Homoclinics of Hamiltonian Systems

Marek Izydorek

Institute of Applied Mathematics Gdańsk University of Technology

International Meetings on Differential Equations and Their Applications Łódź, April 2, 2025

Let *H* be a real separable Hilbert space of infinite dimension and $f: I \times H \to \mathbb{R}$ a continuous map such that each $f_{\lambda} := f(\lambda, \cdot) : H \to \mathbb{R}$ is C^2 with derivatives depending continuously on the parameter $\lambda \in I := [0, 1]$. Let 0 be a critical point of all f_{λ} and consider the family of equations

 $(\nabla f_{\lambda})(u) = 0,$

which now has u = 0 as solution for all $\lambda \in I$.

・ロット (日) (日) (日) (日)

Let *H* be a real separable Hilbert space of infinite dimension and $f: I \times H \to \mathbb{R}$ a continuous map such that each $f_{\lambda} := f(\lambda, \cdot) : H \to \mathbb{R}$ is C^2 with derivatives depending continuously on the parameter $\lambda \in I := [0, 1]$. Let 0 be a critical point of all f_{λ} and consider the family of equations

 $(\nabla f_{\lambda})(u) = 0,$

which now has u = 0 as solution for all $\lambda \in I$.

A parameter value $\lambda_0 \in I$ is called a bifurcation point (of critical points) if in every neighbourhood $U \subset I \times H$ of $(\lambda_0, 0)$ there is some (λ, u) such that $(\nabla f_{\lambda})(u) = 0$ and $u \neq 0$.

A central role is played by the second derivative $D_0^2 f_{\lambda}$ at the critical point $0 \in H$, which is a symmetric bounded bilinear form on H.

イロト イポト イヨト イヨト 三臣

A central role is played by the second derivative $D_0^2 f_{\lambda}$ at the critical point $0 \in H$, which is a symmetric bounded bilinear form on *H*.

By the Riesz representation theorem it uniquely determines a selfadjoint operator L_{λ} on *H* such that

 $\langle L_{\lambda} u, v \rangle_{H} = (D_{0}^{2} f_{\lambda})(u, v), \quad u, v \in H,$

which is called the Hessian of f at $0 \in H$.

A central role is played by the second derivative $D_0^2 f_{\lambda}$ at the critical point $0 \in H$, which is a symmetric bounded bilinear form on H.

By the Riesz representation theorem it uniquely determines a selfadjoint operator L_{λ} on *H* such that

 $\langle L_{\lambda} u, v \rangle_{H} = (D_{0}^{2} f_{\lambda})(u, v), \quad u, v \in H,$

which is called the Hessian of f at $0 \in H$.

Let us now assume that the selfadjoint operators L_{λ} are Fredholm, i.e., they have a finite dimensional kernel and a closed range.

The spectral flow is an integer-valued homotopy invariant that is defined for any path $L = \{L_{\lambda}\}_{\lambda \in I}$ of selfadjoint Fredholm operators that was introduced by Atiyah, Patodi and Singer in 1976 in connection with the Atiyah-Singer Index Theorem.

Roughly speaking, the spectral flow counts the net number of eigenvalues crossing 0 whilst the parameter λ of the path traverses the interval.

The spectral flow is an integer-valued homotopy invariant that is defined for any path $L = \{L_{\lambda}\}_{\lambda \in I}$ of selfadjoint Fredholm operators that was introduced by Atiyah, Patodi and Singer in 1976 in connection with the Atiyah-Singer Index Theorem.

Roughly speaking, the spectral flow counts the net number of eigenvalues crossing 0 whilst the parameter λ of the path traverses the interval.

Theorem (Fitzpatrick, Pejsachowicz, Recht (1999))

If L_0 , L_1 are invertible and

 $sf(L) \neq 0 \in \mathbb{Z}$,

then there is a bifurcation point of critical points of f in (0, 1).

