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Systems of first order differential equations

We consider the following system of differential equations:

(P)

{
u′(t) = f (t, u(t)) a.e. t ∈ [0,T ],

u ∈ B;

where f : [0,T ]× RN → RN is a Carathéodory function and
B denotes the initial value or the periodic boundary value
conditions:

(IVC) u(0) = r ;

(PC) u(0) = u(T ).



Case N = 1

The method of upper and lower solutions was widely applied
to (P) in the case where N = 1.

Definition

We say that β ∈W 1,1(I ,R) is an upper solution of (P) if

(i) f (t, β(t)) ≤ β′(t) for a.e. t ∈ I ;

(ii) - if B denotes (IVC), β(0) ≥ r ;
- if B denotes (PC), β(0) ≥ β(T ).

α ∈W 1,1(I ,R) is a lower solution of (P) if it satisfies (i) and (ii)
with the reversed inequalities.

Assuming the existence of α ≤ β respectively lower and upper
solutions of (P), a solution u is obtained such that α ≤ u ≤ β.
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solutions of (P), a solution u is obtained such that α ≤ u ≤ β.



Case N > 1: A first generalization of the method of upper
and lower solutions to systems of differential equations

For the periodic problem, Knobloch used the following
component-wise lower and upper solutions:
∀i = 1, . . . ,N,∃αi ≤ βi with αi (0) = αi (T ), βi (0) = βi (T ),

α′i (t) ≤ fi (t, x1, . . . , xi−1, αi (t), xi+1, . . . , xN),

β′i (t) ≥ fi (t, x1, . . . , xi−1, βi (t), xi+1, . . . , xN),

∀xj ∈ [αj(t), βj(t)], ∀j 6= i .

This assumption was used to deduce ∃u = (u1, . . . , uN) a
solution of (P) such that
αi (t) ≤ ui (t) ≤ βi (t) ∀t ∈ I , ∀i = 1, . . . ,N.
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Case N > 1: Solution-tubes of systems of DEs

The notion of ordered lower and upper solutions was generalized by the
notion of solution-tubes of systems of first order differential equations.

Definition

We say that (v ,M) ∈W 1,1(I ,RN)×W 1,1(I , [0,∞[) is a solution-tube
of (P) if

(i) 〈x − v(t), f (t, x)− v ′(t)〉 ≤ M(t)M ′(t) for a.e. t ∈ I and ∀x such
that ‖x − v(t)‖ = M(t);

(ii) v ′(t) = f (t, v(t)) a.e. t ∈ {t ∈ I : M(t) = 0};

(iii) - if B denotes (IVC), ‖v(0)− r‖ ≤ M(0);
- if B denotes (PC), ‖v(0)− v(T )‖ ≤ M(0)−M(T ).

∃(v ,M) a solution-tube of (P) =⇒ (P) has a solution u s.t.
u ∈ T (v ,M) = {u ∈W 1,1(I ,RN) : ‖u(t)− v(t)‖ ≤ M(t) ∀t ∈ I}.

If N = 1, (v ,M) is a solution-tube of (P) ⇐⇒ v + M and v −M
are respectively upper and lower solutions of (P).
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N ≥ 1: An other approach: viability theory
Let K ⊂ RN be closed. A solution of (P) remaining in K is called
a viable solution (i.e. u(t) ∈ K for all t).

Nagumo, 1942: first viability result (to my knowledge).

Many generalizations: Aubin and the references therein, ...

Plaskacz, 1990 and Bielawski, Górniewicz and Plaskacz, 1992:
viability results for differential inclusions with
K a proximate retract
(i.e. K is compact and ∃U an open neighborhood of K and
∃ρ : U → K continuous such that
‖ρ(x)− x‖ = dist(x ,K ) ∀x ∈ U).

A tangential condition was imposed:
f (t, x) ∈ TK (x) ∀(t, x) ∈ I × K , where TK (x) is the
Bouligand tangent cone of K at x , i.e.

TK (x) =
{
y ∈ RN : lim inf

t→0+

1

t
dist(x + ty),K ) = 0

}
.
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viability results for differential inclusions with
K a proximate retract
(i.e. K is compact and ∃U an open neighborhood of K and
∃ρ : U → K continuous such that
‖ρ(x)− x‖ = dist(x ,K ) ∀x ∈ U).

