

Fractional harmonic maps in homotopy classes

Katarzyna Mazowiecka

International Meetings on Differential Equations and Their Applications 13.12.2022

JOINT WORK WITH

Armin Schikorra University of Pittsburgh

K. Mazowiecka, A. Schikorra

Fractional harmonic maps

Domain: \mathcal{M} smooth closed Riemannian manifold,

Domain: \mathcal{M} smooth closed Riemannian manifold,

compact & without boundary

INTRODUCTION Domain: \mathcal{M} smooth closed Riemannian manifold, for simplicity $\mathcal{M} := \mathbb{R}^n$ compact & without boundary

Domain: \mathcal{M} smooth closed Riemannian manifold, for simplicity $\mathcal{M} := \mathbb{R}^n^{\text{compact & without boundary}}$

Target: $\mathcal{N} \subset \mathbb{R}^{L}$ - smooth, closed Riemannian manifold

Domain: \mathcal{M} smooth closed Riemannian manifold, for simplicity $\mathcal{M} := \mathbb{R}^n$ compact & without boundary

Target: $\mathcal{N} \subset \mathbb{R}^{L}$ - smooth, closed Riemannian manifold

• Gagliardo seminorm, $0 < s < 1, p \ge 1$

Domain: \mathcal{M} smooth closed Riemannian manifold, for simplicity $\mathcal{M} := \mathbb{R}^n$ compact & without boundary

Target: $\mathcal{N} \subset \mathbb{R}^{L}$ - smooth, closed Riemannian manifold

• Gagliardo seminorm, $0 < s < 1, p \ge 1$

$$[u]_{W^{s,p}(\Omega)} := \left(\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{n + sp}} \, \mathrm{d}x \, \mathrm{d}y \right)^{\frac{1}{p}}$$

Domain: \mathcal{M} smooth closed Riemannian manifold, for simplicity $\mathcal{M} := \mathbb{R}^n$ compact & without boundary

Target: $\mathcal{N} \subset \mathbb{R}^{L}$ - smooth, closed Riemannian manifold

• Gagliardo seminorm, $0 < s < 1, p \ge 1$

$$[u]_{W^{s,p}(\Omega)} := \left(\int_{\Omega}\int_{\Omega}\frac{|u(x) - u(y)|^p}{|x - y|^{n+sp}}\,\mathrm{d}x\,\mathrm{d}y\right)^{\frac{1}{p}}$$

• Fractional Sobolev space

$$W^{s,p}(\Omega) \coloneqq \left\{ u \in L^p(\Omega) \colon [u]_{W^{s,p}(\Omega) < \infty} \right\}$$

Domain: \mathcal{M} smooth closed Riemannian manifold, for simplicity $\mathcal{M} := \mathbb{R}^n$ compact & without boundary

Target: $\mathcal{N} \subset \mathbb{R}^{L}$ - smooth, closed Riemannian manifold

• Gagliardo seminorm, $0 < s < 1, p \ge 1$

$$[u]_{W^{s,p}(\Omega)} \coloneqq \left(\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{n + sp}} \, \mathrm{d}x \, \mathrm{d}y \right)^{\frac{1}{p}}$$

• Fractional Sobolev space

$$W^{s,p}(\Omega) \coloneqq \left\{ u \in L^p(\Omega) \colon [u]_{W^{s,p}(\Omega) < \infty} \right\}$$

• Manifold-valued fractional Sobolev space $W^{s,p}(\mathcal{M},\mathcal{N})$

$$W^{s,p}(\mathcal{M},\mathcal{N}) \coloneqq \left\{ u \in W^{s,p}(\mathcal{M},\mathbb{R}^L) \colon u(x) \in \mathcal{N} \text{ a.e.} \right\}$$

Domain: \mathcal{M} smooth closed Riemannian manifold, for simplicity $\mathcal{M} := \mathbb{R}^n$ compact & without boundary

Target: $\mathcal{N} \subset \mathbb{R}^{L}$ - smooth, closed Riemannian manifold

• Gagliardo seminorm, $0 < s < 1, p \ge 1$

$$[u]_{W^{s,p}(\Omega)} \coloneqq \left(\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{n + sp}} \, \mathrm{d}x \, \mathrm{d}y \right)^{\frac{1}{p}}$$

• Fractional Sobolev space

$$W^{s,p}(\Omega) \coloneqq \left\{ u \in L^p(\Omega) \colon [u]_{W^{s,p}(\Omega) < \infty} \right\}$$

$$W^{s,p}(\mathcal{M},\mathcal{N}) \coloneqq \left\{ u \in W^{s,p}(\mathcal{M},\mathbb{R}^L) \colon u(x) \in \mathcal{N} \text{ a.e.} \right\}$$

Domain: \mathcal{M} smooth closed Riemannian manifold, for simplicity $\mathcal{M} := \mathbb{R}^n$ compact & without boundary

Target: $\mathcal{N} \subset \mathbb{R}^{L}$ - smooth, closed Riemannian manifold

• Gagliardo seminorm, $0 < s < 1, p \ge 1$

$$[u]_{W^{s,p}(\Omega)} \coloneqq \left(\int_{\Omega}\int_{\Omega}\frac{|u(x)-u(y)|^p}{|x-y|^{n+sp}}\,\mathrm{d}x\,\mathrm{d}y\right)^{\frac{1}{p}}$$

• Fractional Sobolev space

$$W^{s,p}(\Omega) \coloneqq \left\{ u \in L^p(\Omega) \colon [u]_{W^{s,p}(\Omega) < \infty} \right\}$$

$$W^{s,p}(\mathcal{M},\mathcal{N}) \coloneqq \left\{ u \in W^{s,p}(\mathcal{M},\mathbb{R}^L) \colon u(x) \in \mathcal{N} \text{ a.e.} \right\}$$

• Fractional Energy

$$E_{s,p}(u,\Omega) := \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{n+sp}} \,\mathrm{d}x \,\mathrm{d}y$$

Domain: \mathcal{M} smooth closed Riemannian manifold, for simplicity $\mathcal{M} := \mathbb{R}^n$ compact & without boundary

Target: $\mathcal{N} \subset \mathbb{R}^{L}$ - smooth, closed Riemannian manifold

• Gagliardo seminorm, $0 < s < 1, p \ge 1$

$$[u]_{W^{s,p}(\Omega)} \coloneqq \left(\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{n + sp}} \, \mathrm{d}x \, \mathrm{d}y \right)^{\frac{1}{p}}$$

• Fractional Sobolev space

$$W^{s,p}(\Omega) \coloneqq \left\{ u \in L^p(\Omega) \colon [u]_{W^{s,p}(\Omega) < \infty} \right\}$$

$$W^{s,p}(\mathcal{M},\mathcal{N}) \coloneqq \left\{ u \in W^{s,p}(\mathcal{M},\mathbb{R}^L) \colon u(x) \in \mathcal{N} \text{ a.e.} \right\}$$

