal{I}$,

December 8, 2021

$$\begin{split} \|\psi(t) - \phi(t)\| &= \left\| \int_{a}^{t} h(s)\Delta s + \int_{a}^{t} \wp(s)(\phi(s) - \psi(s))\Delta s \right\| \\ &\leq \int_{a}^{t} \|h(s)\|\Delta s + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\|\Delta s \\ &\stackrel{(3.1)}{\leq} \varepsilon(t-a) + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\|\Delta s \\ &\leq \varepsilon(b-a) + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\|\Delta s. \end{split}$$
$$\|\psi(t) - \phi(t)\| &\leq \varepsilon(b-a) + \int_{a}^{t} e_{|\wp|}(t,\sigma(s)) |\wp(s)| \varepsilon(b-a)\Delta s \\ &= \varepsilon(b-a) \left(1 + \int_{a}^{t} e_{|\wp|}(t,\sigma(s)) |\wp(s)|\Delta s\right) \\ &= \varepsilon(b-a) \left(1 + e_{|\wp|}(t,a) - e_{|\wp|}(t,t)\right) \\ &= (b-a)e_{|\wp|}(t,a)\varepsilon \leq (b-a)e_{|\wp|}(b,a)\varepsilon = L\varepsilon, \end{split}$$

December 8, 2021

Theorem 3.4. If \wp is regressive, then (1.1) has Hyers–Ulam stability.

Theorem 3.5. If there exists $\alpha \in (0,1)$ such that (2.2) holds, then (1.1) has Hyers–Ulam stability.

Hyers-Ulam-Rassias Stability

Definition 4.1 (Hyers–Ulam–Rassias Stability). Let Ω be a family of positive rd-continuous functions defined on \mathcal{I} . We say that (1.1) has Hyers–Ulam–Rassias stability of type Ω if there exists a constant L > 0, a so-called HURS_{Ω} constant, with the following property. For any $\omega \in \Omega$, if $\psi \in C^1_{rd}(\mathcal{I}, \mathbb{X})$ is such that

$$\left\|\psi^{\Delta}(t) + \wp(t)\psi(t) - f(t)\right\| \le \omega(t) \quad \text{for all} \quad t \in \mathcal{I}^{\kappa},$$

then there exists a solution $\phi : \mathcal{I} \to \mathbb{X}$ of (1.1) such that

 $\|\psi(t) - \phi(t)\| \le L\omega(t) \quad \text{for all} \quad t \in \mathcal{I}.$

HUR Stability - Result

Theorem 4.2. Let

 $\Omega^* := \left\{ \omega \in \mathrm{C}_{\mathrm{rd}}(\mathcal{I},(0,\infty)) : \ \omega \ is \ nondecreasing \right\}.$

If (H) holds, then (1.1) has Hyers–Ulam–Rassias stability of type Ω^* with $HURS_{\Omega^*}$ constant

 $L := (b-a)e_{|\wp|}(b,a).$

December 8, 2021

$$(4.1) \qquad \left\| \psi^{\Delta}(t) + \wp(t)\psi(t) - f(t) \right\| \leq \omega(t) \quad \text{for all} \quad t \in \mathcal{I}^{\kappa}.$$

$$\| \psi(t) - \phi(t) \| \leq \int_{a}^{t} \|h(s)\| \Delta s + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s$$

$$\stackrel{(4.1)}{\leq} \int_{a}^{t} \omega(s)\Delta s + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s$$

$$\leq \int_{a}^{t} \omega(t)\Delta s + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s$$

$$\leq (b - a)\omega(t) + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s.$$

$$\begin{aligned} \|\psi(t) - \phi(t)\| &\leq (b-a)\omega(t) + \int_a^t e_{|\wp|}(t,\sigma(s)) |\wp(s)| (b-a)\omega(s)\Delta s \\ &\leq (b-a)\omega(t) + \int_a^t e_{|\wp|}(t,\sigma(s)) |\wp(s)| (b-a)\omega(t)\Delta s \\ &= (b-a)\omega(t) \left(1 + \int_a^t e_{|\wp|}(t,\sigma(s)) |\wp(s)| \Delta s\right) \\ &= (b-a)e_{|\wp|}(t,a)\omega(t) \leq (b-a)e_{|\wp|}(b,a)\omega(t) = L\omega(t). \end{aligned}$$