A tangential condition was imposed:
f (t, x) ∈ TK (x) ∀(t, x) ∈ I × K , where TK (x) is the
Bouligand tangent cone of K at x , i.e.

TK (x) =
{
y ∈ RN : lim inf

t→0+

1

t
dist(x + ty),K ) = 0

}
.



N ≥ 1: An other approach: viability theory
Let K ⊂ RN be closed. A solution of (P) remaining in K is called
a viable solution (i.e. u(t) ∈ K for all t).

Nagumo, 1942: first viability result (to my knowledge).

Many generalizations: Aubin and the references therein, ...

Plaskacz, 1990 and Bielawski, Górniewicz and Plaskacz, 1992:
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Remarks:

There are few generalizations of viability results to sets
depending on t, where it is shown that u(t) ∈ K (t) ∀t ∈ I .

Let α ≤ β be respectively lower and upper solutions of (P)
and K (t) = {x ∈ R : α(t) ≤ x ≤ β(t)}. Looking for a
solution u such that α ≤ u ≤ β can be seen as looking for a
viable solution.
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Generalization of the method of upper and lower solutions
and the method of solution-tubes



Case N ≥ 1: Admissible regions

Definition

A set R ⊂ I × RN is an admissible region

if ∃h : I × RN → R and
∃p = (p1, p2) : I × RN → I × RN continuous maps such that:

(i) R = {(t, x) : h(t, x) ≤ 0} is bounded and, ∀t ∈ I ,
Rt = {x ∈ RN : (t, x) ∈ R} 6= ∅;

(ii) h has partial derivatives at (t, x) for a.e. t and ∀x with
(t, x) ∈ Rc =

(
I × RN

)
\R, and ∂h

∂t , ∇xh are locally
Carathéodory maps on Rc ;

(iii) p is bounded and such that p(t, x) = (t, x) ∀(t, x) ∈ R and〈
∇xh(t, x), p2(t, x)− x

〉
< 0 a.e. t and ∀x with (t, x) ∈ Rc .

We call (h, p) an admissible pair associated to R.
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Case N = 1: Examples of admissible regions

R = {(t, x) ∈ I × R : α(t) ≤ x ≤ β(t)} is an admissible
region, where α ≤ β in W 1,1(I ,R)

h(t, x) =

∣∣∣∣x − α(t) + β(t)

2

∣∣∣∣− β(t)− α(t)

2
,

p(t, x) = (t, p2(t, x))

with p2(t, x) the projection of x on [α(t), β(t)],

〈∂h
∂x

(t, x), p2(t, x)−x〉 = −dist(x , [α(t), β(t)]) < 0 ∀(t, x) ∈ Rc .
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R = [0, 1]× [−2, 2] ∪ [1, 2]× [−1, 1] is an admissible region.

Indeed, (h, p) is an admissible pair, where

h(t, x) =



0 if (t, x) ∈ R,
3
2 (|x | − 2)2 if 0 ≤ t ≤ 1, 2 < |x | <∞,

(|x |+ t − 2)(|x | − 1) if 1 ≤ t ≤ 2, 1 < |x | ≤ t,

(t − 1)(3|x | − t − 2) if 1 ≤ t ≤ 2, t < |x | ≤ 1 + t,
1
2

(
6(t − 1) + (t − 1)2 + 3(|x | − 2)2

)
if 1 ≤ t ≤ 2, 1 + t < |x |;

p(t, x) =



(t, x) if (t, x) ∈ R,(
t, 2x
|x|
)

if 0 ≤ t ≤ 1, 2 < |x |,(
1 + t − |x |, x

|x|
)

if 1 ≤ t ≤ 2, 1 < |x | ≤ t,(
1, x + x(1−t)

|x|
)

if 1 ≤ t ≤ 2, t < |x | ≤ 1 + t,(
1, 2x
|x|
)

if 1 ≤ t ≤ 2, 1 + t < |x |.
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Case N > 1: Examples of admissible regions

R =
{

(t, x) ∈ I × RN :
∑N

i=1 ai (t)
(
xi − vi (t)

)2 ≤ M2(t)
}

is an

admissible region.