• Fractional Energy

$$E_{s,p}(u,\Omega) := \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{n+sp}} \,\mathrm{d}x \,\mathrm{d}y$$

We will be interested in maps that **minimize** the $E_{s,\frac{n}{s}}$ energy among maps in $W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ in a fixed homotopy class

Domain: \mathcal{M} smooth closed Riemannian manifold, for simplicity $\mathcal{M} := \mathbb{R}^n$ compact & without boundary

Target: $\mathcal{N} \subset \mathbb{R}^{L}$ - smooth, closed Riemannian manifold

• Gagliardo seminorm, $0 < s < 1, p \ge 1$

$$[u]_{W^{s,p}(\Omega)} \coloneqq \left(\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{n + sp}} \, \mathrm{d}x \, \mathrm{d}y \right)^{\frac{1}{p}}$$

• Fractional Sobolev space

$$W^{s,p}(\Omega) \coloneqq \left\{ u \in L^p(\Omega) \colon [u]_{W^{s,p}(\Omega) < \infty} \right\}$$

$$W^{s,p}(\mathcal{M},\mathcal{N}) \coloneqq \left\{ u \in W^{s,p}(\mathcal{M},\mathbb{R}^L) \colon u(x) \in \mathcal{N} \text{ a.e.} \right\}$$

• Fractional Energy

$$E_{s,p}(u,\Omega) := \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{n + sp}} \, dx \, dy \qquad ??$$

We will be interested in maps that **minimize** the $E_{s,\frac{n}{s}}$ energy

among maps in
$$W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$$
 in a fixed homotopy class

 $u, v \in C^{\infty}(\Sigma, \mathcal{N})$ are **homotopic**, $u \sim v$

 $\Leftrightarrow \exists H \in C^{\infty}([0,1], C^{\infty}(\Sigma, \mathcal{N})) \quad \text{ such that } \quad H(0) = u, \ H(1) = v$

 $u, v \in C^{\infty}(\Sigma, \mathcal{N})$ are **homotopic**, $u \sim v$

 $\Leftrightarrow \exists H \in C^{\infty}([0,1], C^{\infty}(\Sigma, \mathcal{N})) \quad \text{ such that } \quad H(0) = u, \ H(1) = v$

 $\Leftrightarrow \exists \ H \in C^0([0,1], C^0(\Sigma, \mathcal{N})) \quad \text{ such that } \quad H(0) = u, \ H(1) = v$

 $u, v \in C^{\infty}(\Sigma, \mathcal{N})$ are **homotopic**, $u \sim v$

 $\Leftrightarrow \exists H \in C^{\infty}([0, 1], C^{\infty}(\Sigma, \mathcal{N})) \text{ such that } H(0) = u, H(1) = v$ $\Leftrightarrow \exists H \in C^{0}([0, 1], C^{0}(\Sigma, \mathcal{N})) \text{ such that } H(0) = u, H(1) = v$

Example

If Σ , $\mathcal{N} = \mathbb{S}^n$, then $u \sim v \Leftrightarrow \deg u = \deg v$

 $u, v \in C^{\infty}(\Sigma, \mathcal{N})$ are **homotopic**, $u \sim v$

 $\Leftrightarrow \exists H \in C^{\infty}([0, 1], C^{\infty}(\Sigma, \mathcal{N})) \quad \text{such that} \quad H(0) = u, \ H(1) = v$ $\Leftrightarrow \exists H \in C^{0}([0, 1], C^{0}(\Sigma, \mathcal{N})) \quad \text{such that} \quad H(0) = u, \ H(1) = v$

Example

If Σ , $\mathcal{N} = \mathbb{S}^n$, then $u \sim v \Leftrightarrow \deg u = \deg v$

Definition

 $u, v \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$, then $u \sim v$ \Leftrightarrow for any $u_{\varepsilon}, v_{\varepsilon} \in C^{\infty}(\Sigma, \mathcal{N})$ such that $u_{\varepsilon} \to u, \quad v_{\varepsilon} \to v \quad \text{in } W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ $\exists \varepsilon_0 > 0$ such that $\forall \varepsilon \in (0, \varepsilon_0)$ we have $u_{\varepsilon} \sim v_{\varepsilon}$ in C^{∞}

 $u, v \in C^{\infty}(\Sigma, \mathcal{N})$ are **homotopic**, $u \sim v$

 $\Leftrightarrow \exists H \in C^{\infty}([0, 1], C^{\infty}(\Sigma, \mathcal{N})) \text{ such that } H(0) = u, H(1) = v$ $\Leftrightarrow \exists H \in C^{0}([0, 1], C^{0}(\Sigma, \mathcal{N})) \text{ such that } H(0) = u, H(1) = v$

Example

If Σ , $\mathcal{N} = \mathbb{S}^n$, then $u \sim v \Leftrightarrow \deg u = \deg v$

Definition

 $u, v \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$, then $u \sim v$ \Leftrightarrow for any $u_{\varepsilon}, v_{\varepsilon} \in C^{\infty}(\Sigma, \mathcal{N})$ such that $u_{\varepsilon} \to u, \quad v_{\varepsilon} \to v \quad \text{in } W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ $\exists \varepsilon_0 > 0$ such that $\forall \varepsilon \in (0, \varepsilon_0)$ we have $u_{\varepsilon} \sim v_{\varepsilon}$ in C^{∞} **Fact.** Any map in the critical Sobolev space $w \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ can be approximated (in $W^{s, \frac{n}{s}}$) by smooth, manifold valued maps $C^{\infty}(\Sigma, \mathcal{N})$

 $u, v \in C^{\infty}(\Sigma, \mathcal{N})$ are homotopic, $u \sim v$

 $\Leftrightarrow \exists H \in C^{\infty}([0, 1], C^{\infty}(\Sigma, \mathcal{N})) \text{ such that } H(0) = u, H(1) = v$ $\Leftrightarrow \exists H \in C^{0}([0, 1], C^{0}(\Sigma, \mathcal{N})) \text{ such that } H(0) = u, H(1) = v$

Example

If Σ , $\mathcal{N} = \mathbb{S}^n$, then $u \sim v \Leftrightarrow \deg u = \deg v$

Definition

$$u, v \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$$
, then $u \sim v$
 \Leftrightarrow for any $u_{\varepsilon}, v_{\varepsilon} \in C^{\infty}(\Sigma, \mathcal{N})$ such that
 $u_{\varepsilon} \to u, \quad v_{\varepsilon} \to v \quad \text{in } W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$
 $\exists \varepsilon_0 > 0$ such that $\forall \varepsilon \in (0, \varepsilon_0)$ we have $u_{\varepsilon} \sim v_{\varepsilon}$ in C^{∞}

Fact. Any map in the critical Sobolev space $w \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ can be approximated (in $W^{s,\frac{n}{s}}$) by smooth, manifold valued maps $C^{\infty}(\Sigma, \mathcal{N})$

This is *not true* in general, for example the map $\frac{x}{|x|} \in W^{1,2}(\mathbb{B}^3, \mathbb{S}^2)$ cannot be approximated (in $W^{1,2}$) by maps $C^{\infty}(\mathbb{B}^3, \mathbb{S}^2)$!

