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The water wave problem
Incompressible fluid occupying a region Ω(t) with constant pressure
= Patm on the free boundary S(t) under the action of gravity −g ȷ̂


ut + (u · ∇)u = −g ȷ̂−∇P in Ω(t),

divu = 0 in Ω(t),

P = patm on S(t),



A classical problem: travelling water waves. For a c > 0,
u(x , y , t) =u⃗(x − ct, y)

P(x , y , t) =p(x − ct, y)

S(t) =S + {ct̂ ı}
Ω(t) =Ω + {ct̂ ı}



Euler equation for u⃗(x , y) = u(x , y )̂ı + v(x , y )̂ȷ becomes
(u⃗ − c ı̂) · ∇u⃗ = −g ȷ̂−∇p in Ω,

div u⃗ = 0 in Ω,

p = patm on S.

u⃗ − c ı̂ is the steady velocity of the fluid relative to the moving
frame.

• Bernoulli’s law: (u⃗ − c ı̂) · ∇(12 |u⃗ − c ı̂|2 + p + gy) = 0.

This means energy of fluid particles is preserved along stream lines.



Incompressibility implies existence of stream function.

div u⃗ = 0 =⇒ ∃ ψ : ∇⊥ψ = u⃗ − c ı̂.

Streamlines: level curves of stream function ψ(x , y).

• No flux boundary conditions

∇⊥ψ · ν = 0 on S ∪ B

This implies that for constants A,B

ψ = A on S,
ψ = B on B.

We normalize A = 0 and choose B later.



(u⃗ − c ı̂) · ∇u⃗ = −g ȷ̂−∇p

u⃗ − c ı̂ = (u − c )̂ı + v ȷ̂ = ψy ı̂− ψx ȷ̂.

• Vorticity is, by definition, the scalar

ω = ∇× u⃗ = vx − uy .

We have that
ω = −(ψxx + ψyy ) = −∆ψ.

(∇⊥ψ · ∇)u⃗ = −∇p − gy ȷ̂ =⇒ ∇⊥ψ · ∇ω = 0 in Ω

This equation is satisfied if −∆ψ(x , y) = γ(ψ(x , y)).



We consider the constant vorticity case. We fix ω = γ with
γ > 0 a given constant.

• Bernoulli’s law becomes

∇⊥ψ · ∇(
1

2
|∇ψ|2 + p + gy) = 0.

Since p = pA on S we get

1

2
|∇ψ|2 + gy = C = constant on S.



Complete formulation of the water wave problem

−∆ψ = γ in Ω

ψ = 0 on S
1

2
|∇ψ|2 = C − gy

ψ = B on B

A constant boundary condition B at the bottom B = {y = −d}
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A trivial solution: Strip S = {(x , y) / − d < y < 0}

ψS(y) = −γ y
2

2
− y , B = −γ d

2

2
− d .


−∆ψS =γ in Ω

ψS =0 on S = ∂S

|∇ψS |2 =1 on S = ∂S

ψS =B on B



The irrotational case γ = 0: ψ is harmonic and the problem can be
formulated in terms of holomorphic functions.

• Studied for more that 2 centuries. Including Lagrange, Cauchy,
Poisson, Stokes. 

−∆ψ = 0 in Ω

ψ = 0 on S
1

2
|∇ψ|2 = C − gy on S

ψ = B on B



• It is known that a continuum of periodic solutions in the x
variables emerges from the strip. (Stokes waves) S is a curve, it
must typically be a graph



• Formulation integral equation on curves Nekrasov 1921,
Solutions with large amplitude: Krasovskii 1961, Levi-Civita (1925)
Keady-Norbury 1978.

• Maximal height wave, conjectured by Stokes (1847) with a cusp
120-degree angle. Construction of wave with greatest height
Toland (1978): Complete proof Amick-Fraenkel-Toland, Acta
Math. 1982.



• The wave profile must be the graph of a function: Spielvogel
(1970), Toland (1996). Similar for solitary waves: Amick, Toland
(1981), Plotnikov (1982), McLeod (1997), Kozlov, Lokharu (2020).

• Similar results for solitary waves.



Constant vorticity γ > 0.

• Small amplitude solutions using local bifurcation Wahlen, JDE
2009, Constantin-Varvaruca ARMA 2011

• Large amplitude solutions: Global bifurcation by
Constantin-Strauss-Varvaruca Acta Math. 2016, possibly giving
rise to non-graphical solutions (overhanging waves).

• Explicit example of a large amplitude solitary wave
Haziot-Wheeler, ARMA 2023.



Idealized bifurcation picture γ = 0 vs γ ̸= 0

Irrotational case γ = 0 vs. constant vorticity γ > 0

The universe γ > 0 seems to be much richer but little is known



Our goal: to find overhanging solitary waves assuming that
gravity g is a small positive parameter.



−∆ψ = γ in Ω

ψ = 0 on S
ψ = B on B

1

2
|∇ψ|2 + gy =

1

2
on S

ψ(x , y) → ψS(y) as |x | → ∞



Numerically observed overhanging waves:

Teles da Silva-Peregrine, 1988





Dyachenko-Hur 2019, Vanden-Broeck 1996.
We want to find these patterns when vorticity is large



We are interested in solitary waves, asymptotic to the strip ΩS . If
vorticity is large and comparable to wave speed, we can scale into
a regime in which 0 < g ≪ 1 is a small parameter and c = 1.

−∆ψ =γ in Ω

ψ =0 on S
|∇ψ|2 =1− 2gy on S,

ψ(x , y) → ψS(y) as x → ±∞
ψ =constant on B

where ψS(y) = −γ
2y

2 − y .
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A solution with g = 0 and γ ̸= 0: A disk ΩD .