December 8, 2021

$$\Omega_p := \left\{ \omega \in \mathcal{C}_{\mathrm{rd}}(\mathcal{I}, (0, \infty)) : \int_a^t \omega^p(s) \Delta s \le \omega^p(t) \text{ for all } t \in \mathcal{I} \right\}.$$

Theorem 4.3. If (H) holds, then (1.1) has Hyers–Ulam–Rassias stability of type $\Omega^* \cap \Omega_1$ with $HURS_{\Omega^* \cap \Omega_1}$ constant

 $L := e_{|\wp|}(b, a).$

December 8, 2021

Discrete Case

Remark 4.4. Note that for $\mathbb{T} = \mathbb{N}_0$, $\Omega^* \cap \Omega_1 = \Omega_1$, since any $\omega \in \Omega_1$ satisfies

$$\omega(t+1) \ge \sum_{s=a}^{t} \omega(s) \ge \omega(t) \quad \text{for} \quad t \in \mathcal{I}^{\kappa}.$$

Therefore, by Theorem 4.3, if $\mathbb{T} = \mathbb{N}_0$ and (H) holds, then (1.1) has Hyers–Ulam– Rassias stability of type Ω_1 with HURS_{Ω_1} constant

$$L = \prod_{s=a}^{b-1} (1 + \wp(s)) \,.$$

December 8, 2021

Theorem 4.5. If (H) holds, then (1.1) has Hyers–Ulam–Rassias stability of type Ω_1 with $HURS_{\Omega_1}$ constant

 $L:=1+e_{|\wp|}(b,a)\left|\wp\right|_{\infty}, \quad \textit{where} \quad \left|\wp\right|_{\infty}:=\sup_{t\in\mathcal{I}}\left|\wp(t)\right|.$

$$\begin{split} \|\psi(t) - \phi(t)\| &\leq \int_{a}^{t} \|h(s)\| \Delta s + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s \\ &\stackrel{(4.1)}{\leq} \int_{a}^{t} \omega(s)\Delta s + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s \\ &\leq \omega(t) + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s. \end{split}$$
$$\begin{aligned} \|\psi(t) - \phi(t)\| &\leq \omega(t) + \int_{a}^{t} e_{|\wp|}(t, \sigma(s)) |\wp(s)| \omega(s)\Delta s \\ &\leq \omega(t) + e_{|\wp|}(b, a) |\wp|_{\infty} \int_{a}^{t} \omega(s)\Delta s \\ &\leq L\omega(t), \end{split}$$

December 8, 2021

Theorem 4.6. If (H) holds, then (1.1) has Hyers–Ulam–Rassias stability of type Ω_2 with $HURS_{\Omega_2}$ constant

$$L := \sqrt{b-a} + (b-a)e_{|\wp|}(b,a) |\wp|_{\infty} .$$

$$\|\psi(t) - \phi(t)\| \leq \int_{a}^{t} \|h(s)\| \Delta s + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s$$

$$\stackrel{(4.1)}{\leq} \int_{a}^{t} \omega(s)\Delta s + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s$$

$$\leq \sqrt{t-a}\sqrt{\int_{a}^{t} \omega^{2}(s)\Delta s} + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s$$

$$\leq \sqrt{b-a}\sqrt{\omega^{2}(t)} + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s$$

$$= \sqrt{b-a}\omega(t) + \int_{a}^{t} |\wp(s)| \|\psi(s) - \phi(s)\| \Delta s,$$

$$\|\psi(t) - \phi(t)\| \leq \sqrt{b-a}\omega(t) + \int_{a}^{t} e_{|\wp|}(t,\sigma(s)) |\wp(s)| \sqrt{b-a}\omega(s)\Delta s$$

$$\leq \sqrt{b-a}\omega(t) + e_{|\wp|}(b,a) |\wp|_{\infty} \sqrt{b-a} \int_{a}^{t} \omega(s)\Delta s$$

$$\leq L\omega(t),$$
2021 IMDETA Łódź

December 8,

27

Theorem 4.7. Let p > 1 and q := p/(p-1). If (H) holds, then (1.1) has Hyers– Ulam–Rassias stability of type Ω_p with $HURS_{\Omega_p}$ constant