 $u, v \in C^{\infty}(\Sigma, \mathcal{N})$ are homotopic, $u \sim v$

 $\Leftrightarrow \exists H \in C^{\infty}([0, 1], C^{\infty}(\Sigma, \mathcal{N})) \text{ such that } H(0) = u, H(1) = v$ $\Leftrightarrow \exists H \in C^{0}([0, 1], C^{0}(\Sigma, \mathcal{N})) \text{ such that } H(0) = u, H(1) = v$

Example

If Σ , $\mathcal{N} = \mathbb{S}^n$, then $u \sim v \Leftrightarrow \deg u = \deg v$

Definition

$$u, v \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$$
, then $u \sim v$
 \Leftrightarrow for any $u_{\varepsilon}, v_{\varepsilon} \in C^{\infty}(\Sigma, \mathcal{N})$ such that
 $u_{\varepsilon} \to u, \quad v_{\varepsilon} \to v \quad \text{in } W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$
 $\exists \varepsilon_0 > 0$ such that $\forall \varepsilon \in (0, \varepsilon_0)$ we have $u_{\varepsilon} \sim v_{\varepsilon}$ in C^{∞}

Fact. Any map in the critical Sobolev space $w \in W^{s,\frac{n}{2}}(\Sigma, \mathcal{N})$ can be approximated (in $W^{s,\frac{n}{2}}$) by smooth, manifold valued maps $C^{\infty}(\Sigma, \mathcal{N})$

This is *not true* in general, for example the map $\frac{x}{|x|} \in W^{1,2}(\mathbb{B}^3, \mathbb{S}^2)$ cannot be approximated (in $W^{1,2}$) by maps $C^{\infty}(\mathbb{B}^3, \mathbb{S}^2)$!

 $\Leftrightarrow \exists H \in C^0([0,1], W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})) \quad \text{such that} \quad H(0) = u, \ H(1) = v$

 $u, v \in C^{\infty}(\Sigma, \mathcal{N})$ are homotopic, $u \sim v$

 $\Leftrightarrow \exists H \in C^{\infty}([0, 1], C^{\infty}(\Sigma, \mathcal{N})) \text{ such that } H(0) = u, H(1) = v$ $\Leftrightarrow \exists H \in C^{0}([0, 1], C^{0}(\Sigma, \mathcal{N})) \text{ such that } H(0) = u, H(1) = v$

Example

If Σ , $\mathcal{N} = \mathbb{S}^n$, then $u \sim v \Leftrightarrow \deg u = \deg v$

Definition

$$u, v \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$$
, then $u \sim v$
 \Leftrightarrow for any $u_{\varepsilon}, v_{\varepsilon} \in C^{\infty}(\Sigma, \mathcal{N})$ such that
 $u_{\varepsilon} \to u, \quad v_{\varepsilon} \to v \quad \text{in } W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$
 $\exists \varepsilon_0 > 0$ such that $\forall \varepsilon \in (0, \varepsilon_0)$ we have $u_{\varepsilon} \sim v_{\varepsilon}$ in C^{∞}

Fact. Any map in the critical Sobolev space $w \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ can be approximated (in $W^{s,\frac{n}{s}}$) by smooth, manifold valued maps $C^{\infty}(\Sigma, \mathcal{N})$

This is *not true* in general, for example the map $\frac{x}{|x|} \in W^{1,2}(\mathbb{B}^3, \mathbb{S}^2)$ cannot be approximated (in $W^{1,2}$) by maps $C^{\infty}(\mathbb{B}^3, \mathbb{S}^2)$!

 $\Leftrightarrow \exists H \in C^0([0,1], W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})) \quad \text{ such that } \quad H(0) = u, \ H(1) = v$

Lemma

$$u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N}), \exists \varepsilon = \varepsilon(u) > 0$$
 such that if $g_0, g_1 \in C^0 \cap W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ with
 $\|u - g_i\|_{L^1(\Sigma)} + [u - g_i]_{W^{s,\frac{n}{s}}(\Sigma)} \leq \varepsilon$ then $g_1 \sim g_2$
K. Mazowiecka, A. Schikorra Fractional harmonic maps

Theorem (Sacks, Uhlenbeck) Assume dim $\Sigma = 2$

• $\pi_2(\mathcal{N}) = \{0\} \Rightarrow \exists$ minimizing harmonic map in every homotopy class $C^0(\Sigma, \mathcal{N})$

• $\Sigma = \mathbb{S}^2$, $\pi_1(\mathcal{N}) = \{0\} \Rightarrow \exists$ generating set of homotopy classes in $C^0(\mathbb{S}^2, \mathcal{N})$

in which minimizing harmonic maps exist

Theorem (Sacks, Uhlenbeck) Assume dim $\Sigma = 2$ Map that minimizes the energy $E(u) := \int_{\Sigma} |\nabla u|^2$ among maps in $W^{1,2}(\Sigma, \mathcal{N})$

• $\pi_2(\mathcal{N}) = \{0\} \Rightarrow \exists$ minimizing harmonic map in every homotopy class $C^0(\Sigma, \mathcal{N})$

• $\Sigma = \mathbb{S}^2$, $\pi_1(\mathcal{N}) = \{0\} \Rightarrow \exists$ generating set of homotopy classes in $C^0(\mathbb{S}^2, \mathcal{N})$

in which minimizing harmonic maps exist

Theorem (Sacks, Uhlenbeck) Assume dim $\Sigma = 2$ Map that minimizes the energy $E(u) := \int_{\Sigma} |\nabla u|^2$ among maps in $W^{1,2}(\Sigma, \mathcal{N})$ • $\pi_2(\mathcal{N}) = \{0\} \Rightarrow \exists$ minimizing harmonic map in every homotopy class $C^0(\Sigma, \mathcal{N})$ • $\Sigma = \mathbb{S}^2$, $\pi_1(\mathcal{N}) = \{0\} \Rightarrow \exists$ generating set of homotopy classes in $C^0(\mathbb{S}^2, \mathcal{N})$ in which minimizing harmonic maps exist

Theorem (M., Schikorra)

Let $n \ge 1$, $s \in (0, 1)$, if n = 1 we assume additionally that $s \le \frac{1}{2}$, then

Theorem (Sacks, Uhlenbeck) Assume dim $\Sigma = 2$ • $\pi_2(\mathcal{N}) = \{0\} \Rightarrow \exists$ minimizing harmonic map in every homotopy class $C^0(\Sigma, \mathcal{N})$ • $\Sigma = \mathbb{S}^2, \pi_1(\mathcal{N}) = \{0\} \Rightarrow \exists$ generating set of homotopy classes in $C^0(\mathbb{S}^2, \mathcal{N})$ in which minimizing harmonic maps exist

Theorem (M., Schikorra)

Let $n \ge 1$, $s \in (0, 1)$, if n = 1 we assume additionally that $s \le \frac{1}{2}$, then

