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Introduction

Nonlocality is ubiquitous.

■ Physics (plasma, turbulent �ow, complex �uids, viscoelasticity,
electronics, complex materials)

■ Hydrology (porous media, �ow in concrete, bed-load transport)

■ Signal and image processing

■ Biology (cell biochemistry, MRI, fractional neuron models, modelling
bone tumours)

■ Finance (heavy-tailed distributions, option pricing)

■ Many more...1

1Sun, HongGuang, et al. "A new collection of real world applications of fractional
calculus in science and engineering." Communications in Nonlinear Science and Numerical
Simulation 64 (2018): 213-231.
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Introduction

Usually nonlocality is temporal or spatial. Mathematical modelling is done
with integro-di�erential operators such as:

■ fractional integrals and derivatives (Riemann-Liouville, Caputo, Weyl, ...),

■ singular integral operators (Riesz derivatives, fractional Laplacian,
fractional gradient, ...),

■ other operators with memory kernels.

Interesting theory of PDEs and numerical

methods for solving them!

Especially for nonlinear equations.
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Time-fractional porous medium

■ Let u(x , t) be the moisture concentration in porous medium at point
x ≥ 0 and time t.

■ Initial-boundary conditions (nondimensional form)

u(0, t) = 1, u(x , 0) = 0.

■ Self-similarity - a characteristic feature of di�usion in our experiment.
Moisture concentration u(x , t) can be drawn on a single curve2,3:

u(x , t) = U(η), η = x t−
α
2 ,

for U(0) = 1, U(∞) = 0 and 0 < α < 1.

■ Transport in porous media is substantially nonlinear (di�usivity depends
on concentration).

2L. Pel et al., J. Phys. D.: Appl. Phys. 28 (1995) 675�680.
3Abd El-Ghany et al., J. Phys. D.: Appl. Phys. 37 (2004) 2305�2313.
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Time-fractional porous medium

Figure: An exemplary shape of the self-similar moisture curve.
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Time-fractional porous medium
■ The model is a nonlocal and nonlinearly degenerate parabolic PDE

∂αu

∂tα
=

∂

∂x

(
um

∂u

∂x

)
, 0 < α < 1, m ≥ 1,

with initial-boundary conditions u(0, t) = 1, u(x , 0) = 0.
■ We seek for a self-similar slution u(x , t) = U(η), where η = x/tα/2 and

obtain an ordinary integro-di�erential equation

∂

∂η

(
Um ∂U

∂η

)
=

[
(1− α)− α

2
η
d

dη

]
FαU, Fα := I 0,1−α

− 2
α

, m ≥ 1,

with U(0) = 1 and U(∞) = 0, where the integral operator is of the
Erdélyi-Kober type

I a,bc U(η) :=
1

Γ(b)

∫ 1

0

(1− z)b−1zaU(ηz
1
c )dz .

■ This is a free-boundary problem.
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Time-fractional porous medium

■ The existence and uniqueness of the solution can be proved by several
transformations. This gives us an idea for an e�cient numerical method

1. Transform the governing equation into the self-similar form.
2. Conduct the second transformation into the initial-value problem.
3. Integrate to obtain the integral equation.
4. Discretize the integral equation.
5. Solve!

■ Partial nonlocal nonlinear equation with a free boundary −→ Ordinary
nonlinear integral equation −→ Much faster method!

■ Relevant papers:

�.P., Numerical method for a time-fractional porous medium equation,
SIAM Journal on Numerical Analysis, 57(2) (2019), 638�656

�.P., M. �witaªa, Existence and uniqueness results for a time-fractional

nonlinear di�usion equation, JMAA 462(2) (2018), 1425-1434.
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Time-fractional porous medium equation
■ There exists a transformation that takes self-similar form of u into a

nonlinear Volterra equation

y(z)m+1 =

∫ z

0

K (z , s)y(s)ds, 0 ≤ z ≤ 1,

where K−(z − s)γ ≤ K (z , s) ≤ K+(z − s)γ with γ ≥ 0.

