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Let H be a real separable Hilbert space of infinite dimension and
f : I × H → R a continuous map such that each fλ := f (λ, ·) : H → R

is C2 with derivatives depending continuously on the parameter
λ ∈ I := [0, 1]. Let 0 be a critical point of all fλ and consider the family
of equations

(∇fλ)(u) = 0,

which now has u = 0 as solution for all λ ∈ I.
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Let H be a real separable Hilbert space of infinite dimension and
f : I × H → R a continuous map such that each fλ := f (λ, ·) : H → R

is C2 with derivatives depending continuously on the parameter
λ ∈ I := [0, 1]. Let 0 be a critical point of all fλ and consider the family
of equations

(∇fλ)(u) = 0,

which now has u = 0 as solution for all λ ∈ I.

A parameter value λ0 ∈ I is called a bifurcation point (of critical
points) if in every neighbourhood U ⊂ I × H of (λ0, 0) there is some
(λ, u) such that (∇fλ)(u) = 0 and u 6= 0.
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A central role is played by the second derivative D2
0 fλ at the critical

point 0 ∈ H, which is a symmetric bounded bilinear form on H.
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A central role is played by the second derivative D2
0 fλ at the critical

point 0 ∈ H, which is a symmetric bounded bilinear form on H.

By the Riesz representation theorem it uniquely determines a
selfadjoint operator Lλ on H such that

〈Lλu, v〉H = (D2
0 fλ)(u, v), u, v ∈ H,

which is called the Hessian of f at 0 ∈ H.
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A central role is played by the second derivative D2
0 fλ at the critical

point 0 ∈ H, which is a symmetric bounded bilinear form on H.

By the Riesz representation theorem it uniquely determines a
selfadjoint operator Lλ on H such that

〈Lλu, v〉H = (D2
0 fλ)(u, v), u, v ∈ H,

which is called the Hessian of f at 0 ∈ H.

Let us now assume that the selfadjoint operators Lλ are Fredholm,
i.e., they have a finite dimensional kernel and a closed range.
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The spectral flow is an integer-valued homotopy invariant that is
defined for any path L = {Lλ}λ∈I of selfadjoint Fredholm operators
that was introduced by Atiyah, Patodi and Singer in 1976 in
connection with the Atiyah-Singer Index Theorem.

Roughly speaking, the spectral flow counts the net number of
eigenvalues crossing 0 whilst the parameter λ of the path traverses
the interval.
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The spectral flow is an integer-valued homotopy invariant that is
defined for any path L = {Lλ}λ∈I of selfadjoint Fredholm operators
that was introduced by Atiyah, Patodi and Singer in 1976 in
connection with the Atiyah-Singer Index Theorem.

Roughly speaking, the spectral flow counts the net number of
eigenvalues crossing 0 whilst the parameter λ of the path traverses
the interval.

Theorem (Fitzpatrick, Pejsachowicz, Recht (1999))

If L0, L1 are invertible and

sf (L) 6= 0 ∈ Z,

then there is a bifurcation point of critical points of f in (0, 1).
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Assume that G is a compact Lie group that acts orthogonally on H
and that each functional fλ is invariant under the action of G, i.e.,

fλ(gu) = fλ(u)

for all g ∈ G and u ∈ H. Then the Hessians Lλ are readily seen to be
G-equivariant, i.e.,

Lλ(gu) = gLλu.
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Assume that G is a compact Lie group that acts orthogonally on H
and that each functional fλ is invariant under the action of G, i.e.,

fλ(gu) = fλ(u)

for all g ∈ G and u ∈ H. Then the Hessians Lλ are readily seen to be
G-equivariant, i.e.,

Lλ(gu) = gLλu.

I.J.W. introduced in 2021 the G-equivariant spectral flow sfG(L) for
paths of selfadjoint Fredholm operators L = {Lλ}λ∈I that are
equivariant under the orthogonal action of a compact Lie group. This
novel homotopy invariant is an element of the representation ring
RO(G).
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Theorem (IJSW(2024))

If Lλ ∈ FS(H)G, λ ∈ I, L0, L1 are invertible and

sfG(L) 6= 0 ∈ RO(G),

then there is a bifurcation of critical points for f .
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Theorem (IJSW(2024))

If Lλ ∈ FS(H)G, λ ∈ I, L0, L1 are invertible and

sfG(L) 6= 0 ∈ RO(G),

then there is a bifurcation of critical points for f .