 If π_n(N) = {0} then there exists a minimizing W^{s, n/s}-harmonic map in every connected component of C⁰(Σ, N)

Theorem (Sacks, Uhlenbeck) Assume dim $\Sigma = 2$ Map that minimizes the energy $E(u) := \int_{\Sigma} |\nabla u|^2$ among maps in $W^{1,2}(\Sigma, \mathcal{N})$ • $\pi_2(\mathcal{N}) = \{0\} \Rightarrow \exists$ minimizing harmonic map in every homotopy class $C^0(\Sigma, \mathcal{N})$ • $\Sigma = \mathbb{S}^2$, $\pi_1(\mathcal{N}) = \{0\} \Rightarrow \exists$ generating set of homotopy classes in $C^0(\mathbb{S}^2, \mathcal{N})$ in which minimizing harmonic maps exist

Theorem (M., Schikorra)

Let $n \ge 1$, $s \in (0, 1)$, if n = 1 we assume additionally that $s \le \frac{1}{2}$, then

- If $\pi_n(\mathcal{N}) = \{0\}$ then there exists a minimizing $W^{s,\frac{n}{s}}$ -harmonic map in every connected component of $C^0(\Sigma, \mathcal{N})$
- If $\Sigma = \mathbb{S}^n$, $n \ge 2$, and $\pi_1(\mathcal{N}) = \{0\}$ then there exists a generating set

of homotopy classes in $\pi_n(\mathcal{N})$ in which minimizing $W^{s,\frac{n}{s}}$ -harmonic maps exist

Theorem (Sacks, Uhlenbeck) Assume dim $\Sigma = 2$ Map that minimizes the energy $E(u) := \int_{\Sigma} |\nabla u|^2$ among maps in $W^{1,2}(\Sigma, \mathcal{N})$ • $\pi_2(\mathcal{N}) = \{0\} \Rightarrow \exists$ minimizing harmonic map in every homotopy class $C^0(\Sigma, \mathcal{N})$ • $\Sigma = \mathbb{S}^2$, $\pi_1(\mathcal{N}) = \{0\} \Rightarrow \exists$ generating set of homotopy classes in $C^0(\mathbb{S}^2, \mathcal{N})$ in which minimizing harmonic maps exist

Theorem (M., Schikorra)

Let $n \ge 1$, $s \in (0, 1)$, if n = 1 we assume additionally that $s \le \frac{1}{2}$, then

- If $\pi_n(\mathcal{N}) = \{0\}$ then there exists a minimizing $W^{s,\frac{n}{s}}$ -harmonic map in every connected component of $C^0(\Sigma, \mathcal{N})$
- If $\Sigma = \mathbb{S}^n$, $n \ge 2$, and $\pi_1(\mathcal{N}) = \{0\}$ then there exists a generating set

of homotopy classes in $\pi_n(\mathcal{N})$ in which minimizing $W^{s,\frac{n}{s}}$ -harmonic maps exist

• If $\Sigma = \mathbb{S}^1$ then there exists a generating set of homotopy classes in $C^0(\mathbb{S}^n, \mathcal{N})$ in which minimizing $W^{s,\frac{n}{s}}$ -harmonic maps exist

Theorem (Sacks, Uhlenbeck) Assume dim $\Sigma = 2$ • $\pi_2(\mathcal{N}) = \{0\} \Rightarrow \exists$ minimizing harmonic map in every homotopy class $C^0(\Sigma, \mathcal{N})$ • $\Sigma = \mathbb{S}^2, \pi_1(\mathcal{N}) = \{0\} \Rightarrow \exists$ generating set of homotopy classes in $C^0(\mathbb{S}^2, \mathcal{N})$ in which minimizing harmonic maps exist

Theorem (M., Schikorra)

Let n ≥ 1, s ∈ (0, 1), if n = 1 we assume additionally that s ≤ 1/2, then
If π_n(N) = {0} then there exists a minimizing W^{s, n/s}-harmonic map in every connected component of C⁰(Σ, N)
If Σ = Sⁿ, n ≥ 2, and π₁(N) = {0} then there exists a generating set of homotopy classes in π_n(N) in which minimizing W^{s, n/s}-harmonic maps exist
If Σ = S¹ then there exists a generating set of homotopy classes in C⁰(Sⁿ, N) in which minimizing W^{s, n/s}-harmonic maps exist

This is a technical assumption, used only in the regularity theory It should be possible to extend to $n = 1, s \in (0, 1)$

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :
What is the problem?

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

What is the problem?

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$,

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n : $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$,

What is the problem?

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$, u_{λ} belongs to the same homotopy class as u

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ – minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$, u_{λ} belongs to the same homotopy class as uThen $E_{s,\frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{s}}(u, \mathbb{S}^n)$,

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$, u_{λ} belongs to the same homotopy class as uThen $E_{s,\frac{n}{\epsilon}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{\epsilon}}(u, \mathbb{S}^n)$,

Recall:

$$E_{s,\frac{n}{s}}(u, \mathbb{S}^n) = [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}^{\frac{n}{s}}$$

$$= \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(\theta) - u(\omega)|^{\frac{n}{s}}}{|\theta - \omega|^{2n}}$$

Loss of compactness: Take $u \in W^{s, \frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class The energy $E_{s, \frac{n}{s}}$ is conformally and scaling invariant Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n : $\tau : \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta))), \quad u_{\lambda}$ belongs to the same homotopy class as uThen $E_{s, \frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s, \frac{n}{s}}(u, \mathbb{S}^n),$

Recall:

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$, u_{λ} belongs to the same homotopy class as u

Then $E_{s,\frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{s}}(u, \mathbb{S}^n)$, thus u_{λ} is a minimizing sequence

Recall:

$$E_{s,\frac{n}{s}}(u, \mathbb{S}^{n}) = [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^{n})}^{\frac{n}{s}}$$

$$= \int_{\mathbb{S}^{n}} \int_{\mathbb{S}^{n}} \frac{|u(\theta) - u(\omega)|^{\frac{n}{s}}}{|\theta - \omega|^{2n}}$$

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$, u_{λ} belongs to the same homotopy class as u

Then $E_{s,\frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{s}}(u, \mathbb{S}^n)$, thus u_{λ} is a minimizing sequence

But $u_{\lambda} \rightharpoonup const.$ in $W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ as $\lambda \to 0$

Recall:

$$E_{s,\frac{n}{s}}(u, \mathbb{S}^n) = [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}^{\frac{n}{s}}$$

$$= \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(\theta) - u(\omega)|^{\frac{n}{s}}}{|\theta - \omega|^{2n}}$$

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ – minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$, u_{λ} belongs to the same homotopy class as u

Then $E_{s,\frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{s}}(u, \mathbb{S}^n)$, thus u_{λ} is a minimizing sequence

But $u_{\lambda} \rightharpoonup const.$ in $W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ as $\lambda \to 0$

