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in every connected component of
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The energy E = is conformally and scaling invariant

Consider a scaling similar to x — Ax in R":

7: R" — S"\ {N} — inverse stereographic projection

Let 6 € S" and take uy(6) = u(T(A771(0))),

Then E;n(uy,S") = E;»(u,S"), thus uy is a minimizing sequence
But uy — const. in WS5(S", N') as A — 0

The constant map belongs to a different (trivial) homotopy class

©

Idea

Consider minimizers of Et’rsw(u,Z)://‘u’
¥ J¥

(x) — uly)l*

x — y’n—Hg

dxdy

Recall: B

Esn(u,S") = [”];vs-,%(s")
B |u(6) —u(w)|?
= fSn fgﬂ |0—w|?"

Saks-Uhlenbeck replaced

E(u) = /Z|Vu\2

By considering minimizers of

Ey(u) = /z (IVuf + 1)

and studied limit as o — 17

K. Mazowiecka, A. Schikorra Fractional harmonic maps

5/ 16



WHAT IS THE PROBLEM?

Loss of compactness:

Take u € W*5(S", N') — minimizer in its nontrivial homotopy class
The energy E = is conformally and scaling invariant

Consider a scaling similar to x — Ax in R":

7: R" — S"\ {N} — inverse stereographic projection

Let 6 € S" and take uy(6) = u(T(A771(0))),

Then E;n(uy,S") = E;»(u,S"), thus uy is a minimizing sequence
But uy — const. in WS5(S", N') as A — 0

The constant map belongs to a different (trivial) homotopy class

©

Idea

Consider minimizers of Et’rsw(u,Z)://‘u’
¥ J¥

(x) — uly)l*

x — y’n—Hg

dxdy

Recall: B
Esn(u,S") = [”];vs-,%(s")

u(0)—u(w)|?
- fofo

Saks-Uhlenbeck replaced

E(u) = /Z|Vu\2

By considering minimizers of

Ey(u) = /z (IVuf + 1)

and studied limit as o — 17

Wt,f C CO,tfs

K. Mazowiecka, A. Schikorra Fractional harmonic maps 5/ 16



WHAT IS THE PROBLEM?

Loss of compactness:

Take u € W*5(S", N') — minimizer in its nontrivial homotopy class
The energy E = is conformally and scaling invariant

Consider a scaling similar to x — Ax in R":

7: R" — S"\ {N} — inverse stereographic projection

Let 6 € S" and take uy(6) = u(T(A771(0))),

Then E;n(uy,S") = E;»(u,S"), thus uy is a minimizing sequence
But uy — const. in WS5(S", N') as A — 0

The constant map belongs to a different (trivial) homotopy class

©

Idea

Consider minimizers of Et’rsw(u,Z)://‘u’
¥ J¥

(x) — uly)l*

x — y’n—Hg

dxdy

Recall: B

Esn(u,S") = [”];vs-,%(s")
B |u(6) —u(w)|?
= fSn fgﬂ |0—w|?"

Saks-Uhlenbeck replaced

E(u) = /Z|Vu\2

By considering minimizers of

Ey(u) = /z (IVuf + 1)

and studied limit as o — 17

Wt,f C CO,tfs

and study limits as t — s

K. Mazowiecka, A. Schikorra Fractional harmonic maps

5/ 16



WHAT IS THE PROBLEM?

Recall: .
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Take u € W*5(S", N') — minimizer in its nontrivial homotopy class
The energy E = is conformally and scaling invariant

Consider a scaling similar to x — Ax in R":
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Then E; »(uy,S") = E; »(u,S"), thus uy is a minimizing sequence
’ ’ and studied limit as o« — 17

But uy — const. in WS5(S", N') as A — 0
The constant map belongs to a different (trivial) homotopy class
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n
s

dxdy and study limitsas t — s*
We don’t have W*: o/ Wfog fora > 1,s€(0,1)
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Recall:

Esn(u,S") = [”]ivs-,%(s")

u(0)—u(w)|?
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Saks-Uhlenbeck replaced