イロト 不得 トイヨト イヨト 二日

Assume that *G* is a compact Lie group that acts orthogonally on *H* and that each functional f_{λ} is invariant under the action of *G*, i.e.,

 $f_{\lambda}(gu) = f_{\lambda}(u)$

for all $g \in G$ and $u \in H$. Then the Hessians L_{λ} are readily seen to be *G*-equivariant, i.e.,

 $L_{\lambda}(gu) = gL_{\lambda}u.$

Assume that *G* is a compact Lie group that acts orthogonally on *H* and that each functional f_{λ} is invariant under the action of *G*, i.e.,

 $f_{\lambda}(gu) = f_{\lambda}(u)$

for all $g \in G$ and $u \in H$. Then the Hessians L_{λ} are readily seen to be *G*-equivariant, i.e.,

 $L_{\lambda}(gu) = gL_{\lambda}u.$

I.J.W. introduced in 2021 the *G*-equivariant spectral flow $sf_G(L)$ for paths of selfadjoint Fredholm operators $L = \{L_\lambda\}_{\lambda \in I}$ that are equivariant under the orthogonal action of a compact Lie group. This novel homotopy invariant is an element of the representation ring RO(G).

Theorem (IJSW(2024))

If $L_{\lambda} \in \mathcal{FS}(H)^{G}$, $\lambda \in I$, L_{0} , L_{1} are invertible and

 $sf_G(L) \neq 0 \in RO(G),$

then there is a bifurcation of critical points for f.

Theorem (IJSW(2024))

If $L_{\lambda} \in \mathcal{FS}(H)^{G}$, $\lambda \in I$, L_{0} , L_{1} are invertible and

 $sf_G(L) \neq 0 \in RO(G),$

then there is a bifurcation of critical points for f.

lf

$$F: RO(G) \to \mathbb{Z}, \quad [U] - [V] \mapsto \dim(U) - \dim(V)$$

then

 $F(sf_G(L)) = sf(L) \in \mathbb{Z}.$

Theorem (IJSW(2024))

If $L_{\lambda} \in \mathcal{FS}(H)^{G}$, $\lambda \in I$, L_{0} , L_{1} are invertible and

 $sf_G(L) \neq 0 \in RO(G),$

then there is a bifurcation of critical points for f.

lf

$$F: RO(G) \rightarrow \mathbb{Z}, \quad [U] - [V] \mapsto \dim(U) - \dim(V)$$

then

 $F(sf_G(L)) = sf(L) \in \mathbb{Z}.$

Thus even if the spectral flow $sf(L) \in \mathbb{Z}$ vanishes, $sf_G(L)$ can be non-trivial in RO(G).

If the operators L_{λ} are of the type $L_{\lambda} = T + K_{\lambda}$ for a fixed $T \in \mathcal{FS}(H)^{G}$ and compact operators K_{λ} then the spectral flow of $L = L_{\lambda}$ actually only depends on the endpoints L_{0} and L_{1} .

If the operators L_{λ} are of the type $L_{\lambda} = T + K_{\lambda}$ for a fixed $T \in \mathcal{FS}(H)^{G}$ and compact operators K_{λ} then the spectral flow of $L = L_{\lambda}$ actually only depends on the endpoints L_{0} and L_{1} .

We will construct a $G = \mathbb{Z}_2$ -invariant family of functionals f such that the Hessians $L = L_\lambda$ are a loop in $\mathcal{FS}(H)^G$ having a non-vanishing G-equivariant spectral flow.

イロト 不得 トイヨト イヨト 三日

Let $\mathcal{H}: I \times \mathbb{R} \times \mathbb{R}^{2n} \to \mathbb{R}$ be a smooth map and consider the Hamiltonian systems

(1)
$$\begin{cases} Ju'(t) + \nabla_u \mathcal{H}_{\lambda}(t, u(t)) = 0, & t \in \mathbb{R} \\ \lim_{t \to \pm \infty} u(t) = 0, \end{cases}$$

where $\lambda \in I$ and

$$J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$$

is the standard symplectic matrix.