The constant map belongs to a different (trivial) homotopy class

Recall:

$$E_{s,\frac{n}{s}}(u, \mathbb{S}^{n}) = [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^{n})}^{\frac{n}{s}}$$

$$= \int_{\mathbb{S}^{n}} \int_{\mathbb{S}^{n}} \frac{|u(\theta) - u(\omega)|^{\frac{n}{s}}}{|\theta - \omega|^{2n}}$$

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ – minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$, u_{λ} belongs to the same homotopy class as u

Then $E_{s,\frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{s}}(u, \mathbb{S}^n)$, thus u_{λ} is a minimizing sequence

But $u_{\lambda} \rightharpoonup const.$ in $W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ as $\lambda \to 0$

The constant map belongs to a different (trivial) homotopy class

Recall: $E_{s,\frac{n}{s}}(u, \mathbb{S}^{n}) = [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^{n})}^{\frac{n}{s}}$ $= \int_{\mathbb{S}^{n}} \int_{\mathbb{S}^{n}} \frac{|u(\theta) - u(\omega)|^{\frac{n}{s}}}{|\theta - \omega|^{2n}}$

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$,

Then $E_{s,\frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{s}}(u, \mathbb{S}^n)$, thus u_{λ} is a minimizing sequence But $u_{\lambda} \rightharpoonup const$. in $W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ as $\lambda \rightarrow 0$ **Recall:** $E_{s,\frac{n}{s}}(u, \mathbb{S}^n) = [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}^{\frac{n}{s}}$ $= \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(\theta) - u(\omega)|^{\frac{n}{s}}}{|\theta - \omega|^{2n}}$

Saks-Uhlenbeck replaced

$$E(u)=\int_{\Sigma}|\nabla u|^2$$

By considering minimizers of

$$E_{\alpha}(u) = \int_{\Sigma} (|\nabla u|^2 + 1)^{\alpha}$$

and studied limit as $\alpha \rightarrow 1^+$

The constant map belongs to a different (trivial) homotopy class

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ – minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$,

Then $E_{s,\frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{s}}(u, \mathbb{S}^n)$, thus u_{λ} is a minimizing sequence But $u_{\lambda} \rightharpoonup const.$ in $W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ as $\lambda \rightarrow 0$

Recall:

$$E_{s,\frac{n}{s}}(u, \mathbb{S}^{n}) = [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^{n})}^{\frac{n}{s}}$$

$$= \int_{\mathbb{S}^{n}} \int_{\mathbb{S}^{n}} \frac{|u(\theta) - u(\omega)|^{\frac{n}{s}}}{|\theta - \omega|^{2n}}$$

Saks-Uhlenbeck replaced

$$E(u)=\int_{\Sigma}|\nabla u|^2$$

By considering minimizers of $E_{\alpha}(u) = \int_{\Sigma} (|\nabla u|^2 + 1)^{\alpha}$

and studied limit as $\alpha \rightarrow 1^+$

The constant map belongs to a different (trivial) homotopy class

Idea

Consider minimizers of
$$E_{t,\frac{n}{s}}(u,\Sigma) = \int_{\Sigma} \int_{\Sigma} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{n + t\frac{n}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ – minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$,

Then $E_{s,\frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{s}}(u, \mathbb{S}^n)$, thus u_{λ} is a minimizing sequence But $u_{\lambda} \rightharpoonup const.$ in $W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ as $\lambda \rightarrow 0$

Recall:

$$E_{s,\frac{n}{s}}(u, \mathbb{S}^n) = [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}^{\frac{n}{s}}$$

$$= \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(\theta) - u(\omega)|^{\frac{n}{s}}}{|\theta - \omega|^{2n}}$$

Saks-Uhlenbeck replaced

$$E(u)=\int_{\Sigma}|\nabla u|^2$$

By considering minimizers of $E_{\alpha}(u) = \int_{\Sigma} (|\nabla u|^2 + 1)^{\alpha}$ and studied limit as $\alpha \to 1^+$

The constant map belongs to a different (trivial) homotopy class

Idea

Consider minimizers of
$$E_{t,\frac{n}{s}}(u,\Sigma) = \int_{\Sigma} \int_{\Sigma} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{n + t\frac{n}{s}}} dx dy$$

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$,

Then $E_{s,\frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{s}}(u, \mathbb{S}^n)$, thus u_{λ} is a minimizing sequence But $u_{\lambda} \rightharpoonup const.$ in $W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ as $\lambda \rightarrow 0$

Recall:

$$E_{s,\frac{n}{s}}(u, \mathbb{S}^{n}) = [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^{n})}^{\frac{n}{s}}$$

$$= \int_{\mathbb{S}^{n}} \int_{\mathbb{S}^{n}} \frac{|u(\theta) - u(\omega)|^{\frac{n}{s}}}{|\theta - \omega|^{2n}}$$

Saks-Uhlenbeck replaced

$$E(u)=\int_{\Sigma}|\nabla u|^2$$

By considering minimizers of $E_{\alpha}(u) = \int_{\Sigma} (|\nabla u|^2 + 1)^{\alpha}$ and studied limit as $\alpha \to 1^+$

The constant map belongs to a different (trivial) homotopy class

Idea

Consider minimizers of $E_{t,\frac{n}{s}}(u,\Sigma) = \int_{\Sigma} \int_{\Sigma} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{n + t\frac{n}{s}}} dx dy$ and study limits as $t \to s^+$

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$,

Then $E_{s,\frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{s}}(u, \mathbb{S}^n)$, thus u_{λ} is a minimizing sequence But $u_{\lambda} \rightharpoonup const.$ in $W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ as $\lambda \rightarrow 0$

Recall:

$$E_{s,\frac{n}{s}}(u, \mathbb{S}^n) = [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}^{\frac{n}{s}}$$

$$= \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(\theta) - u(\omega)|^{\frac{n}{s}}}{|\theta - \omega|^{2n}}$$

Saks-Uhlenbeck replaced

$$E(u)=\int_{\Sigma}|\nabla u|^2$$

By considering minimizers of $E_{\alpha}(u) = \int_{\Sigma} (|\nabla u|^2 + 1)^{\alpha}$ and studied limit as $\alpha \to 1^+$

The constant map belongs to a different (trivial) homotopy class

Idea

Consider minimizers of
$$E_{t,\frac{n}{s}}(u,\Sigma) = \int_{\Sigma} \int_{\Sigma} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{n + t\frac{n}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$
 and study limits as $t \to s^+$

We don't have
$$W^{s,\frac{n}{s}\alpha} \not\hookrightarrow W^{s,\frac{n}{s}}_{loc}$$
 for $\alpha > 1, s \in (0,1)$

Loss of compactness:

Take $u \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ — minimizer in its *nontrivial* homotopy class

The energy $E_{s,\frac{n}{s}}$ is conformally and scaling invariant

Consider a scaling similar to $x \mapsto \lambda x$ in \mathbb{R}^n :

 $\tau \colon \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ — inverse stereographic projection