R = I × [−a1, a1]× · · · × [−aN , aN ] is an admissible region.
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R = I × R0 ⊂ I × R2

is admissible, where R0 = {(x1, x2) ∈ R2 : (1−|x1|)2 +x2
2 ≤ 1}.

Notice that R and R0 are not proximate retracts.



Solution-regions

To insure the existence of a solution of (P) in an admissible region
R, it is necessary to impose additional conditions involving R, the
right-member f and the boundary condition B.

Definition

A set R ⊂ I × RN is a solution-region of (P) if it is an admissible
region with an associated admissible pair (h, p) satisfying the
following conditions:

(i)
∂h

∂t
(t, x) + 〈∇xh(t, x), f (p(t, x))〉 ≤ 0

for a.e. t and ∀x with (t, x) 6∈ R;

(ii) - if B denotes (IVC), h(0, r) ≤ 0;
- if B denotes (PC), h(0, x) ≤ h(T , x) ∀x s.t. (0, x) 6∈ R.
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(ii) - if B denotes (IVC), h(0, r) ≤ 0;
- if B denotes (PC), h(0, x) ≤ h(T , x) ∀x s.t. (0, x) 6∈ R.



Examples

If α ≤ β are respectively lower and upper solutions of (P),
then R = {(t, x) ∈ I × R : α(t) ≤ x ≤ β(t)} is a
solution-region.

If (v ,M) is a solution-tube of (P), then
R = {(t, x) ∈ I × RN : ‖x − v(t)‖ ≤ M(t)} is a
solution-region.

If α = (α1, . . . , αN) and β = (β1, . . . , βN) are respectively
component-wise lower and upper solutions of (P) such that
αi (t) ≤ βi (t) ∀t, ∀i = 1, . . . , n, then
R = {(t, x) ∈ I ×RN : αi (t) ≤ xi ≤ βi (t) ∀i = 1, . . . ,N} is a
solution-region.
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An existence result

Theorem

Let f : I × RN → RN be a Carathéodory function. Assume that
there exists R a solution-region of (P). Then, (P) has a solution
u ∈W 1,1(I ,RN) such that (t, u(t)) ∈ R for every t ∈ I .



Example 1
We consider the following problem:

(1)
u′(t) = f (t, u(t)) for a.e. t ∈ [0, 3],

u(0) = u(3);

where

f (t, x) = e6x
(

1− t
)(

x − 1

t2/3

)(
4x − 5 sin2 ( tπ

3

))
− 3

(
x5 − |x |5

)
.

Let R be the following set

We can show that R is a solution-region of (1).
The existence theorem implies that

∃u a solution of (1) s.t. (t, u(t)) ∈ R ∀t ∈ [0, 3].
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Example 2
We consider the following system:

(2)

u′(t) = (u(t))
1
3 (1− u(t)2)et+5v(t),

v ′(t) = −t
1
2 v(t)etu(t) for a.e. t ∈ [0, 1],

(u(0), v(0)) = (u0, v0) ∈ R0.

We can verify that R = [0, 1]× R0 is a solution-region of (2),

The existence theorem implies that

∃(u, v) a solution of (2) s.t (t, u(t), v(t)) ∈ R ∀t ∈ [0, 1].
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A multiplicity result



Strict solution-regions

Definition

A set R ⊂ I × RN is a strict solution-region of (P) if
R is a solution-region with an associated admissible pair (h, p)
satisfying the following conditions:

(i) int(Rt) 6= ∅ ∀t ∈ I , where Rt = {x ∈ RN : (t, x) ∈ R};

(ii) ∃ε > 0 s.t.
∂h

∂t
(t, x) +

〈
∇xh(t, x), f (t, x)

〉
≤ 0 for a.e. t and

∀x with h(t, x) ∈ ]− ε, 0[, and
∂h
∂t ,∇xh are locally Carathéodory maps on h−1(]− ε, 0[);

(iii) -if B denotes (IVC), h(0, r)<0;
- if B denotes (PC), it satisfies h(0, x)<h(T , x) ∀x s.t.
h(0, x) = 0.
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Multiplicity result for the problem (P) with N ≥ 1

Theorem

Let f : I × RN → RN be a Carathéodory function. Assume that
∃R1,R2 two strict solution-regions and
∃R3 a solution-region of (P) such that

R1 ∪ R2 ⊂ R3 and R1
t ∩ R2

t = ∅ for some t ∈ I .