E(u) = /Z|Vu\2

By considering minimizers of

Ey(u) = /Z (IVuf + 1)

and studied limit as o — 17

Wt,f C CO,tfs

and study limits as t — s

We don’t have W55 <5 W5 for a > 1, s € (0,1) but we have W < W, for t > s
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UNIFORM REGULARITY
Theorem
Assume
o uc€ WH(X, ) is a minimizing W:-harmonic map in B(R), i.e.,

Eio(u,X) < En(v,X) Vve WH(Z,N), such that:
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On the smallness condition: The condition
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COROLLARY: LIMITS OF MINIMIZERS
Corollary
Let
u;: ¥ — N - minimizing W% -harmonic maps in a fixed homotopy class
Then
up — U locally strongly in W5 (X \ A)

and u is a W*5-minimizing harmonic map in £ \ A in its homotopy class
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Corollary
Let

u;: ¥ — N - minimizing W% -harmonic maps in a fixed homotopy class

Then / up to a subsequence t; — s set of finite number of points
up — U locally strongly in W (%X \ /‘)/

and u is a W*5-minimizing harmonic map in £ \ A in its homotopy class

~

ie,u;€ Wo(L,N) and  Eo(us, X) X Ez(v, X)
Vv € WS5(X, N) such that u; ~ v & ug = v in a neighborhood of A

We need to study what happens in the points when the convergence fails!

But first let’s check what does this mean

(This Corollary follows from a standard covering argument)
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REMOVABILITY OF SINGULARITIES

Assume u € W*5(X, N) - minimizing map in B(R) in homotopy away from the point 0, i.e,
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. oy . . . . .. n
But as mentioned before it is a major open problem whether non-minimizing W*s-maps are regular
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Assume u € W*5(X, N) - minimizing map in B(R) in homotopy away from the point 0, i.e,
Forany ¢ > 0 and v € W*5(X, ) such that

e u=von B(e) U(X\B(R))

o urv

Eso(u,X) < Egn(v, 1)

Then, u is minimizing in all of B(R), i.e., for any w € W*3(X) such that

e u=wonX\B(R)

o u~w

we have

Es,g(u, Z) < E57£(W, Z)

Remarks about removability theorems:
It is not difficult to prove that a map satisfying the W*-harmonic map equation in ¥ \ {0} satisfies the equation in &
But as mentioned before it is a major open problem whether non-minimizing W*:-maps are regular

It is quick to prove such a theorem for round target manifolds (using regularity theory)
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REMOVABILITY OF SINGULARITIES — CONTINUED

We need to construct a comparison map
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REMOVABILITY OF SINGULARITIES — CONTINUED
We need to construct a comparison map

Problem? Yes

F LS = Lo o L e o o
X — y[?" B(R) J B(R) ¥\B(R) J B(R) ¥\ B(R) JE\B(R) X — y[?"

S B O N s =
¥\B(R) J B(R) ¥\B(R) J\B(R) ‘X_Y‘n
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. / Caf [ [
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REMOVABILITY OF SINGULARITIES — CONTINUED
We need to construct a comparison map mixed terms &

Problem? Yes

k= % bk 55

/ / lv(x) — v(
B(R) B(R ¥\B(R) J £\B(R) |x — ‘2"

aqaeEN,oeN
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REMOVABILITY OF SINGULARITIES — CONTINUED
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|x — Y‘zn B(R) \8(R) Jo\B(R) X — y[*"
/ / lv(x) — v(
B(R ¥\B(R) J£\B(R) |x — ‘2"
Opening technique by Brezis—Li

connects v € W*5 to a constant aqaeEN,oeN

C independent of ¥, r,n

Glueing along a buffer zgne, n € (0, 1)
E,p(u, %) < (1 + =557 Esplu, 0 B(r))
+ (14 ) Eop(u, T\ Br))

Sets ¥ N B(r), X \ B(nr) overlap

Connecting points in critical Sobolev space is cheap

Opening technique by Brezis—Li

; (energywise)
connects u € W%s to a constant o . .
Construction similar to the one by Monteil-Van Schaftingen
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BALANCED ENERGY ESTIMATES FOR X~ = S"