Let $\theta \in \mathbb{S}^n$ and take $u_{\lambda}(\theta) \coloneqq u(\tau(\lambda \tau^{-1}(\theta)))$,

Then $E_{s,\frac{n}{s}}(u_{\lambda}, \mathbb{S}^n) = E_{s,\frac{n}{s}}(u, \mathbb{S}^n)$, thus u_{λ} is a minimizing sequence But $u_{\lambda} \rightharpoonup const.$ in $W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ as $\lambda \rightarrow 0$

Recall:

$$E_{s,\frac{n}{s}}(u, \mathbb{S}^{n}) = [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^{n})}^{\frac{n}{s}}$$

$$= \int_{\mathbb{S}^{n}} \int_{\mathbb{S}^{n}} \frac{|u(\theta) - u(\omega)|^{\frac{n}{s}}}{|\theta - \omega|^{2n}}$$

Saks-Uhlenbeck replaced

$$E(u)=\int_{\Sigma}|\nabla u|^2$$

By considering minimizers of $E_{\alpha}(u) = \int_{\Sigma} (|\nabla u|^2 + 1)^{\alpha}$ and studied limit as $\alpha \to 1^+$

The constant map belongs to a different (trivial) homotopy class

Idea

Consider minimizers of
$$E_{t,\frac{n}{s}}(u,\Sigma) = \int_{\Sigma} \int_{\Sigma} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{n + t\frac{n}{s}}} dx dy$$
 and study limits as $t \to s^+$

We don't have $W^{s,\frac{n}{s}\alpha} \not\hookrightarrow W^{s,\frac{n}{s}}_{loc}$ for $\alpha > 1, s \in (0,1)$ but we have $W^{t,\frac{n}{s}} \hookrightarrow W^{s,\frac{n}{s}}_{loc}$ for t > s

Fractional harmonic maps

Theorem

Assume

• $u \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N})$ is a minimizing $W^{t,\frac{n}{s}}$ -harmonic map in B(R), i.e.,

$$E_{t,\frac{n}{s}}(u,\Sigma) \leq E_{t,\frac{n}{s}}(v,\Sigma) \quad \forall v \in W^{t,\frac{n}{s}}(\Sigma,\mathcal{N}), \quad \text{such that:}$$

Theorem

Assume

• $u \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N})$ is a minimizing $W^{t,\frac{n}{s}}$ -harmonic map in B(R), i.e.,

 $E_{t,rac{n}{s}}(u,\Sigma) \leq E_{t,rac{n}{s}}(v,\Sigma) \quad \forall v \in W^{t,rac{n}{s}}(\Sigma,\mathcal{N}), \quad ext{such that:}$

Geodesic ball in Σ

Theorem

Assume

• $u \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N})$ is a minimizing $W^{t,\frac{n}{s}}$ -harmonic map in $\overset{\bullet}{B}(R)$, i.e.,

$$E_{t,rac{n}{s}}(u,\Sigma) \leq E_{t,rac{n}{s}}(v,\Sigma) \quad \forall v \in W^{t,rac{n}{s}}(\Sigma,\mathcal{N}), \quad ext{such that:}$$

or $u \equiv v ext{ in } \Sigma \setminus B(R)$

Geodesic ball in Σ

Theorem

Assume

• $u \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N})$ is a minimizing $W^{t,\frac{n}{s}}$ -harmonic map in $\overset{\bullet}{B}(R)$, i.e., $E_{t,\frac{n}{s}}(u, \Sigma) \leq E_{t,\frac{n}{s}}(v, \Sigma) \quad \forall v \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N}),$ such that:

$$\circ u \equiv v \text{ in } \Sigma \setminus B(R)$$

 $\circ u \sim v$

Geodesic ball in Σ

Theorem Assume • $u \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N})$ is a minimizing $W^{t,\frac{n}{s}}$ -harmonic map in B(R), i.e., $E_{t,\frac{n}{s}}(u, \Sigma) \leq E_{t,\frac{n}{s}}(v, \Sigma) \quad \forall v \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N}),$ such that: • $u \equiv v$ in $\Sigma \setminus B(R)$ • $u \sim v$ • $[u]_{W^{s,\frac{n}{s}}(B(R))} < \varepsilon$

K. Mazowiecka, A. Schikorra Fractional harmonic maps

Then

 $\exists \varepsilon > 0, \ s_0 > s$ such that $\forall t \in [s, s_0]$ we have

$$u \in W^{s_0, rac{n}{s}}(B(R/2)) \cap C^{s_0-s}(B(R/2))$$
 + Estimate

Theorem Assume • $u \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N})$ is a minimizing $W^{t,\frac{n}{s}}$ -harmonic map in B(R), i.e., $E_{t,\frac{n}{s}}(u, \Sigma) \leq E_{t,\frac{n}{s}}(v, \Sigma) \quad \forall v \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N}),$ such that: • $u \equiv v$ in $\Sigma \setminus B(R)$ • $u \sim v$ • $[u]_{W^{s,\frac{n}{s}}(B(R))} < \varepsilon$

Then

 $\exists \varepsilon > 0, \ s_0 > s$ such that $\forall t \in [s, s_0]$ we have

$$u \in W^{s_0, \frac{n}{s}}(B(R/2)) \cap C^{s_0-s}(B(R/2))$$
 + Estimate
Recall: Morrey embedding $W^{t, \frac{n}{s}} \subset C^{0, t-s}$
But $W^{t, \frac{n}{s}} \not\subset C^{0, s_0-s}$

Theorem

Assume

On the smallness condition: The condition

$$\|u\|_{W^{s,\frac{n}{s}}(B(\mathcal{R}))}^{rac{n}{s}} = \int_{B(\mathcal{R})} \int_{B(\mathcal{R})} rac{|u(x) - u(y)|^{rac{n}{s}}}{|x - y|^{2n}} < arepsilon^{rac{n}{s}}$$

is equivalent to

$$\int_{B(R)}\int_{\Sigma}\frac{|u(x)-u(y)|^{\frac{n}{s}}}{|x-y|^{2n}}<\varepsilon$$

• $u \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N})$ is a minimizing $W^{t,\frac{n}{s}}$ -harmonic map in B(R), i.e.,

$$E_{t,\frac{n}{s}}(u,\Sigma) \leq E_{t,\frac{n}{s}}(v,\Sigma) \quad \forall v \in W^{t,\frac{n}{s}}(\Sigma,\mathcal{N}), \text{ such that:}$$

$$u \equiv v \text{ in } \Sigma \setminus B(R)$$

$$u \sim v$$

$$[u]_{W^{s,\frac{n}{s}}(B(R))} < \varepsilon$$

Then

 $\exists \varepsilon > 0, \ s_0 > s$ such that $\forall t \in [s, s_0]$ we have

$$u \in W^{s_0, \frac{n}{s}}(B(R/2)) \cap C^{s_0-s}(B(R/2))$$
 + Estimate
Recall: Morrey embedding $W^{t, \frac{n}{s}} \subset C^{0, t-s}$
But $W^{t, \frac{n}{s}} \not\subset C^{0, s_0-s}$

