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The water wave problem
Incompressible fluid occupying a region Q(t) with constant pressure
= P,tm on the free boundary S(t) under the action of gravity —gJ

oQ(t) =BUS(t)

ur+ (u-Vi)u=—gi— VP inQ(t),
divu=0 in Q(t),
P = patm on S(t)v



A classical problem: travelling water waves. For a ¢ > 0,



Euler equation for d(x,y) = u(x, y)i + v(x, y)] becomes

(F—ci)-Vi=—-gj—Vp inQ,
divi=0 in£Q,
P = Patm onS.
i — cT is the steady velocity of the fluid relative to the moving
frame.
e Bernoulli's law: (& — c) - V(3|7 — ci]> + p+ gy) = 0.
This means energy of fluid particles is preserved along stream lines.



Incompressibility implies existence of stream function.
dvi=0 = J¢: Vip=i—ad.

Streamlines: level curves of stream function ¢ (x, y).

e No flux boundary conditions
Vigy-v=0 onSUB
This implies that for constants A, B

Yv=A onS,
=B onB.

We normalize A = 0 and choose B later.



(F—ch)-Vi=—gj—Vp
0—ci=(u—c)i+vj=1,T— 1]
e Vorticity is, by definition, the scalar
w=V xXl=vx—u.

We have that
W= _(wxx + wyy) = —A.

(Vi -V)i=-Vp—gy] = V- Vw=0 inQ
This equation is satisfied if —AY(x,y) = v(¥(x,y)).



We consider the constant vorticity case. We fix w = ~ with
~v > 0 a given constant.

e Bernoulli's law becomes
1
Vi V(SIVEP + p+ gy) = 0.
Since p = pa on S we get

1
5\V1/)|2 + gy = C = constant on S.



Complete formulation of the water wave problem
—AY =~ inQ
Yv=0 onS
SIVUP = C gy
=B onB

A constant boundary condition B at the bottom B = {y = —d}
Y




A trivial solution: Strip S = {(x,y) / —d <y <0}

S Yy =20
¢=§y2*y
B y=-—1
2 2
s y d
V2 (y) Ty Y 75
—Az/)szv in Q

¥ =0 onS=209S
IVy°|?=1 onS=203S
Y° =B onB



The irrotational case v = 0: % is harmonic and the problem can be
formulated in terms of holomorphic functions.

e Studied for more that 2 centuries. Including Lagrange, Cauchy,
Poisson, Stokes.

—AYp=0 inQ

=0 onS
%\V¢]2:C—gy onS
Yv=B onB



e |t is known that a continuum of periodic solutions in the x
variables emerges from the strip. (Stokes waves) S is a curve, it
must typically be a graph

_/W\




e Formulation integral equation on curves Nekrasov 1921,
Solutions with large amplitude: Krasovskii 1961, Levi-Civita (1925)
Keady-Norbury 1978.

e Maximal height wave, conjectured by Stokes (1847) with a cusp
120-degree angle. Construction of wave with greatest height
Toland (1978): Complete proof Amick-Fraenkel-Toland, Acta

Math. 1982.
2 /k



e The wave profile must be the graph of a function: Spielvogel
(1970), Toland (1996). Similar for solitary waves: Amick, Toland
(1981), Plotnikov (1982), McLeod (1997), Kozlov, Lokharu (2020).

e Similar results for solitary waves.



Constant vorticity v > 0.

e Small amplitude solutions using local bifurcation Wahlen, JDE
2009, Constantin-Varvaruca ARMA 2011

e Large amplitude solutions: Global bifurcation by
Constantin-Strauss-Varvaruca Acta Math. 2016, possibly giving
rise to non-graphical solutions (overhanging waves).

e Explicit example of a large amplitude solitary wave
Haziot-Wheeler, ARMA 2023.



Idealized bifurcation picture v =0 vs v # 0
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Irrotational case v = 0 vs. constant vorticity v > 0

The universe v > 0 seems to be much richer but little is known



Our goal: to find overhanging solitary waves assuming that
gravity g is a small positive parameter.

—AYp=7v inQ
=0 onS
=B onB

1 1

Y(x,y) = ¥s(y) as[x| = oo




Numerically observed overhanging waves:

(2]

1. H=

ro gravity.

FiGURE 7. {a) Profile of a pure rotational wave (g = 0). with 45 and ¢ = 1.153

(b) Sketch of a possible limiting wave, fo

cnergy spectra from measurements of surface elevation. In strong winds the vorticity
near the surface, may often be strong enough to make a suitable correction
significant for the shorter waves. The dimensionless parameter A defined in (4.2)

Teles da Silva-Peregrine, 1988




Vanden Broeck (1994,1995): overhanging solitary waves
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Stokes waves with constant vorticity 519
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FIGURE 9. (Colour online) The profiles of almost touching waves at the beginnings and
ends of the five gaps for v = 4.0 (A, green) and o = 14 (B, yellow), in the (x, y)

Dyachenko-Hur 2019, Vanden-Broeck 1996.
We want to find these patterns when vorticity is large



We are interested in solitary waves, asymptotic to the strip Q°. If
vorticity is large and comparable to wave speed, we can scale into
a regime in which 0 < g < 1 is a small parameter and ¢ = 1.