HUR Stability - More Results

$$L := \sqrt[q]{b-a} + (b-a)^{2/q} e_{|\wp|}(b,a) \, |\wp|_{\infty} \, .$$

Theorem 4.8. If \wp is regressive, then (1.1) has Hyers–Ulam–Rassias stability of types Ω^* and Ω_p for all $p \ge 1$.

Theorem 4.9. If there exists $\alpha \in (0,1)$ such that (2.2) holds, then (1.1) has Hyers–Ulam–Rassias stability of types Ω^* and Ω_p for all $p \ge 1$.

December 8, 2021

This is joint work with Maryam Alghamdi Mymona Alharbi Alaa Hamza (University of Jeddah, Saudi Arabia)

Qual. Theory Dyn. Syst. 20(2), 2021, Art. No. 45

(1.1) $\psi^{\Delta}(t) = \wp(t)\psi(t) + \mathcal{F}(t,\psi(t),h(\psi(t))) + f(t), \quad t \in \mathcal{I}^{\kappa}, \quad \psi(a) = a_0 \in \mathbb{X},$

Dynamic / Integral Equation

Theorem 2.1. If $\wp \in \mathcal{R}$, then ψ solves (1.1) if and only if

(2.1)
$$\psi(t) = e_{\wp}(t,a)a_0 + \int_a^t e_{\wp}(t,\sigma(s))[\mathcal{F}(s,\psi(s),h(\psi(s))) + f(s)]\Delta s, \quad t \in \mathcal{I}.$$

December 8, 2021

Existence/Uniqueness

$$\begin{array}{ll} (\mathrm{H}_{1}) \ \wp \in \mathcal{R} \ \mathrm{and} \ f \in \mathrm{C}_{\mathrm{rd}}. \\ (\mathrm{H}_{2}) \ \mathcal{F} \ \mathrm{and} \ h \ \mathrm{satisfy} \ \mathrm{Lipschitz} \ \mathrm{conditions} \ \mathrm{with} \ \mathrm{constants} \ \beta \ \mathrm{and} \ \gamma, \ \mathrm{respectively.} \\ (\mathrm{H}_{3}) \ \mathrm{For} \ \mathrm{any} \ a_{0} \in \mathbb{X}, \ (1.1) \ \mathrm{has} \ \mathrm{a} \ \mathrm{solution} \ \phi \ \mathrm{satisfying} \ \phi(a) = a_{0}. \\ (\mathrm{H}_{4}) \ \theta := \sup_{t \in \mathcal{I}} \int_{a}^{t} |e_{\wp}(t, \sigma(s))| \Delta s < \frac{1}{\beta(1+\gamma)}. \\ (\mathrm{H}_{5}) \ (b-a) e_{|\wp|}(b,a) < \frac{1}{\beta(1+\gamma)}. \end{array}$$

Theorem 2.2. Assume (H_1) , (H_2) , and (H_4) . If $a_0 \in \mathbb{X}$, then (1.1) has a unique solution ψ satisfying $\psi(a) = a_0$.

Corollary 2.3. Assume (H_1) , (H_2) , and (H_5) . If $a_0 \in \mathbb{X}$, then (1.1) has a unique solution.