Theorem

Assume

On the smallness condition: The condition

$$\|u\|_{W^{s,\frac{n}{s}}(B(\mathcal{R}))}^{rac{n}{s}} = \int_{B(\mathcal{R})} \int_{B(\mathcal{R})} rac{|u(x) - u(y)|^{rac{n}{s}}}{|x - y|^{2n}} < arepsilon^{rac{n}{s}}$$

is equivalent to

$$\int_{B(R)}\int_{\Sigma}\frac{|u(x)-u(y)|^{\frac{n}{s}}}{|x-y|^{2n}}<\varepsilon$$

• $u \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N})$ is a minimizing $W^{t,\frac{n}{s}}$ -harmonic map in B(R), i.e.,

$$E_{t,\frac{n}{s}}(u,\Sigma) \leq E_{t,\frac{n}{s}}(v,\Sigma) \quad \forall v \in W^{t,\frac{n}{s}}(\Sigma,\mathcal{N}), \text{ such that:}$$

$$u \equiv v \text{ in } \Sigma \setminus B(R)$$

$$u \sim v$$

$$U_{W^{s,\frac{n}{s}}(B(R))} < \varepsilon$$

Then

 $\exists \varepsilon > 0, \ s_0 > s$ such that $\forall t \in [s, s_0]$ we have

$$u \in W^{s_0, \frac{n}{s}}(B(R/2)) \cap C^{s_0-s}(B(R/2))$$
 + Estimate
Recall: Morrey embedding $W^{t, \frac{n}{s}} \subset C^{0, t-s}$
But $W^{t, \frac{n}{s}} \not\subset C^{0, s_0-s}$

Roughly speaking the proof follows classical result of Morrey for minimizing harmonic maps

Then

 $\exists \varepsilon > 0, \ s_0 > s$ such that $\forall t \in [s, s_0]$ we have

$$u \in W^{s_0, \frac{n}{s}}(B(R/2)) \cap C^{s_0-s}(B(R/2))$$
 + Estimate
Recall: Morrey embedding $W^{t, \frac{n}{s}} \subset C^{0, t-s}$
But $W^{t, \frac{n}{s}} \not\subset C^{0, s_0-s}$

Roughly speaking the proof follows classical result of Morrey for minimizing harmonic maps

Theorem

Assume

• $u \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N})$ is a minimizing $W^{t,\frac{n}{s}}$ -harmonic map in B(R), i.e.,

$$E_{t,\frac{n}{s}}(u,\Sigma) \leq E_{t,\frac{n}{s}}(v,\Sigma) \quad \forall v \in W^{t,\frac{n}{s}}(\Sigma,\mathcal{N}), \quad \text{such that:}$$

$$\circ u \equiv v \text{ in } \Sigma \setminus B(R)$$

Remarks:

The regularity of *non-minimizing* $W^{s,\frac{n}{s}}$ -harmonic maps is a major open problem (even in the local case of $W^{1,n}$ -harmonic maps)

Then

 $\exists \varepsilon > 0, \ s_0 > s$ such that $\forall t \in [s, s_0]$ we have

 $\circ u \sim v$

 $[u]_{W^{s,\frac{n}{s}}(B(R))} < \varepsilon$

 $u \in W^{s_0, \frac{n}{s}}(B(R/2)) \cap C^{s_0-s}(B(R/2))$ + Estimate **Recall:** Morrey embedding $W^{t, \frac{n}{s}} \subset C^{0, t-s}$ But $W^{t, \frac{n}{s}} \not\subset C^{0, s_0-s}$

Roughly speaking the proof follows classical result of Morrey for minimizing harmonic maps

On the smallness condition: The condition

$$u]_{W^{s,\frac{n}{s}}(B(R))}^{\frac{n}{s}} = \int_{B(R)} \int_{B(R)} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} < \varepsilon^{\frac{n}{s}}$$

 $\int_{B(R)}\int_{\Sigma}\frac{|u(x)-u(y)|^{\frac{n}{s}}}{|x-y|^{2n}}<\varepsilon^{\frac{n}{s}}$

is equivalent to

 $[u]_{W^{s,\frac{n}{s}}(B(R))} < \varepsilon$

Theorem

Assume

• $u \in W^{t,\frac{n}{s}}(\Sigma, \mathcal{N})$ is a minimizing $W^{t,\frac{n}{s}}$ -harmonic map in B(R), i.e.,

$$E_{t,\frac{n}{s}}(u,\Sigma) \leq E_{t,\frac{n}{s}}(v,\Sigma) \quad \forall v \in W^{t,\frac{n}{s}}(\Sigma,\mathcal{N}), \text{ such that:}$$

 $\circ u \equiv v \text{ in } \Sigma \setminus B(R)$
 $\circ u \sim v$
 $ext{ In } V = V$
 $ext{ In } V$
 ex

Remarks:

The regularity of *non-minimizing* $W^{s,\frac{n}{s}}$ -harmonic maps is a major open problem (even in the local case of $W^{1,n}$ -harmonic maps)

The regularity for *non-minimizing* $W^{s,\frac{n}{s}}$ -harmonic maps was know for round target manifolds

Then

 $\exists \varepsilon > 0, s_0 > s$ such that $\forall t \in [s, s_0]$ we have

 $u \in W^{s_0,\frac{n}{s}}(B(R/2)) \cap C^{s_0-s}(B(R/2))$ + Estimate **Recall:** Morrey embedding $W^{t,\frac{n}{s}} \subset C^{0,t-s}$ But $W^{t,\frac{n}{s}} \not\subset C^{0,s_0-s}$

Roughly speaking the proof follows classical result of Morrey for minimizing harmonic maps

On the smallness condition: The condition

$$u]_{W^{s,\frac{n}{s}}(B(R))}^{\frac{n}{s}} = \int_{B(R)} \int_{B(R)} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} < \varepsilon^{\frac{n}{s}}$$

 $\int_{\mathcal{B}(\mathcal{P})} \int_{\Sigma} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} < \varepsilon^{\frac{n}{s}}$

is equivalent to

Corollary

Let

 $u_t \colon \Sigma \to \mathcal{N}$ - minimizing $W^{t, \frac{n}{s}}$ -harmonic maps in a fixed homotopy class Then

$$u_t \longrightarrow u_s$$
 locally strongly in $W^{s_0, \frac{n}{s}}(\Sigma \setminus A)$

and u_s is a $W^{s,\frac{n}{s}}$ -minimizing harmonic map in $\Sigma \setminus A$ in its homotopy class

Corollary

Let

 $u_t: \Sigma \to \mathcal{N}$ - minimizing $W^{t, \frac{n}{s}}$ -harmonic maps in a fixed homotopy class

Then

 $u_t \longrightarrow u_s$ locally strongly in $W^{s_0, \frac{n}{s}}(\Sigma \setminus A)$ set of finite number of points

and u_s is a $W^{s,\frac{n}{s}}$ -minimizing harmonic map in $\Sigma \setminus A$ in its homotopy class