If
F : RO(G) → Z, [U] − [V ] 7→ dim(U) − dim(V )

then
F (sfG(L)) = sf (L) ∈ Z.
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Theorem (IJSW(2024))

If Lλ ∈ FS(H)G, λ ∈ I, L0, L1 are invertible and

sfG(L) 6= 0 ∈ RO(G),

then there is a bifurcation of critical points for f .

If
F : RO(G) → Z, [U] − [V ] 7→ dim(U) − dim(V )

then
F (sfG(L)) = sf (L) ∈ Z.

Thus even if the spectral flow sf (L) ∈ Z vanishes, sfG(L) can be
non-trivial in RO(G).
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If the operators Lλ are of the type Lλ = T + Kλ for a fixed
T ∈ FS(H)G and compact operators Kλ then the spectral flow of
L = Lλ actually only depends on the endpoints L0 and L1.
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If the operators Lλ are of the type Lλ = T + Kλ for a fixed
T ∈ FS(H)G and compact operators Kλ then the spectral flow of
L = Lλ actually only depends on the endpoints L0 and L1.

We will construct a G = Z2-invariant family of functionals f such that
the Hessians L = Lλ are a loop in FS(H)G having a non-vanishing
G-equivariant spectral flow.
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Let H : I × R × R
2n → R be a smooth map and consider the

Hamiltonian systems

(1)

{
Ju′(t) + ∇uHλ(t , u(t)) = 0, t ∈ R

lim
t→±∞

u(t) = 0,

where λ ∈ I and

J =

(
0 −In
In 0

)

is the standard symplectic matrix.
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We assume that H is of the form

Hλ(t , u) =
1
2
〈A(λ, t)u, u〉 + R(λ, t , u),(2)

where A : I × R → L(R2n) is a family of symmetric matrices, R(λ, t , u)
vanishes up to second order at u = 0, and there are p > 0, C ≥ 0 and
r ∈ H1(R, R) such that

|D2
uR(λ, t , u)| ≤ r(t) + C|u|p.
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We assume that H is of the form

Hλ(t , u) =
1
2
〈A(λ, t)u, u〉 + R(λ, t , u),(2)

where A : I × R → L(R2n) is a family of symmetric matrices, R(λ, t , u)
vanishes up to second order at u = 0, and there are p > 0, C ≥ 0 and
r ∈ H1(R, R) such that

|D2
uR(λ, t , u)| ≤ r(t) + C|u|p.

Moreover, we suppose that Aλ := A(λ, ·) : R → L(R2n) converges
uniformly in λ to families

Aλ(+∞) := lim
t→∞

Aλ(t), Aλ(−∞) := lim
t→−∞

Aλ(t), λ ∈ I,

and that the matrices JAλ(±∞) are hyperbolic, i.e. they have no
eigenvalues on the imaginary axis.
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Under the assumption (2), the map fλ : H
1
2 (R, R2n) → R given by

fλ(u) =
1
2

b(u, u) +
1
2

∫ ∞

−∞

〈A(λ, t)u(t), u(t)〉dt +

∫ ∞

−∞

R(λ, t , u(t)) dt

is C2.
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Under the assumption (2), the map fλ : H
1
2 (R, R2n) → R given by

fλ(u) =
1
2

b(u, u) +
1
2

∫ ∞

−∞

〈A(λ, t)u(t), u(t)〉dt +

∫ ∞

−∞

R(λ, t , u(t)) dt

is C2.

Here
b(u, v) = 〈Ju′, v〉L2(R,R2n),

u, v ∈ H1(R, R2n) is the bilinear form that extends to a bounded form
on the fractional Sobolev space H

1
2 (R, R2n).
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Under the assumption (2), the map fλ : H
1
2 (R, R2n) → R given by

fλ(u) =
1
2

b(u, u) +
1
2

∫ ∞

−∞

〈A(λ, t)u(t), u(t)〉dt +

∫ ∞

−∞

R(λ, t , u(t)) dt

is C2.