Theorem

00 <s<s <1 0,06(0,\/2) ot (s, 5]

o u; € WH(S", ) - minimizing map in its own homotopy class

Then for any yp € S” C C(s, 0, p mdependent of t
Uil X u Ul X u g
/ / Jur(x) = tg/) dxdy < Cp™™s -1 / / Jur(x) = tf)t/) dxdy
B(yo,p) /5" —y[" S"™\B(yo,p) J/S" —y["
Theorem Minimizing the E,(u) = [, |VulP  energy

epe(noo) epef0,\/f  epe(npl

o u, € WHP(S", ) - p-minimizing harmonic map in its own homotopy class

Then for any y, € S” C = C(n, py, p)

/ |Vup|Pdx < Cp_(p_")/ |Vu,|Pdx
D(yo.p)

S™\D(yo,p)

As a consequence we get that the energy of our approximate map cannot concentrate only
in a single point and vanish everywhere else
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[ LS \VZP'

Which is only possible if v = const
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THE CASE WHEN 7,(N) = 0
Fix a homotopy class X in C°(X, \)
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THE CASE WHEN 7,(N) =0

Fix a homotopy class X in C°(X, \)

Take u; - sequence of minimizers of E; 2 in X
From regularity: Ju; € W(Z, N) such that

u; — ug strongly in W5 (X \ A), A - set of points
From removability: u; € W (%)

It is enough to show that the convergence is strong everywhere

Us/\.XOGA

We construct a comparison map v;
This map is homotopic to u; because 7,(N) = 0

Comparing the energies we obtain

// \Ut(X)—U:(xﬂz o
s JBGor) X —y|"

From regularity theory we have strong convergence in xg

The map v; for X =S"
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K. Mazowiecka, A. Schikorra Fractional harmonic maps 13/ 16



—— Set of free homotopy classes of C°(S", )

THE CASE WHEN 7,(/\)

There exists a =53, n, N) such that the following holds

Let [y € moC(S", V). Then at least one of the following cases holds:

K. Mazowiecka, A. Schikorra Fractional harmonic maps 13/ 16



—— Set of free homotopy classes of C°(S", )

THE CASE WHEN 7,(/\)

There exists a =53, n, N) such that the following holds
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e There exists a minimizer of E»(-,S") in Ty

e Forevery § > 0, there exist nontrivial free homotopy classes 'y = m(N)y; and ', = 71 (N) 2
such that

Fo = m(N )y C mi(N)y1 + m(N)72

#HO +#0, < #To+0

0
9<#F1<#F0—5

0
9<#F2<#F0—5
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where #I— = infuemws,g(gnyj\/) E_g’g(u’ Sn) = Iimt_>5+ inquFﬂWt’g(S”,./\/‘) Et,g(u, S”)
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COROLLARY
There exists a number k € Z, k # 0 such that
inf { Es2(u,S"): ue C'n W*:(S",S"), degu = k}

is attained
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COROLLARY

There exists a number k € Z, k # 0 such that

is attained
Still open

Is

attained?

Yes, if 2 =
N

inf { Es2(u,S"): ue C'n W*:(S",S"), degu = k}

inf {£;2(u,S"): ue C"N W*+(S",S"), degu =1}

2 (Mironescu)

K. Mazowiecka, A. Schikorra

Fractional harmonic maps

14/ 16



IDEA OF THE PROOF, ,(\) # 0
Fix a homotopy class Iy in C°(S", V)
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IDEA OF THE PROOF, T,(N') # 0

Fix a homotopy class [y in C°(S", \/) take u; - sequence of minimizers of EninTy
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Either A is empty (first case) ] T 'u!m,_m -

. ; - _‘_:}\\ _-/ . \\t
Or there is a blow-up point £
Say, the North Pole k\_// \_//

A ',/J -~ g

r:f| J N ___.---"'J ,_| .
5™ Bz 20) % {100
Domain of the map wu, Domain of the map wu,
e T N

. v “'\ 4
I \\ > \\ //
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