We assume that \mathcal{H} is of the form

(2)
$$\mathcal{H}_{\lambda}(t,u) = \frac{1}{2} \langle A(\lambda,t)u,u \rangle + R(\lambda,t,u),$$

where $A : I \times \mathbb{R} \to \mathcal{L}(\mathbb{R}^{2n})$ is a family of symmetric matrices, $R(\lambda, t, u)$ vanishes up to second order at u = 0, and there are p > 0, $C \ge 0$ and $r \in H^1(\mathbb{R}, \mathbb{R})$ such that

$$|D_u^2 R(\lambda, t, u)| \leq r(t) + C|u|^{\rho}.$$

We assume that \mathcal{H} is of the form

(2)
$$\mathcal{H}_{\lambda}(t,u) = \frac{1}{2} \langle A(\lambda,t)u,u \rangle + R(\lambda,t,u),$$

where $A : I \times \mathbb{R} \to \mathcal{L}(\mathbb{R}^{2n})$ is a family of symmetric matrices, $R(\lambda, t, u)$ vanishes up to second order at u = 0, and there are p > 0, $C \ge 0$ and $r \in H^1(\mathbb{R}, \mathbb{R})$ such that

$$|D_u^2 R(\lambda, t, u)| \leq r(t) + C|u|^p.$$

Moreover, we suppose that $A_{\lambda} := A(\lambda, \cdot) : \mathbb{R} \to \mathcal{L}(\mathbb{R}^{2n})$ converges uniformly in λ to families

$$A_{\lambda}(+\infty) := \lim_{t\to\infty} A_{\lambda}(t), \quad A_{\lambda}(-\infty) := \lim_{t\to-\infty} A_{\lambda}(t), \quad \lambda \in I,$$

and that the matrices $JA_{\lambda}(\pm\infty)$ are hyperbolic, i.e. they have no eigenvalues on the imaginary axis.

Under the assumption (2), the map $f_{\lambda} : H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^{2n}) \to \mathbb{R}$ given by

$$f_{\lambda}(u) = \frac{1}{2}b(u, u) + \frac{1}{2}\int_{-\infty}^{\infty} \langle A(\lambda, t)u(t), u(t) \rangle dt + \int_{-\infty}^{\infty} R(\lambda, t, u(t)) dt$$

is C^2 .

Marek Izydorek Homoclinics of Hamiltonian Systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Under the assumption (2), the map $f_{\lambda} : H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^{2n}) \to \mathbb{R}$ given by

$$f_{\lambda}(u) = \frac{1}{2}b(u, u) + \frac{1}{2}\int_{-\infty}^{\infty} \langle A(\lambda, t)u(t), u(t) \rangle dt + \int_{-\infty}^{\infty} R(\lambda, t, u(t)) dt$$

is C^2 .

Here

$$b(u,v) = \langle Ju',v\rangle_{L^2(\mathbb{R},\mathbb{R}^{2n})},$$

 $u, v \in H^1(\mathbb{R}, \mathbb{R}^{2n})$ is the bilinear form that extends to a bounded form on the fractional Sobolev space $H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^{2n})$.

Under the assumption (2), the map $f_{\lambda} : H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^{2n}) \to \mathbb{R}$ given by

$$f_{\lambda}(u) = \frac{1}{2}b(u, u) + \frac{1}{2}\int_{-\infty}^{\infty} \langle A(\lambda, t)u(t), u(t) \rangle dt + \int_{-\infty}^{\infty} R(\lambda, t, u(t)) dt$$

is C^2 .

Here

$$b(u,v) = \langle Ju',v\rangle_{L^2(\mathbb{R},\mathbb{R}^{2n})},$$

 $u, v \in H^1(\mathbb{R}, \mathbb{R}^{2n})$ is the bilinear form that extends to a bounded form on the fractional Sobolev space $H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^{2n})$.

The critical points are the classical solutions of (1) and each sequence of critical points that converges to a bifurcation point actually converges in $C^1(\mathbb{R}, \mathbb{R}^{2n})$.