Here
b(u, v) = 〈Ju′, v〉L2(R,R2n),

u, v ∈ H1(R, R2n) is the bilinear form that extends to a bounded form
on the fractional Sobolev space H

1
2 (R, R2n).

The critical points are the classical solutions of (1) and each
sequence of critical points that converges to a bifurcation point
actually converges in C1(R, R2n).
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The second derivative of fλ at the critical point 0 ∈ H
1
2 (R, R2n) is

given by

D2
0 fλ(u, v) = b(u, v) +

∫ ∞

−∞

〈A(λ, t)u(t), v(t)〉dt

and, by the hyperbolicity of JAλ(±∞), the corresponding Riesz
representations Lλ : H

1
2 (R, R2n) → H

1
2 (R, R2n) are Fredholm.
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The second derivative of fλ at the critical point 0 ∈ H
1
2 (R, R2n) is

given by

D2
0 fλ(u, v) = b(u, v) +

∫ ∞

−∞

〈A(λ, t)u(t), v(t)〉dt

and, by the hyperbolicity of JAλ(±∞), the corresponding Riesz
representations Lλ : H

1
2 (R, R2n) → H

1
2 (R, R2n) are Fredholm.

Consequently, the operators Lλ are selfadjoint Fredholm operators,
and it follows by elliptic regularity that the kernel of Lλ consists of the
classical solutions of the linear differential equation

(3)

{
Ju′(t) + A(λ, t)u(t) = 0, t ∈ R

lim
t→±∞

u(t) = 0.
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The stable and the unstable subspaces of (3) are

Es(λ, 0) =

{u(0) ∈ R
2n : Ju′(t) + A(λ, t)u(t) = 0, t ∈ R; u(t) → 0, t → ∞},

Eu(λ, 0) =

{u(0) ∈ R
2n : Ju′(t) + A(λ, t)u(t) = 0, t ∈ R; u(t) → 0, t → −∞},

and it is clear that (3) has a non-trivial solution if and only if Es(λ, 0)
and Eu(λ, 0) intersect non-trivially.
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Denote by γ the non-trivial element of G = Z2. We set

ρ(γ) =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



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Denote by γ the non-trivial element of G = Z2. We set

ρ(γ) =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




and consider Hamitonian systems in R
4, where

A(λ, t) =




aλ(t) 0 cλ(t) 0
0 bλ(t) 0 dλ(t)

cλ(t) 0 eλ(t) 0
0 dλ(t) 0 hλ(t)


(4)

is equivariant under the action of G for any functions
a, b, c, d , e, h : I × R → R.
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The fixed point space of our action is

HG = {(u1, u2, u3, u4) ∈ H
1
2 (R, R4) : u2 = u4 = 0}

and it follows from (3) that the kernel of Lλ |HG is made of the
solutions of the Hamiltonian systems

(5)





J
(

u′
1

u′
3

)
+

(
aλ(t) cλ(t)
cλ(t) eλ(t)

) (
u1

u3

)
= 0, t ∈ R

lim
t→±∞

u(t) = 0,

in R
2.
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Likewise the kernel of Lλ |(HG)⊥ consists of the solutions of




J
(

u′
2

u′
4

)
+

(
bλ(t) dλ(t)
dλ(t) hλ(t)

)(
u2

u4

)
= 0, t ∈ R

lim
t→±∞

u(t) = 0.
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We use instead of I = [0, 1] as parameter interval [−π, π] and
consider for λ ∈ [−π, π] the matrix family

Ã(λ, t) =

(
aλ(t) cλ(t)
cλ(t) eλ(t)

)
=

{
(arctan t)JSλ, t ≥ 0
(arctan t)JS0, t < 0,

,

where

Sλ =

(
cos(λ) sin(λ)
sin(λ) − cos(λ)

)
.

Note that Ã(−π, t) = Ã(π, t) for all t ∈ R.
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We use instead of I = [0, 1] as parameter interval [−π, π] and
consider for λ ∈ [−π, π] the matrix family

Ã(λ, t) =

(
aλ(t) cλ(t)
cλ(t) eλ(t)

)
=

{
(arctan t)JSλ, t ≥ 0
(arctan t)JS0, t < 0,

,

where

Sλ =

(
cos(λ) sin(λ)
sin(λ) − cos(λ)

)
.