■ Even better is to substitute y(z) = z
γ+1
m v(z) because then, according to

general theory, we have 0 < C− ≤ v(z) ≤ C+.
■ The numerical method is based on a quadrature for the integral

vm+1
n = z

− (m+1)(γ+1)
m

n

n−1∑
i=0

wn,i (h)vi ,

where wn,i (h) are speci�c weights.
■ Higher order methods are di�cult to construct.
■ Equation has a trivial solution and thus we have to impose an appropriate
initialization of the scheme.
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Time-fractional porous medium equation
■ We have constructed an explicit second-order scheme by linear

reconstruction. The quadrature must not involve the terminal point.
■ In each three node interval we approximate the solution by a linear

function based on two �rst nodes.
■ For example, if total number of nodes is even we have

wn,i (h) =

∫ zi+2

zi

K (zn, s)s
γ+1
m

({
1− s−zi

h , i even
s−zi
h , i odd

)
ds.

■ We have to prescribe two initial steps. The zeroth one is exact

v0 = v(0) = lim
h→0+

(
h−γ

∫ 1

0

K (h, hσ)σ
γ+1
m ds

) 1
m

.

The �rst one is implicitly given by rectangle method: approximate the
solution by a linear function between z0 and z1.

■ Relevant paper with convergence proofs: H.Okrasi«ska-Pªociniczak,
�.P., Second order scheme for self-similar solutions of a time-fractional

porous medium equation on the half-line, arXiv:2106.05138.
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Time-fractional porous medium equation
■ Numerically calculated order of convergence for fractional di�usion.

HHH
HHm
α

0.01 0.1 0.3 0.5 0.7 0.9 0.99

1 1.84 1.98 2.01 2.00 2.09 2.10 2.13
3 1.80 1.98 1.99 1.98 1.97 1.96 1.96
5 1.74 1.92 1.92 1.92 1.91 1.89 1.89
7 1.71 1.88 1.88 1.87 1.87 1.91 1.86
10 1.70 1.85 1.85 1.84 1.84 1.86 1.83
20 1.73 1.85 1.84 1.83 1.83 1.85 1.82

■ Wetting front calculation for α = 1 and m = 2. Here, U(η) = 0 for
η ≥ η∗. Falls to zero like N−2.

N 10 20 50 100 200

|η∗ − η∗
exact | 1.1× 10−4 2.9× 10−5 4.6× 10−6 1.1× 10−6 2.8× 10−7
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Quasilinear subdi�usion equation
■ Now, we focus on the general Quasilinear subdi�usion equation

∂αt u = (D(u)ux)x + f (x , t, u), x ∈ (0, 1), t ∈ (0,T ), α ∈ (0, 1),

u(x , 0) = φ(x),

u(0, t) = 0, u(1, t) = 0,

with Caputo derivative

∂αt u(x , t) =
1

Γ(1− α)

∫ t

0

(t − s)−αut(x , s)ds.

■ We assume nondegeneracy (coercivity) and some regularity

0 < D− ≤ D(u) ≤ D+, |f (x , t, u)| ≤ F , |D ′(u)|+ |fu(x , t, u)| ≤ L.

■ We have constructed a Galerkin spectral method however, all the
proofs can be easily translated into FEM framework.

■ Relevant paper with convergence proofs:
�.P., A linear Galerkin numerical method for a strongly nonlinear

subdi�usion equation, arXiv:2107.10057.
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Quasilinear subdi�usion equation
■ The problem in the weak setting is

(∂αt u, v) + a(D(u); u, v) = (f (t, u), v), v ∈ H1
0 (0, 1),

where a(D(w); u, v) =
∫ 1
0
D(w(x))ux(x)vx(x)dx .

■ We choose a N-th dimensional subspace of trigonometric or algebraic
polynomials, i.e. VN ⊂ H1

0 (0, 1).
■ Let PN be the orthogonal projection onto VN . For su�ciently regular

functions we have

∥u − Pnu∥ ≤ CN−m ∥u∥m , ∥u − Pnu∥l ≤ CN2l− 1
2−m ∥u∥m , u ∈ Hm

0 .