The second derivative of f_{λ} at the critical point $0 \in H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^{2n})$ is given by

$$D_0^2 f_{\lambda}(u, v) = b(u, v) + \int_{-\infty}^{\infty} \langle A(\lambda, t)u(t), v(t) \rangle dt$$

and, by the hyperbolicity of $JA_{\lambda}(\pm\infty)$, the corresponding Riesz representations $L_{\lambda}: H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^{2n}) \to H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^{2n})$ are Fredholm.

・ロト ・ 同ト ・ ヨト ・ ヨト

The second derivative of f_{λ} at the critical point $0 \in H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^{2n})$ is given by

$$D_0^2 f_{\lambda}(u,v) = b(u,v) + \int_{-\infty}^{\infty} \langle A(\lambda,t)u(t),v(t) \rangle dt$$

and, by the hyperbolicity of $JA_{\lambda}(\pm\infty)$, the corresponding Riesz representations $L_{\lambda}: H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^{2n}) \to H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^{2n})$ are Fredholm.

Consequently, the operators L_{λ} are selfadjoint Fredholm operators, and it follows by elliptic regularity that the kernel of L_{λ} consists of the classical solutions of the linear differential equation

(3)
$$\begin{cases} Ju'(t) + A(\lambda, t)u(t) = 0, \quad t \in \mathbb{R} \\ \lim_{t \to \pm \infty} u(t) = 0. \end{cases}$$

イロト 不得 トイヨト イヨト 三日

The stable and the unstable subspaces of (3) are

$$E^{s}(\lambda,0) = \{u(0) \in \mathbb{R}^{2n} : Ju'(t) + A(\lambda,t)u(t) = 0, t \in \mathbb{R}; u(t) \to 0, t \to \infty\},\$$

$$\begin{aligned} & E^u(\lambda,0) = \\ & \{u(0) \in \mathbb{R}^{2n} : Ju'(t) + A(\lambda,t)u(t) = 0, \ t \in \mathbb{R}; u(t) \to 0, t \to -\infty\}, \end{aligned}$$

and it is clear that (3) has a non-trivial solution if and only if $E^{s}(\lambda, 0)$ and $E^{u}(\lambda, 0)$ intersect non-trivially.

Denote by γ the non-trivial element of $G = \mathbb{Z}_2$. We set

$$\rho(\gamma) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Denote by γ the non-trivial element of $G = \mathbb{Z}_2$. We set

$$\rho(\gamma) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

and consider Hamitonian systems in \mathbb{R}^4 , where

(4)
$$A(\lambda, t) = \begin{pmatrix} a_{\lambda}(t) & 0 & c_{\lambda}(t) & 0 \\ 0 & b_{\lambda}(t) & 0 & d_{\lambda}(t) \\ c_{\lambda}(t) & 0 & e_{\lambda}(t) & 0 \\ 0 & d_{\lambda}(t) & 0 & h_{\lambda}(t) \end{pmatrix}$$

is equivariant under the action of *G* for any functions $a, b, c, d, e, h : I \times \mathbb{R} \to \mathbb{R}$.

ヘロン ヘロン ヘヨン ヘヨン 一旦

The fixed point space of our action is

$$H^G = \{(u_1, u_2, u_3, u_4) \in H^{\frac{1}{2}}(\mathbb{R}, \mathbb{R}^4) : u_2 = u_4 = 0\}$$

and it follows from (3) that the kernel of $L_{\lambda} \mid_{H^G}$ is made of the solutions of the Hamiltonian systems

(5)
$$\begin{cases} J\begin{pmatrix} u_1'\\ u_3' \end{pmatrix} + \begin{pmatrix} a_{\lambda}(t) & c_{\lambda}(t)\\ c_{\lambda}(t) & e_{\lambda}(t) \end{pmatrix} \begin{pmatrix} u_1\\ u_3 \end{pmatrix} = 0, \quad t \in \mathbb{R} \\ \lim_{t \to \pm \infty} u(t) = 0, \end{cases}$$

in \mathbb{R}^2 .