Then, (P) has at least three distinct solutions u1, u2, u3 such that

(t, ui (t)) ∈ R i ∀t ∈ I and i = 1, 2, 3,

and {t ∈ I : (t, u3(t)) ∈ R3\(R1 ∪ R2)} 6= ∅.
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Theorem
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∃R1,R2 two strict solution-regions and
∃R3 a solution-region of (P) such that
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(t, ui (t)) ∈ R i ∀t ∈ I and i = 1, 2, 3,

and {t ∈ I : (t, u3(t)) ∈ R3\(R1 ∪ R2)} 6= ∅.



Idea of the proof for the periodic problem.

For i = 1, 2, 3, we consider the family of modified problems:

(Pi
λ)


u′(t) = λfR i (t, u(t)) +

1− λ
T

∫ T

0

fR i (t, u(t)) dt,

for a.e. t ∈ I ,

u(0) = u(T );

with

fR i (t, x) =

{
f (t, x) if (t, x) ∈ R i ,

f (pi (t, x))− c i (t)(x − pi2(t, x)) otherwise;

where (hi , pi ) is an admissible pair associated to R i and
c i ∈ L1(I ) is chosen such that

c i (t) > ‖f (pi (t, x))‖ for a.e. t ∈ I and ∀x ∈ RN .
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Idea of the proof (continued)

We consider the associated operator
P i : [0, 1]× C (I ,RN)→ C (I ,RN) defined by

P i (λ, u)(t) = u(0)− (1 + λt)

T

∫ T

0

fR i (s, u(s)) ds+λ

∫ t

0

fR i (s, u(s)) ds.

A fixed point of P i (λ, ·) is a solution of (Pi
λ).

We show that, for i = 1, 2, 3,

index(P i (λ, ·),U i ) = (−1)N ∀λ ∈ [0, 1],

with U i = {u ∈ C (I ,RN) : u(t) ∈ int(R i
t)}, for i = 1, 2, and

U3 containing {u ∈ C (I ,RN) : graph(u) ⊂ R3}.
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Idea of the proof (continued)

P3(1, ·) = P i (1, ·) on U i for i = 1, 2.

Excision property of the fixed point index implies

index
(
P3(1, ·),U3\

(
U1 ∪ U2

))
= (−1)N+1.

Let ui ∈ U i be a solution of (P i
λ=1). We show that

(t, ui (t)) ∈ R i ∀t ∈ I .

We conclude that ui is a solution of (P) since f and fR i

coincide on R i .
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Example

We consider the following system of differential equations with the
periodic boundary value conditions:

(3)


u′(t) =

(
u2(t)− t2 + 10t − 25

)(
sin(t + v(t))− 2u(t)

)
,

v ′(t) = t3 − v(t)e1+u2(t) a.e. t ∈ [0, 1],

u(0) = u(1), v(0) = v(1).



We consider the following regions in [0, 1]× R2:

R1 =
{

(t, x1, x2) ∈ [0, 1]× R2 : (x1 + t − 5)2 + x2
2 ≤ (4− 2t)2

}
.

R1 is a strict solution-region of (3).



R2 =
{

(t, x1, x2) ∈ [0, 1]× R2 : (x1 − t + 5)2 + x2
2 ≤ (4− 2t)2

}
.

R2 is a strict solution-region of (3).



R3 =
{

(t, x1, x2) ∈ [0, 1]× R2 : t − 5 ≤ x1 ≤ 5− t, |x2| ≤ (4− 2t)
}

∪
{

(t, x1, x2) ∈ [0, 1]× R2 : x1 > 5− t, (x1 + t − 5)2 + x2
2 ≤ (4− 2t)2

}
∪
{

(t, x1, x2) ∈ [0, 1]× R2 : x1 < t − 5, (x1 + t − 5)2 + x2
2 ≤ (4− 2t)2

}
.

R3 is a solution-region of (3).



R1 ∪ R2 ⊂ R3 and R1
t ∩ R2

t = ∅ ∀t ∈ I .

Our multiplicity theorem ⇒
∃u1 a solution of (3) whose graph is in R1;

∃u2 a solution of (3) whose graph is in R2;

∃u3 a solution of (3) whose graph is in R3 and intersects
R3\(R1 ∪ R2).