December 8, 2021

Theorem 3.2. If (H_1) , (H_2) , and (H_3) hold, then (1.1) has Hyers–Ulam stability with HUS constant

(3.5)
$$L := (b-a)e_{|\wp|}(b,a)e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(b,a).$$

$$H_{\psi}(t) := \mathcal{F}(t, \psi(t), h(\psi(t))) + f(t)$$
$$g_{\psi}(t) := \psi^{\Delta}(t) - \wp(t)\psi(t) - H_{\psi}(t)$$

December 8, 2021

Proof. Let $\varepsilon > 0$. Suppose $\psi \in C^1_{rd}(\mathcal{I}, \mathbb{X})$ is such that (3.3) holds. Then

$$\psi^{\Delta}(t) = \wp(t)\psi(t) + H_{\psi}(t) + \wp^{\Delta}(t) - \wp(t)\psi(t) - H_{\psi}(t)$$
$$= \wp(t)\psi(t) + H_{\psi}(t) + g_{\psi}(t).$$

Set $a_0 = \psi(a)$. By Theorem 2.1,

(3.6)
$$\psi(t) = e_{\wp}(t,a)a_0 + \int_a^t e_{\wp}(t,\sigma(s)) \left[H_{\psi}(s) + g_{\psi}(s)\right] \Delta s.$$

By (H₃), there exists a unique solution ϕ of (1.1) with $\phi(a) = a_0$, that is, by Theorem 2.1,

(3.7)
$$\phi(t) = e_{\wp}(t,a)a_0 + \int_a^t e_{\wp}(t,\sigma(s))H_{\phi}(s)\Delta s, \quad t \in \mathcal{I}.$$

Subtracting (3.7) from (3.6), we find, for all $t \in \mathcal{I}$,

$$\begin{aligned} \|\psi(t) - \phi(t)\| &\leq \left\| \int_{a}^{t} e_{\wp}(t, \sigma(s)) g_{\psi}(s) \Delta s \right\| \\ &+ \left\| \int_{a}^{t} e_{\wp}(t, \sigma(s)) \left[\mathcal{F}(s, \psi(s), h(\psi(s))) - \mathcal{F}(s, \phi(s), h(\phi(s))) \right] \Delta s \right\|. \end{aligned}$$

Since $||g_{\psi}(t)|| \leq \varepsilon$ holds for $t \in \mathcal{I}$ and taking into account (H₂), we get

December 8, 2021

$$\begin{split} \|\psi(t) - \phi(t)\| &\leq \varepsilon \int_{a}^{t} |e_{\wp}(t, \sigma(s))| \Delta s \\ &+ \int_{a}^{t} |e_{\wp}(t, \sigma(s))| \beta \left[\|\psi(s) - \phi(s)\| + \|h(\psi(s)) - h(\phi(s))\| \right] \Delta s \\ &\leq \varepsilon \int_{a}^{t} |e_{\wp}(t, \sigma(s))| \Delta s \\ &+ \int_{a}^{t} |e_{\wp}(t, \sigma(s))| \beta \left[\|\psi(s) - \phi(s)\| + \gamma \|\psi(s) - \phi(s)\| \right] \Delta s \\ &\leq \varepsilon \int_{a}^{t} |e_{\wp}(t, \sigma(s))| \Delta s \\ &+ \int_{a}^{t} |e_{\wp}(t, \sigma(s))| \beta (1 + \gamma) \|\psi(s) - \phi(s)\| \Delta s \\ &\leq \varepsilon (b - a) e_{|\wp|}(b, a) + \beta (1 + \gamma) e_{|\wp|}(b, a) \int_{a}^{t} \|\psi(s) - \phi(s)\| \Delta s. \end{split}$$

Thus, by Gronwall's inequality, Theorem 1.3, we deduce that

$$\|\psi(t) - \phi(t)\| \le \varepsilon(b-a)e_{|\wp|}(b,a)e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(b,a) = L\varepsilon.$$

December 8, 2021

Corollary 3.4. Assume (H_1) and (H_2) . In addition, assume (H_4) or (H_5) . Then (1.1) has Hyers–Ulam stability with constant L.