Note that Ã(−π, t) = Ã(π, t) for all t ∈ R.

To find non-trivial solutions of (5), we now consider
Eu(λ, 0) ∩ Es(λ, 0) 6= {0}.
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By a direct computation it can be checked that

u−(t) =
√

t2 + 1 e−t arctan(t)
(

1
0

)
, t ≤ 0,

u+(t) =
√

t2 + 1 e−t arctan(t)
(

cos
(

λ
2

)

sin
(

λ
2

)
)

, t ≥ 0,

are solutions of (5) on the negative and positive half-line, respectively.
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By a direct computation it can be checked that

u−(t) =
√

t2 + 1 e−t arctan(t)
(

1
0

)
, t ≤ 0,

u+(t) =
√

t2 + 1 e−t arctan(t)
(

cos
(

λ
2

)

sin
(

λ
2

)
)

, t ≥ 0,

are solutions of (5) on the negative and positive half-line, respectively.

As u+(0) and u−(0) are linearly dependent if and only if λ = 0,
(5) has a non-trivial solution if and only if λ = 0,
and the kernel of L0 |HG is the span of

u∗(t) =
√

t2 + 1 e−t arctan(t)
(

1
0

)
, t ∈ R.
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Next we compute the spectral flow of L |HG by a crossing form. We
need to consider

Γ(L |HG , 0)[u∗] =

∫ ∞

−∞

〈
˙̃A(0, t)u∗(t), u∗(t)

〉
dt ,

where

˙̃A(0, t) =

{
(arctan t)JṠ0, t ≥ 0
0, t < 0,

and

Ṡ0 =

(
0 1
1 0

)
.
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Consequently,

Γ(L |HG , 0)[u∗] =

∫ ∞

0

〈
˙̃A(0, t)u∗(t), u∗(t)

〉
dt

+

∫ 0

−∞

〈
˙̃A(0, t)u∗(t), u∗(t)

〉
dt

=

∫ ∞

0
arctan(t)〈JṠ0u∗(t), u∗(t)〉dt

= −

∫ ∞

0
arctan(t)(t2 + 1)e−2t arctan(t) dt < 0,

which shows that Γ(L |HG , 0) is non-degenerate and of signature −1
as quadratic form on the one-dimensional kernel of L0 |HG .
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Therefore,

sf (L |HG) = −1

and so sfG(L) is non-trivial in RO(Z2).

Thus there is a bifurcation of critical points of f by Theorem (FPR),
and consequently also a bifurcation of solutions of (1) from the trivial
solution.
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Therefore,

sf (L |HG) = −1

and so sfG(L) is non-trivial in RO(Z2).

Thus there is a bifurcation of critical points of f by Theorem (FPR),
and consequently also a bifurcation of solutions of (1) from the trivial
solution.

Let us point out, that this bifurcation cannot be found by invariants
that only depend on the endpoints of the path L.
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We have not yet chosen functions b, d and h in (4),
which we now do in a way such that sf (L) = 0 ∈ Z

to obtain an example where Theorem (FPR) is not applicable.
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We have not yet chosen functions b, d and h in (4),
which we now do in a way such that sf (L) = 0 ∈ Z

to obtain an example where Theorem (FPR) is not applicable.

The spectral flow changes its sign if we reverse the orientation of the
path of operators.
We set for t ∈ R and λ ∈ [−π, π]

bλ(t) = a−λ(t), hλ(t) = e−λ(t), dλ(t) = c−λ(t).
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We have not yet chosen functions b, d and h in (4),
which we now do in a way such that sf (L) = 0 ∈ Z

to obtain an example where Theorem (FPR) is not applicable.

The spectral flow changes its sign if we reverse the orientation of the
path of operators.
We set for t ∈ R and λ ∈ [−π, π]

bλ(t) = a−λ(t), hλ(t) = e−λ(t), dλ(t) = c−λ(t).

Then Lλ |(HG)⊥= L−λ |HG and thus sf (L |(HG)⊥) = −sf (L |HG) = 1.
It follows that sf (L) = 0 and so our example has all the required
properties.
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THANK YOU

Marek Izydorek Homoclinics of Hamiltonian Systems