Nonlinear Boundary Conditions



Systems of differential equations with nonlinear boundary
conditions

We consider systems of differential equations with more general
boundary conditions:

(PL)

{
u′(t) = f (t, u(t)) for a.e. t ∈ I := [0,T ],

u ∈ BL;

where BL denotes one of the boundary value conditions:

(L1) L(u(0), u(T ), u) = 0;

(L2) L(u(0), u(T ), u) = u(0)− u(T );

with L : R2N × C (I ,RN)→ RN continuous.
L does not need to be linear.
As before, f : [0,T ]× RN → RN is a Carathéodory function.
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In 2019, Tojo introduced the following weaker notion.

Definition

A set R ⊂ I × RN is a weak admissible region if ∃h : I × RN → R
and ∃p = (p1, p2) : I ×RN → I ×RN continuous maps such that:

(i) R = {(t, x) : h(t, x) ≤ 0} is bounded and, ∀t ∈ I ,
Rt = {x ∈ RN : (t, x) ∈ R} 6= ∅;

(ii) h has partial derivatives at (t, x) for a.e. t and ∀x with
(t, x) ∈ Rc =

(
I × RN

)
\R, and ∂h

∂t , ∇xh are locally
Carathéodory maps on Rc ;

(iii) p is bounded and such that p(t, x) = (t, x) ∀(t, x) ∈ R and

(WA)
〈
∇xh(t, x), p2(t, x)− x

〉
≤ 0

a.e. t and ∀x with (t, x) ∈ Rc .

(h, p) is called a weak admissible pair associated to R.

Tojo showed that any compact set R such that Rt 6= ∅ for every
t ∈ I is a weak admissible region.
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Tojo showed that any compact set R such that Rt 6= ∅ for every
t ∈ I is a weak admissible region.



Solution-regions with nonlinear boundary conditions

We extend the notion of solution-regions to (PL).

Definition

A set R ⊂ I × RN is a solution-region of (PL) if it is a weak
admissible region with an associated weak admissible pair (h, p)
satisfying the following conditions:

(i)
∂h

∂t
(t, x) + 〈∇xh(t, x), f (p(t, x))〉 ≤ 0

for a.e. t and ∀x with (t, x) 6∈ R;



Solution-regions with nonlinear boundary conditions

We extend the notion of solution-regions to (PL).

Definition

A set R ⊂ I × RN is a solution-region of (PL) if it is a weak
admissible region with an associated weak admissible pair (h, p)
satisfying the following conditions:

(i)
∂h

∂t
(t, x) + 〈∇xh(t, x), f (p(t, x))〉 ≤ 0

for a.e. t and ∀x with (t, x) 6∈ R;



Solution-regions with nonlinear boundary conditions

We extend the notion of solution-regions to (PL).

Definition

A set R ⊂ I × RN is a solution-region of (PL) if it is a weak
admissible region with an associated weak admissible pair (h, p)
satisfying the following conditions:

(i)
∂h

∂t
(t, x) + 〈∇xh(t, x), f (p(t, x))〉 ≤ 0

for a.e. t and ∀x with (t, x) 6∈ R;



Definition (continued)

(ii) if BL denotes (L1), ∀u ∈W 1,1(I ,Rn) such that
u(0) = p2

(
0, u(0)− L(u(0), u(T ), u)

)
,

(a) h(0, u(0)) ≤ 0;

(b)
(
0, u(0)− L(u(0), u(T ), u)

)
∈ R if (t, u(t)) ∈ R ∀t ∈ I .

(ii)’ If BL denotes (L2),

(a) h(0, u(0)) ≤ h(T , u(T )) ∀u ∈W 1,1(I ,Rn) such that
(0, u(0)) 6∈ R and u(T )− u(0) = tL(u(0), u(T ), u) for some
t ∈ [0, 1].

(b) The inequality in (ii)’(a) is strict or
(i) or (WA) is strict on some S ⊂ I of positive measure.



Definition (continued)

(ii) if BL denotes (L1), ∀u ∈W 1,1(I ,Rn) such that
u(0) = p2

(
0, u(0)− L(u(0), u(T ), u)

)
,

(a) h(0, u(0)) ≤ 0;

(b)
(
0, u(0)− L(u(0), u(T ), u)

)
∈ R if (t, u(t)) ∈ R ∀t ∈ I .