Example 3.5. We now give an example such that (H_1) , (H_2) , and (H_5) are statisfied, so that, for example, Corollary 3.4 applies. Consider

$$\mathbb{T} = \mathbb{P}_{1,1} := \bigcup_{k=0}^{\infty} [2k, 2k+1]$$

and let

$$m \in \mathbb{N}, \quad a = 0, \quad b = 2m + 1, \quad \beta \in \left(0, \frac{1}{(2m+1)(2e)^{m+1}}\right).$$

Moreover, we let $f \in C_{rd}$, $\wp(t) \equiv 1$, and

 $\mathcal{F}(t, x, y) = \beta(\sin x + y), \quad h(x) = \cos x.$

Equation (1.1) then takes the form

$$\psi^{\Delta}(t) = \psi(t) + \beta \left(\sin(\psi(t)) + \cos(\psi(t)) \right) + f(t).$$

We note that (H₁) is satisfied because $\wp \in \mathcal{R}$ and $f \in C_{rd}$. We also note that (H₂) is satisfied because \mathcal{F} is Lipschitz continuous with Lipschitz constant β and h is Lipschitz continuous with Lipschitz constant $\gamma = 1$. Finally, according to [5, Example 2.58],

$$e_1(b,a) = e_1(2m+1,0) = 2^m e^{m+1}$$

Hence,

$$(b-a)e_{|\wp|}(b,a) = (2m+1)2^m e^{m+1} < \frac{1}{2\beta} = \frac{1}{\beta(1+\gamma)},$$

and thus (H_5) is satisfied as well.

December 8, 2021

 $\mathcal{M}^* := \{ \omega \in C_{rd}(\mathcal{I}, (0, \infty)) : \ \omega \text{ is nondecreasing} \}$

Theorem 4.2. If (H_1) , (H_2) , and (H_3) hold, then (1.1) has Hyers–Ulam–Rassias stability of type \mathcal{M}^* with $HURS_{\mathcal{M}^*}$ constant

(4.3)
$$L := (b-a)e_{|\wp|}(b,a)\left(1 + (b-a)\beta(1+\gamma)e_{|\wp|}(b,a)e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(b,a)\right).$$

December 8, 2021

$$\begin{split} |\psi(t) - \phi(t)|| &\leq \int_{a}^{t} |e_{\wp}(t, \sigma(s))| \, \|g_{\psi}(s)\| \, \Delta s \\ &+ \int_{a}^{t} |e_{\wp}(t, \sigma(s))| \, \|\mathcal{F}(s, \psi(s), h(\psi(s))) - \mathcal{F}(s, \phi(s), h(\phi(s)))\| \, \Delta s \\ &\leq e_{|\wp|}(b, a) \int_{a}^{t} \omega(s) \Delta s + e_{|\wp|}(b, a)\beta(1+\gamma) \int_{a}^{t} \|\psi(s) - \phi(s)\| \, \Delta s \\ &\leq (b-a)e_{|\wp|}(b, a)\omega(t) + \beta(1+\gamma)e_{|\wp|}(b, a) \int_{a}^{t} \|\psi(s) - \phi(s)\| \, \Delta s. \\ \|\psi(t) - \phi(t)\| &\leq (b-a)e_{|\wp|}(b, a)\omega(t) \\ &+ \int_{a}^{t} e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(t, \sigma(s))(b-a)e_{|\wp|}(b, a)\omega(s)\beta(1+\gamma)e_{|\wp|}(b, a)\Delta s \\ &= (b-a)e_{|\wp|}(b, a)\omega(t) \\ &+ (b-a) \left(e_{|\wp|}(b, a)\right)^{2} \beta(1+\gamma) \int_{a}^{t} e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(t, \sigma(s))\omega(s)\Delta s \\ &\leq (b-a)e_{|\wp|}(b, a)\omega(t) \\ &+ (b-a)^{2} \left(e_{|\wp|}(b, a)\right)^{2} \beta(1+\gamma)e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(b, a)\omega(t) \end{split}$$

December 8, 2021

$$\mathcal{M}_p := \left\{ \omega \in \mathcal{C}_{\mathrm{rd}}(\mathcal{I}, (0, \infty)) : \int_a^t \omega^p(s) \Delta s \le \omega^p(t) \text{ for all } t \in \mathcal{I} \right\}$$