A=y inQ
=0 onS
Vy|> =1—2gy on S,
P(x,y) = Ys(y) as x — Foo
1 =constant on B

where ¢s(y) = —3y? — y.




A solution with g = 0 and v # 0: A disk Q.




We want to find a solution that in the singular limit g — 0 looks
like

S

S ﬂfD :%(R2_r2)7

i s__ Y2
B (0 Yy

How to desingularize into a small g > 0 ? Gluing by small neck
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As g — 0, we look for a solution (14, $2g) with
(¢g, Q) — (¥s,Qs) U (¢p, Qp)

Profile near the neck?



For e = e(g) — 0 we postulate that on the neck

¢5(Y) = 5_1¢g(5)/) — wH(Y)v Q. = 5_1Qg —H

IVe()I? = 1= [Vou()P, —Byde(y) = we = 0= —Ayu(y)

> al

\A@H =0 inH, ¥y=0, |[Vyy|=1 on aH.\

H = “exceptional domain™.




The double hairpin domain (Hauswirth-Pacard, 1995)

‘A’@H =0 in QH, /L,/)H = O, IVUH‘ =1 on 8QH‘
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z=f(w) =w+sin(w)
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H = f(S),

H={(z1,2) ] |a| < g + cosh(z)}

YH(z) = Re(cosw) = coshwycoswy, z=w +sinw




> <l
YH(z) = Re (cosw) = coshwacoswy, z=w +sinw

A" =0 inH
=0 ondH
VY2 =1 on 0H
Given € > 0 we join the disk and the strip by a tiny neck
QM =eH, ¢fi(z) =ep’(z/e)

~AypH =0 inQH
Y =0 onoQH
VyH12 =1 on Q"
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e We construct a first approximation Qg, g by interpolations &
small modifications of the domains and stream functions !, 4P,
1>, Shifts dg, ds ~ ¢|log ¢| are needed.



e An important subtle fact:

g
¥ (xy) = Iyl + S log(x* +y?) —cloge + o(e), |y| >

That brings a term emwdg to the linearized equation of the disk that
has to be taken care of by a first adjustment of g in the linearized
equation around 1P, The term ¢ loge needs to be matched with
the shifts ds and dg.



Theorem (D4vila, del Pino, Musso, Wheeler (2023))

For any g > 0 sufficiently small there exists € > 0 such that there
exists a solution 0, 1) of the problem

—AyY =y inQ
v=0 onS
V> =1—2gy onS,
U(x,y) — vs(y) as x — +oo
1 =constant  on B

where 0 is a g-small perturbation of g



Linearization around 2, 19, Sp = 0€.
e Sy parametrized by arclength by I'(s).
e S parametrized as I'(s) + h(s, d)v(s), ¥ = ¥(x 5), g = g(9).

for a small parameter § o 1(-,0) = 1o, h(-,0) =0, g(0) =0
Write
W06 oh o 0g
P95 ls=0’ T 96l=0"8" T 95 ls=0

Differentiating in ¢

*AU =7+ fa(', 6) in Qh
w =0 on Sh
[V|? =1 —2gy + fp(-,6)  on S,

From ¢ (I'(s) + h(s)v(s),d) = 0 we get

Vi([(s)) - mv+1v1 =0 = hy =11 on Q.



Now, from |V (I(s) + hv(s))]? = 1 — 2gy + f, we get
Vibo(T(s)) - (Vi1 + mD*¢o(T(s))v) =

Oy1 + hD*pov - v = —g1y + fp1(+,0)
D%ov - v+ D% T - T = Atpg = —v

Finally,
Yo(T(s)) =0 = Vio(M(s))- T =0 =

D2oT - T+ Vipo- T =0 = D*o(7(s))[T]? = x(s)

F(s) = T(s), F(s) = —k(s)v(s).

Hence the boundary condition on ; becomes

Oh1 + (K(s) — )1 = fpa



The linearized equation is the Robin problem

*A@ZJl :fa71 in Qo
oY1
v

+ (k=71 =—gy+ 11 onSo,
7/)1 =0 on Bo.
e We devise an invertibility theory for this problem, by gluing a

coupled system made out of the three individual linearized
equations.

e Inverting the problem in the hairpin Q" is obtained using a
suitable complex formula. Inverting on the strip Q° needs vd < 1.

e Since the linearized problem in Qp has a nontrivial kernel (9y1/1D,
one needs to adjust the parameter g; to obtain solvability.



e The full nonlinear problem is solved by a fixed point of the
inverse of the linearized equation.

e Similar arguments yield a desingularization of

S

B

e We need slightly different ¢'s for different necks.



e The method resembles gluing by desingularization of tangent
spheres by small catenoidal necks in various constructions of CMC
or minimal surfaces: Kapouleas 1990's, Mazzeo-Pacard 2001.




Thanks for your attention