(ii)’ If BL denotes (L2),

(a) h(0, u(0)) ≤ h(T , u(T )) ∀u ∈W 1,1(I ,Rn) such that
(0, u(0)) 6∈ R and u(T )− u(0) = tL(u(0), u(T ), u) for some
t ∈ [0, 1].

(b) The inequality in (ii)’(a) is strict or
(i) or (WA) is strict on some S ⊂ I of positive measure.



An existence result for the problem (PL)

Theorem

Let f : I × RN → RN be a Carathéodory function. Assume that
there exists R a solution-region of (PL). Then, (PL) has a solution
u ∈W 1,1(I ,RN) such that (t, u(t)) ∈ R for every t ∈ I .



Example

We consider the following problem with nonlinear boundary
conditions:

(P2)



u′1(t) = (t − 3)u1(t)u2
2(t) +

t2

4
,

u′2(t) = −u2(t)et+|u1(t)| +
1− t2

4
, a.e. t ∈ [0, 1],

12u1(0) +

∫ 1

0
(6− 5t)u1(t)u2(t) dt = 0,

3u2(0)− u2(1) = 0.



We look for a solution to

u′(t) = f (t, u(t)) a.e. t ∈ [0, 1],

L(u(0), u(1), u) = 0.

with f : [0, 1]× R2 → R2 and L : R4 × C ([0, 1],R2)→ R2 defined
by

f (t, x1, x2) =

(
(t − 3)x1x

2
2 +

t2

4
,−x2e

t+|x1| +
1− t2

4

)
,

L(x1, x2, y1, y2, u1, u2) =

(
x1 +

1

12

∫ 1

0
(6− 5t)u1(t)u2(t) dt,

3x2 − y2

4

)
.



We look for a solution to

u′(t) = f (t, u(t)) a.e. t ∈ [0, 1],

L(u(0), u(1), u) = 0.

with f : [0, 1]× R2 → R2 and L : R4 × C ([0, 1],R2)→ R2 defined
by

f (t, x1, x2) =

(
(t − 3)x1x

2
2 +

t2

4
,−x2e

t+|x1| +
1− t2

4

)
,

L(x1, x2, y1, y2, u1, u2) =

(
x1 +

1

12

∫ 1

0
(6− 5t)u1(t)u2(t) dt,

3x2 − y2

4

)
.



We consider the closed and bounded set

R =

{
(t, x1, x2) ∈ [0, 1]× R2 :

((
1− t

3

)
x1

)2

+
((

1− t

2

)
x2

)2

≤ 1

}
.



We consider the closed and bounded set

R =

{
(t, x1, x2) ∈ [0, 1]× R2 :

((
1− t

3

)
x1

)2

+
((

1− t

2

)
x2

)2

≤ 1

}
.



R is an admissible region with the associated admissible pair (h, p),

where h : [0, 1]× R2 → R and p : [0, 1]× R2 → [0, 1]× R2 are
defined by

h(t, x1, x2) =

(((
1− t

3

)
x1

)2

+
((

1− t

2

)
x2

)2
) 1

2

− 1,

p(t, x) =

{
(t, x) if (t, x) ∈ R,(
t, x

h(t,x)+1

)
otherwise.



R is an admissible region with the associated admissible pair (h, p),
where h : [0, 1]× R2 → R and p : [0, 1]× R2 → [0, 1]× R2 are
defined by

h(t, x1, x2) =

(((
1− t

3

)
x1

)2

+
((

1− t

2

)
x2

)2
) 1

2

− 1,

p(t, x) =

{
(t, x) if (t, x) ∈ R,(
t, x

h(t,x)+1

)
otherwise.



R is a solution-region of (P2),

since, for (t, x) 6∈ R, one has

∂h

∂t
(t, x) + 〈∇xh(t, x), f (p(t, x))〉 ≤ 0;

and, if u ∈W 1,1([0, 1],R2) is such that
u(0) = p2 (0, u(0)− L(u(0), u(1), u)), then

h(0, u(0)) ≤ 0,

and

(0, u(0)− L(u(0), u(1), u)) ∈ R if (t, u(t)) ∈ R ∀t ∈ [0, 1].