Likewise the kernel of $L_{\lambda} \mid_{(H^G)^{\perp}}$ consists of the solutions of

$$\left\{egin{array}{l} J \begin{pmatrix} u_2' \\ u_4' \end{pmatrix} + \begin{pmatrix} b_\lambda(t) & d_\lambda(t) \\ d_\lambda(t) & h_\lambda(t) \end{pmatrix} \begin{pmatrix} u_2 \\ u_4 \end{pmatrix} = 0, \quad t \in \mathbb{R} \ & \lim_{t o \pm \infty} u(t) = 0. \end{array}
ight.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

We use instead of I = [0, 1] as parameter interval $[-\pi, \pi]$ and consider for $\lambda \in [-\pi, \pi]$ the matrix family

$$\widetilde{A}(\lambda, t) = egin{pmatrix} a_\lambda(t) & c_\lambda(t) \ c_\lambda(t) & e_\lambda(t) \end{pmatrix} = egin{pmatrix} (rctan t) JS_\lambda, & t \ge 0 \ (rctan t) JS_0, & t < 0, \end{cases},$$

where

$$\mathsf{S}_\lambda = egin{pmatrix} \mathsf{cos}(\lambda) & \mathsf{sin}(\lambda) \ \mathsf{sin}(\lambda) & -\mathsf{cos}(\lambda) \end{pmatrix}.$$

Note that $\tilde{A}(-\pi, t) = \tilde{A}(\pi, t)$ for all $t \in \mathbb{R}$.

We use instead of I = [0, 1] as parameter interval $[-\pi, \pi]$ and consider for $\lambda \in [-\pi, \pi]$ the matrix family

$$\widetilde{A}(\lambda, t) = egin{pmatrix} a_\lambda(t) & c_\lambda(t) \ c_\lambda(t) & e_\lambda(t) \end{pmatrix} = egin{pmatrix} (rctan t) JS_\lambda, & t \ge 0 \ (rctan t) JS_0, & t < 0, \end{cases},$$

where

$$\mathsf{S}_\lambda = egin{pmatrix} \mathsf{cos}(\lambda) & \mathsf{sin}(\lambda) \ \mathsf{sin}(\lambda) & -\mathsf{cos}(\lambda) \end{pmatrix}.$$

Note that $\tilde{A}(-\pi, t) = \tilde{A}(\pi, t)$ for all $t \in \mathbb{R}$.

To find non-trivial solutions of (5), we now consider $E^{u}(\lambda, 0) \cap E^{s}(\lambda, 0) \neq \{0\}.$

By a direct computation it can be checked that

$$\begin{split} u_{-}(t) &= \sqrt{t^{2} + 1} \ e^{-t \arctan(t)} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ t \leq 0, \\ u_{+}(t) &= \sqrt{t^{2} + 1} \ e^{-t \arctan(t)} \begin{pmatrix} \cos\left(\frac{\lambda}{2}\right) \\ \sin\left(\frac{\lambda}{2}\right) \end{pmatrix}, \ t \geq 0, \end{split}$$

are solutions of (5) on the negative and positive half-line, respectively.

< □ > < □ > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

By a direct computation it can be checked that

$$\begin{split} u_{-}(t) &= \sqrt{t^2 + 1} \ e^{-t \arctan(t)} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ t \leq 0, \\ u_{+}(t) &= \sqrt{t^2 + 1} \ e^{-t \arctan(t)} \begin{pmatrix} \cos\left(\frac{\lambda}{2}\right) \\ \sin\left(\frac{\lambda}{2}\right) \end{pmatrix}, \ t \geq 0, \end{split}$$

are solutions of (5) on the negative and positive half-line, respectively.