■ We also de�ne the Ritz elliptic projection (it has similar regularity
estimates as PN but is much more useful)

a(D(u);RNu − u, v) = 0, v ∈ VN .

■ Since we want a completely linear scheme we introduce the O(h2)
extrapolation

ŷ(tn) := 2y(tn−1)− y(tn−2).
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Quasilinear subdi�usion equation
■ Introduce the time grid tn = nh with h > 0 being the time step.
■ The fully discrete numerical method can be formulated as

(δαUn, v) + a(D(Ûn);Un, v) = (f (tn, Û
n), v), v ∈ VN , n ≥ 2,

where the Caputo derivative is discretized via the L1 scheme

δαUn =
h−α

Γ(2− α)

n−1∑
i=0

bn−i (1− α)(U i+1 − U i ),

with bj(β) = jβ − (j − 1)β .

Convergence

Let u ∈ C 2((0,T );Hm) be a solution of the PDE and Un a solution of the
numerical scheme. For su�ciently large m and small h > 0 we have

∥u(tn)− Un∥ ≤ C
(
N−m + h2−α

)
,

where the constant C depends on α and derivatives of u.
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Quasilinear subdi�usion equation
■ The proof is based on the decomposition

u(tn)− Un = u(tn)− RNu(tn) + RNu(tn)− Un = rn + en.

■ The projection error rn is estimated from the approximation theory so we
can focus on en which is calculated in �nite dimensions.

■ By the fact that (δαyn, yn) ≥ 1
2
δα ∥yn∥2 we obtain the error inequality

1

2
δα∥en∥2 + D0∥en∥1 ≤ ρCaputo + ρdiffusivity + ρsource .

■ By careful estimates for each remainder we obtain

δα∥en∥2 ≤ C
(
∥en−1∥2 + ∥en−2∥2 +

(
N−m + h2−α

)2)
.

■ The fractional discrete Grönwall lemma4 then yields

∥en∥2 ≤ C
(
∥e0∥2 +

(
N−m + h2−α

)2)
.

4Liao, Hong-lin, Dongfang Li, and Jiwei Zhang. SIAM Journal on Numerical Analysis
56.2 (2018): 1112-1133.
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Quasilinear subdi�usion equation

Figure: A semi-log plot of the L2 error α = 0.5 as a function of N with �xed
h = 10−3.
15 / 24



Quasilinear subdi�usion equation

Figure: A log-log plot of the L2 error for with N = 30. Calculated order of
convergence p is given in the legend for di�erent α.
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Nonlocal equation arising in climatology
■ In climate dynamics one frequently uses Energy Balance Models

(EBMs). One of them is described by the following degenerate parabolic
problem5

ut + u = (D(u)(1− x2)ux)x + f (x , t, u, Ju), x ∈ (0, 1), t ∈ (0, t0),

ux(0, t) = 0, ux(1, t) <∞,

u(x , s) = ψ(x , s), −τ ≤ s ≤ 0,

where the nonlocal operator is usually in the form

Ju(x , t) =

∫ τ

0

K (s)u(x , t − s)ds.

■ We assume: 0 < D− ≤ D(u) ≤ D+ <∞, |Du|+ |fu|+ |fw | ≤ C .
■ Relevant paper: �.P., Linear Galerkin-Legendre spectral scheme for a

degenerate nonlinear and nonlocal parabolic equation arising in

climatology, arXiv:2106.05140.
5Bhattacharya, K and Ghil, M and Vulis, IL, Journal of Atmospheric Sciences 39(8)

(1982), 1747�1773
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Nonlocal equation arising in climatology
■ The Earth is idealized as sphere on which the heat is averaged zonally.

This means that the temperature depends on x = sin θ with θ - the
latitude.

■ EBMs are simple conservation models that started with Budyko and
Sellers works

cTt = Ri − Ro + H,

where T is the temperature, Ri incoming radiation, Ro outgoing infrared
radiation, and H horizontal transport.