R is a solution-region of (P2),
since, for (t, x) 6∈ R, one has

∂h

∂t
(t, x) + 〈∇xh(t, x), f (p(t, x))〉 ≤ 0;

and, if u ∈W 1,1([0, 1],R2) is such that
u(0) = p2 (0, u(0)− L(u(0), u(1), u)), then

h(0, u(0)) ≤ 0,

and

(0, u(0)− L(u(0), u(1), u)) ∈ R if (t, u(t)) ∈ R ∀t ∈ [0, 1].



R is a solution-region of (P2),
since, for (t, x) 6∈ R, one has

∂h

∂t
(t, x) + 〈∇xh(t, x), f (p(t, x))〉 ≤ 0;

and, if u ∈W 1,1([0, 1],R2) is such that
u(0) = p2 (0, u(0)− L(u(0), u(1), u)), then

h(0, u(0)) ≤ 0,

and

(0, u(0)− L(u(0), u(1), u)) ∈ R if (t, u(t)) ∈ R ∀t ∈ [0, 1].



The existence theorem for problems with nonlinear boundary
conditions insures that there exists u a solution of

u′1(t) = (t − 3)u1(t)u2
2(t) +

t2

4
,

u′2(t) = −u2(t)et+|u1(t)| +
1− t2

4
, a.e. t ∈ [0, 1],

12u1(0) +

∫ 1

0
(6− 5t)u1(t)u2(t) dt = 0,

3u2(0)− u2(1) = 0.

such that (
t, u(t)

)
∈ R ∀t ∈ [0, 1].



Case N = 1

Our theorem generalizes results which can be found in the
literature in the case where N = 1.

Corollary

Let f : I × R→ R be a Carathéodory function,
L : R2 × C (I ,R)→ R be continuous and α, β ∈W 1,1(I ,R) such
that α(t) ≤ β(t) ∀t ∈ I , and

(i) f (t, β(t)) ≤ β′(t) for a.e. t ∈ I , and L(β(0), β(T ), β) ≥ 0;

(ii) f (t, α(t)) ≥ α′(t) for a.e. t ∈ I , and L(α(0), α(T ), α) ≤ 0;

(iii) L(α(0), u(t), u) ≤ L(α(0), α(T ), α) ∀u ∈ C (I ,R) s.t.
u(0) = α(0) and α(t) ≤ u(t) ≤ β(t) ∀t ∈ I ;

(iv) L(β(0), u(t), u) ≥ L(β(0), β(T ), β) ∀u ∈ C (I ,R) such that
u(0) = β(0) and α(t) ≤ u(t) ≤ β(t) ∀t ∈ I .

Then, (PL) where BL denotes (L1) has a solution u ∈W 1,1(I ,R)
s.t. (t, u(t)) ∈ R = {(t, x) ∈ I × R : α(t) ≤ x ≤ β(t)} ∀t ∈ I .



Case N = 1

Our theorem generalizes results which can be found in the
literature in the case where N = 1.

Corollary

Let f : I × R→ R be a Carathéodory function,
L : R2 × C (I ,R)→ R be continuous and α, β ∈W 1,1(I ,R) such
that α(t) ≤ β(t) ∀t ∈ I , and

(i) f (t, β(t)) ≤ β′(t) for a.e. t ∈ I , and L(β(0), β(T ), β) ≥ 0;

(ii) f (t, α(t)) ≥ α′(t) for a.e. t ∈ I , and L(α(0), α(T ), α) ≤ 0;

(iii) L(α(0), u(t), u) ≤ L(α(0), α(T ), α) ∀u ∈ C (I ,R) s.t.
u(0) = α(0) and α(t) ≤ u(t) ≤ β(t) ∀t ∈ I ;

(iv) L(β(0), u(t), u) ≥ L(β(0), β(T ), β) ∀u ∈ C (I ,R) such that
u(0) = β(0) and α(t) ≤ u(t) ≤ β(t) ∀t ∈ I .

Then, (PL) where BL denotes (L1) has a solution u ∈W 1,1(I ,R)
s.t. (t, u(t)) ∈ R = {(t, x) ∈ I × R : α(t) ≤ x ≤ β(t)} ∀t ∈ I .



Thank you!
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