ψD =
γ

4
(R2 − r2), R =

2
3
2

γ

ψS =− γ

2
y2 − y .



We want to find a solution that in the singular limit g → 0 looks
like

How to desingularize into a small g > 0 ? Gluing by small neck



As g → 0, we look for a solution (ψg ,Ωg ) with

(ψg ,Ωg ) → (ψS ,ΩS) ∪ (ψD ,ΩD)

Profile near the neck?



For ε = ε(g) → 0 we postulate that on the neck

ψε(y) = ε−1ψg (εy) → ψH(y), Ωε = ε−1Ωg → H

|∇ψε(y)|2 → 1 = |∇ψH(y)|2, −∆yψε(y) = ωε→ 0 = −∆yψH(y)

∆ψH = 0 in H, ψH = 0, |∇ψH | = 1 on ∂H.

H = “exceptional domain”.



The double hairpin domain (Hauswirth-Pacard, 1995)

∆ψH = 0 in ΩH , ψH = 0, |∇ψH | = 1 on ∂ΩH .

H = f (S),
z = f (w) = w + sin(w)

H = {(z1, z2) / |z1| <
π

2
+ cosh(z2)}

ψH(z) = Re (cosw) = coshw2 cosw1, z = w + sinw



ψH(z) = Re (cosw) = coshw2 cosw1, z = w + sinw


−∆ψH =0 in H

ψ =0 on ∂H

|∇ψH |2 =1 on ∂H

Given ε > 0 we join the disk and the strip by a tiny neck

ΩH = εH, ψH
ε (z) = εψH(z/ε)

−∆ψH
ε =0 in ΩH

ψ =0 on ∂ΩH

|∇ψH
ε |2 =1 on ∂ΩH



• We construct a first approximation Ω0, ψ0 by interpolations &
small modifications of the domains and stream functions ψH

ε , ψ
D ,

ψS . Shifts dR , dS ≈ ε| log ε| are needed.



• An important subtle fact:

ψH
ε (x , y) = |y |+ ε

2
log(x2 + y2)− ε log ε+ o(ε), |y | ≫ ε

That brings a term επδ0 to the linearized equation of the disk that
has to be taken care of by a first adjustment of g in the linearized
equation around ψD . The term ε log ε needs to be matched with
the shifts dS and dR .



Theorem (Dávila, del Pino, Musso, Wheeler (2023))

For any g > 0 sufficiently small there exists ε > 0 such that there
exists a solution Ω, ψ of the problem

−∆ψ =γ in Ω

ψ =0 on S
|∇ψ|2 =1− 2gy on S,

ψ(x , y) → ψS(y) as x → ±∞
ψ =constant on B

where Ω is a g-small perturbation of Ω0



Linearization around Ω0, ψ0, S0 = ∂Ω0.

• S0 parametrized by arclength by Γ(s).

• S parametrized as Γ(s) + h(s, δ)ν(s), ψ = ψ(x , y , δ), g = g(δ).
for a small parameter δ • ψ(·, 0) = ψ0, h(·, 0) = 0, g(0) = 0

Write

ψ1 =
∂ψ

∂δ

∣∣∣
δ=0

, h1 =
∂h

∂δ

∣∣∣
δ=0

, g1 =
∂g

∂δ

∣∣∣
δ=0

Differentiating in δ
−∆ψ =γ + fa(·, δ) in Ωh

ψ =0 on Sh

|∇ψ|2 =1− 2gy + fb(·, δ) on Sh,

From ψ(Γ(s) + h(s)ν(s), δ) = 0 we get

∇ψ(Γ(s)) · h1ν + ψ1 = 0 =⇒ h1 = ψ1 on ∂Ω0.



Now, from |∇ψ(Γ(s) + hν(s))|2 = 1− 2gy + fb we get

∇ψ0(Γ(s)) · (∇ψ1 + h1D
2ψ0(Γ(s))ν) =

∂νψ1 + h1D
2ψ0ν · ν = −g1y + fb,1(·, 0)

D2ψ0ν · ν + D2ψ0T · T = ∆ψ0 = −γ

Finally,

ψ0(Γ(s)) = 0 =⇒ ∇ψ0(Γ(s)) · Γ̇ = 0 =⇒

D2ψ0T · T +∇ψ0 · Γ̈ = 0 =⇒ D2ψ0(γ(s))[T ]2 = κ(s)

Γ̇(s) = T (s), Γ̈(s) = −κ(s)ν(s).
Hence the boundary condition on ψ1 becomes

∂νψ1 + (κ(s)− γ)ψ1 = fb,1



The linearized equation is the Robin problem
−∆ψ1 =fa,1 in Ω0

∂ψ1

∂ν
+ (κ− γ)ψ1 =− g1y + fb,1 on S0,

ψ1 =0 on B0.

• We devise an invertibility theory for this problem, by gluing a
coupled system made out of the three individual linearized
equations.

• Inverting the problem in the hairpin ΩH is obtained using a
suitable complex formula. Inverting on the strip ΩS needs γd < 1.

• Since the linearized problem in ΩD has a nontrivial kernel ∂yψ
D ,

one needs to adjust the parameter g1 to obtain solvability.



• The full nonlinear problem is solved by a fixed point of the
inverse of the linearized equation.

• Similar arguments yield a desingularization of

• We need slightly different ε’s for different necks.



• The method resembles gluing by desingularization of tangent
spheres by small catenoidal necks in various constructions of CMC
or minimal surfaces: Kapouleas 1990’s, Mazzeo-Pacard 2001.
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