Theorem 4.3. If (H_1) , (H_2) , and (H_3) hold, then (1.1) has Hyers–Ulam–Rassias stability of type $\mathcal{M}^* \cap \mathcal{M}_1$ with $HURS_{\mathcal{M}^* \cap \mathcal{M}_1}$ constant

(4.4)
$$L := e_{|\wp|}(b,a) \left(1 + (b-a)\beta(1+\gamma)e_{|\wp|}(b,a)e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(b,a) \right).$$

December 8, 2021

Theorem 4.4. If (H_1) , (H_2) , and (H_3) hold, then (1.1) has Hyers–Ulam–Rassias stability of type \mathcal{M}_1 with $HURS_{\mathcal{M}_1}$ constant

$$\begin{array}{ll} (4.5) \qquad L := e_{|\wp|}(b,a) \left(1 + \beta(1+\gamma)e_{|\wp|}(b,a)e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(b,a) \right). \\ \|\psi(t) - \phi(t)\| &\leq \int_{a}^{t} |e_{\wp}(t,\sigma(s))| \, \|g_{\psi}(s)\| \, \Delta s \\ &+ \int_{a}^{t} |e_{\wp}(t,\sigma(s))| \, \|\mathcal{F}(s,\psi(s),h(\psi(s))) - \mathcal{F}(s,\phi(s),h(\phi(s)))\| \, \Delta s \\ &\leq e_{|\wp|}(b,a) \int_{a}^{t} \omega(s) \Delta s + e_{|\wp|}(b,a)\beta(1+\gamma) \int_{a}^{t} \|\psi(s) - \phi(s)\| \, \Delta s \\ &\leq e_{|\wp|}(b,a)\omega(t) + \beta(1+\gamma)e_{|\wp|}(b,a) \int_{a}^{t} \|\psi(s) - \phi(s)\| \, \Delta s. \\ \|\psi(t) - \phi(t)\| &\leq e_{|\wp|}(b,a)\omega(t) \\ &+ \int_{a}^{t} e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(t,\sigma(s))e_{|\wp|}(b,a)\omega(s)\beta(1+\gamma)e_{|\wp|}(b,a)\Delta s \\ &\leq e_{|\wp|}(b,a)\omega(t) \\ &+ (e_{|\wp|}(b,a))^{2}\beta(1+\gamma)e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(b,a) \int_{a}^{t} \omega(s)\Delta s \\ &\leq e_{|\wp|}(b,a)\omega(t) + (e_{|\wp|}(b,a))^{2}\beta(1+\gamma)e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(b,a)\omega(t) \\ &= L\omega(t). \end{array}$$

Theorem 4.5. Let p > 1 and q := p/(p-1). If (H_1) , (H_2) , and (H_3) hold, then (1.1) has Hyers–Ulam–Rassias stability of type \mathcal{M}_p with $HURS_{\mathcal{M}_p}$ constant

(4.6)
$$L := e_{|\wp|}(b,a)\sqrt[q]{b-a} \left(1 + \beta(1+\gamma)e_{|\wp|}(b,a)\sqrt[q]{b-a}e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(b,a)\right).$$

$$\mathcal{M}_p^r := \left\{ \omega \in \mathcal{C}_{\mathrm{rd}}(\mathcal{I}, (0, \infty)) : \int_a^t \omega^p(s) \Delta s \le r \omega^p(t) \text{ for all } t \in \mathcal{I} \right\}$$

Theorem 4.6. If (H_1) , (H_2) , and (H_3) hold, then (1.1) has Hyers–Ulam–Rassias stability of type \mathcal{M}_p^r with $HURS_{\mathcal{M}_p^r}$ constant (4.7) $L := e_{|\wp|}(b,a)\sqrt[q]{b-a}\sqrt[p]{r}\left(1+\beta(1+\gamma)\sqrt[q]{b-a}\sqrt[p]{r}e_{|\wp|}(b,a)e_{\beta(1+\gamma)e_{|\wp|}(b,a)}(b,a)\right).$

December 8, 2021