As $u_+(0)$ and $u_-(0)$ are linearly dependent if and only if $\lambda = 0$, (5) has a non-trivial solution if and only if $\lambda = 0$, and the kernel of $L_0 \mid_{H^G}$ is the span of

$$u_*(t) = \sqrt{t^2 + 1} e^{-t \arctan(t)} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad t \in \mathbb{R}.$$

Next we compute the spectral flow of $L|_{H^G}$ by a crossing form. We need to consider

$$\Gamma(L|_{H^G},0)[u_*] = \int_{-\infty}^{\infty} \left\langle \dot{\widetilde{A}}(0,t)u_*(t), u_*(t) \right\rangle dt,$$

where

$$\dot{\widetilde{A}}(0,t) = egin{cases} (rctan t) J \dot{S}_0, & t \geq 0 \ 0, & t < 0, \end{cases}$$

and

$$\dot{S}_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Consequently,

$$\begin{split} \Gamma(L\mid_{H_{G}},0)[u_{*}] &= \int_{0}^{\infty} \left\langle \dot{\widetilde{A}}(0,t)u_{*}(t),u_{*}(t)\right\rangle dt \\ &+ \int_{-\infty}^{0} \left\langle \dot{\widetilde{A}}(0,t)u_{*}(t),u_{*}(t)\right\rangle dt \\ &= \int_{0}^{\infty} \arctan(t) \langle J\dot{S}_{0}u_{*}(t),u_{*}(t)\rangle dt \\ &= -\int_{0}^{\infty} \arctan(t)(t^{2}+1)e^{-2t\arctan(t)} dt < 0, \end{split}$$

which shows that $\Gamma(L \mid_{H_G}, 0)$ is non-degenerate and of signature -1 as quadratic form on the one-dimensional kernel of $L_0 \mid_{H^G}$.

Therefore,

 $sf(L|_{H^G}) = -1$

and so $sf_G(L)$ is non-trivial in $RO(\mathbb{Z}_2)$.

Thus there is a bifurcation of critical points of f by Theorem (FPR), and consequently also a bifurcation of solutions of (1) from the trivial solution.

Therefore,

 $sf(L|_{H^G}) = -1$

and so $sf_G(L)$ is non-trivial in $RO(\mathbb{Z}_2)$.

Thus there is a bifurcation of critical points of f by Theorem (FPR), and consequently also a bifurcation of solutions of (1) from the trivial solution.

Let us point out, that this bifurcation cannot be found by invariants that only depend on the endpoints of the path *L*.

We have not yet chosen functions *b*, *d* and *h* in (4), which we now do in a way such that $sf(L) = 0 \in \mathbb{Z}$ to obtain an example where Theorem (FPR) is not applicable.

・ロト ・ 同ト ・ ヨト ・ ヨト

We have not yet chosen functions *b*, *d* and *h* in (4), which we now do in a way such that $sf(L) = 0 \in \mathbb{Z}$ to obtain an example where Theorem (FPR) is not applicable.

The spectral flow changes its sign if we reverse the orientation of the path of operators.

We set for $t \in \mathbb{R}$ and $\lambda \in [-\pi, \pi]$

$$b_{\lambda}(t) = a_{-\lambda}(t), \ h_{\lambda}(t) = e_{-\lambda}(t), \ d_{\lambda}(t) = c_{-\lambda}(t).$$

We have not yet chosen functions *b*, *d* and *h* in (4), which we now do in a way such that $sf(L) = 0 \in \mathbb{Z}$ to obtain an example where Theorem (FPR) is not applicable.

The spectral flow changes its sign if we reverse the orientation of the path of operators.

We set for $t \in \mathbb{R}$ and $\lambda \in [-\pi, \pi]$

$$b_{\lambda}(t) = a_{-\lambda}(t), \ h_{\lambda}(t) = e_{-\lambda}(t), \ d_{\lambda}(t) = c_{-\lambda}(t).$$

Then $L_{\lambda}|_{(H^G)^{\perp}} = L_{-\lambda}|_{H^G}$ and thus $sf(L|_{(H^G)^{\perp}}) = -sf(L|_{H^G}) = 1$. It follows that sf(L) = 0 and so our example has all the required properties.

THANK YOU

・ロト・西ト・ヨト・ヨー シック