■ Ri depends on the solar constant Q, the spatial distribution of the
radiation S(x , t), and the albedo (ice-albedo feedback: lower
temperatures → more ice → higher re�ectivity → lower temperatures)

Ri = QS(x , t)(1− α(x ,T , JT )).

■ The nonlocality in time enters through the albedo.
■ Ro is given by the Stefan-Boltzmann's Law, i.e. Ro = σT 4.
■ The horizontal �ux is di�usive

H = ∇ · (d(u)∇T ) =
(
d(u)(1− x2)Tx

)
x
.
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Nonlocal equation arising in climatology
■ The weak form of the problem{

(ut , v) + a(D(u); u, v) = (f (t, u, Ju), v), v ∈ V ,

u(s) = ψ(s), −τ ≤ s ≤ 0,

with the form

a(D(w); u, v) =

∫ 1

0

D(w)(1− x2)uxvxdx +

∫ 1

0

uv dx .

■ A choice of the appropriate space V helps to deal with the degeneracy

V =
{
v ∈ H1(0, 1) :

√
1− x2 vx ∈ L2(0, 1)

}
,

∥v∥V =

∫ 1

0

(1− x2)v2x dx +

∫ 1

0

v2dx .

■ There has been an vigorous research done for the various variants of the
above problem6.
6Díaz, Jesús Ildefonso. The mathematics of models for climatology and environment.

Springer, Berlin, Heidelberg, 1997. 217-251.
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Nonlocal equation arising in climatology

■ We choose the �nite dimensional subspace VN ⊂ V of polynomials (in
our case Legendre) and look for solutions to a fully linear scheme

(δUn, v) + a(D(Ûn−θ);U
n−θ

, v) = (fh(Û
n−θ), v), v ∈ VN ,

where δUn = h−1(Un − Un−1), the O(h2) extrapolation is

Ûn−θ := (2− θ)Un−1 − (1− θ)Un−2, 0 ≤ θ ≤ 1

and the θ-average

U
n−θ

:= θUn−1 + (1− θ)Un, 0 ≤ θ ≤ 1.

■ The initialization is done via the Predictor-Corrector method.

■ Since Legendre polynomials are eigenfunctions of the di�usion operator,
we obtain an optimal scheme and estimates.
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Nonlocal equation arising in climatology

Convergence

Let u(t) ∈ H2m(0, 1) for each t ∈ [0, t0] with m ≥ 1. Further, assume that
ux , ut , and utt are bounded. Then,

∥u(tn)− Un∥ ≤ C

(
N−2m + ρ0(h)

(
θ − 1

2

)
h + h2

)
, (1)

where ρ0(h) is the local consistency error of the discretization of J

JhU
n =

M∑
i=0

wi (K )Un−i + ρ0(h).

■ The proof utilizes a similar decomposition as in the subdi�usive case.
■ It can also be proved that even in the degenerate case we have optimal

bounds for the Ritz projection

∥u − RNu∥+ N−1 ∥u − RNu∥V ≤ CN−2m ∥u∥2m .
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Nonlocal equation arising in climatology

Figure: Numerically calculated L2 error between solutions for di�erent N and
problems. The kernel G is Gaussian, while Kα is fractional integral.
22 / 24



Nonlocal equation arising in climatology

Figure: Numerically calculated L2 error between solutions with for di�erent h and
problems. The kernel G is gaussian, while Kα is fractional integral.
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Conclusion and future work
■ Nonlocal equations pose an interesting and di�cult subject for numerical

analysis.

■ Computational expense is always higher that in the classical case.

■ The interplay between nonlocality, nonlinearity, and degeneracy has
to be dealt with speci�c methods.

■ Future work
□ Quasilinear subdi�usion with degeneracy.
□ Non-smooth data (usually time-fractional problems have singularity at

t → 0+).
□ Higher dimensions (FEM).
□ Parallel in time integration (to utilize multi-threading for time-fractional

derivatives).
□ Spatial nonlocality: fractional porous medium equation (fractional gradient

and nonlinearity).

Thank you!
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