Corollary

Let

 $u_t: \Sigma \to \mathcal{N}$ - minimizing $W^{t, \frac{n}{s}}$ -harmonic maps in a fixed homotopy class

Then

$$u_t \longrightarrow u_s$$
 up to a subsequence $t_i \rightarrow s$ set of finite number of points set of finite number of points $u_t \longrightarrow u_s$ locally strongly in $W^{s_0, \frac{n}{s}}(\Sigma \setminus A)$

and u_s is a $W^{s,\frac{n}{s}}$ -minimizing harmonic map in $\Sigma \setminus A$ in its homotopy class

Corollary

Let

 $u_t \colon \Sigma \to \mathcal{N}$ - minimizing $W^{t, \frac{n}{s}}$ -harmonic maps in a fixed homotopy class

Then

$$u_t \rightarrow u_s$$
 up to a subsequence $t_i \rightarrow s$ set of finite number of points
 $u_t \rightarrow u_s$ locally strongly in $W^{s_0,\frac{n}{s}}(\Sigma \setminus A)$
and u_s is a $W^{s,\frac{n}{s}}$ -minimizing harmonic map in $\Sigma \setminus A$ in its homotopy class

i.e.,
$$u_s \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$$
 and $E_{s,\frac{n}{s}}(u_s, \Sigma) \leq E_{s,\frac{n}{s}}(v, \Sigma)$

 $\forall v \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that $u_s \sim v \& u_s \equiv v$ in a neighborhood of A

Corollary

Let

 $u_t: \Sigma \to \mathcal{N}$ - minimizing $W^{t,\frac{n}{s}}$ -harmonic maps in a fixed homotopy class

Then

$$u_t \rightarrow u_s$$
 up to a subsequence $t_i \rightarrow s$ set of finite number of points
 $u_t \rightarrow u_s$ locally strongly in $W^{s_0, \frac{n}{s}}(\Sigma \setminus A)$
and u_s is a $W^{s, \frac{n}{s}}$ -minimizing harmonic map in $\Sigma \setminus A$ in its homotopy class
i.e., $u_s \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ and $E_{s, \frac{n}{s}}(u_s, \Sigma) \leq E_{s, \frac{n}{s}}(v, \Sigma)$
 $\forall v \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that $u_s \sim v \& u_s \equiv v$ in a neighborhood of A

We need to study what happens in the points when the convergence fails!

Corollary

Let

 $u_t: \Sigma \to \mathcal{N}$ - minimizing $W^{t,\frac{n}{s}}$ -harmonic maps in a fixed homotopy class

Then

$$u_t \rightarrow u_s$$
 up to a subsequence $t_i \rightarrow s$ set of finite number of points
 $u_t \rightarrow u_s$ locally strongly in $W^{s_0, \frac{n}{s}}(\Sigma \setminus A)$
and u_s is a $W^{s, \frac{n}{s}}$ -minimizing harmonic map in $\Sigma \setminus A$ in its homotopy class
i.e., $u_s \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ and $E_{s, \frac{n}{s}}(u_s, \Sigma) \leq E_{s, \frac{n}{s}}(v, \Sigma)$
 $\forall v \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that $u_s \sim v \& u_s \equiv v$ in a neighborhood of A

We need to study what happens in the points when the convergence fails!

(This Corollary follows from a standard covering argument)
COROLLARY: LIMITS OF MINIMIZERS

Corollary

Let

 $u_t: \Sigma \to \mathcal{N}$ - minimizing $W^{t, \frac{n}{s}}$ -harmonic maps in a fixed homotopy class

Then

$$u_t \rightarrow u_s$$
 locally strongly in $W^{s_0, \frac{n}{s}}(\Sigma \setminus A)$ set of finite number of points
and u_s is a $W^{s, \frac{n}{s}}$ -minimizing harmonic map in $\Sigma \setminus A$ in its homotopy class
i.e., $u_s \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ and $E_{s, \frac{n}{s}}(u_s, \Sigma) \searrow E_{s, \frac{n}{s}}(v, \Sigma)$
 $\forall v \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that $u_s \sim v \& u_s \equiv v$ in a neighborhood of A
We need to study what happens in the points when the convergence fails!
But first let's check what does this mean

(This Corollary follows from a standard covering argument)

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e,

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e, For any $\varepsilon > 0$ and $v \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e, For any $\varepsilon > 0$ and $v \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

• $u \equiv v$ on $B(\varepsilon) \cup (\Sigma \setminus B(R))$

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e, For any $\varepsilon > 0$ and $v \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

• $u \equiv v$ on $B(\varepsilon) \cup (\Sigma \setminus B(R))$

• $u \sim v$

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e, For any $\varepsilon > 0$ and $v \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

• $u \equiv v$ on $B(\varepsilon) \cup (\Sigma \setminus B(R))$

• $u \sim v$

 $E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(v,\Sigma)$

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e, For any $\varepsilon > 0$ and $v \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

• $u \equiv v$ on $B(\varepsilon) \cup (\Sigma \setminus B(R))$

• $u \sim v$

 $E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(v,\Sigma)$

Then, *u* is minimizing in all of B(R), i.e., for any $w \in W^{s,\frac{n}{s}}(\Sigma)$ such that

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e, For any $\varepsilon > 0$ and $v \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

• $u \equiv v$ on $B(\varepsilon) \cup (\Sigma \setminus B(R))$

• $u \sim v$

 $E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(v,\Sigma)$

Then, *u* is minimizing in all of B(R), i.e., for any $w \in W^{s,\frac{n}{s}}(\Sigma)$ such that

• $u \equiv w$ on $\Sigma \setminus B(R)$

• $u \sim w$

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e, For any $\varepsilon > 0$ and $v \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

• $u \equiv v$ on $B(\varepsilon) \cup (\Sigma \setminus B(R))$

• $u \sim v$

 $E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(v,\Sigma)$

Then, *u* is minimizing in all of B(R), i.e., for any $w \in W^{s,\frac{n}{s}}(\Sigma)$ such that

• $u \equiv w$ on $\Sigma \setminus B(R)$

• $u \sim w$

we have

 $E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(w,\Sigma)$

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e, For any $\varepsilon > 0$ and $v \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

• $u \equiv v$ on $B(\varepsilon) \cup (\Sigma \setminus B(R))$

• $u \sim v$

 $E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(v,\Sigma)$

Then, *u* is minimizing in all of B(R), i.e., for any $w \in W^{s,\frac{n}{s}}(\Sigma)$ such that

• $u \equiv w$ on $\Sigma \setminus B(R)$

• $u \sim w$

we have

 $E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(w,\Sigma)$

Remarks about removability theorems:

REMOVABILITY OF SINGULARITIES

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e, For any $\varepsilon > 0$ and $v \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

• $u \equiv v$ on $B(\varepsilon) \cup (\Sigma \setminus B(R))$

• $u \sim v$

 $E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(v,\Sigma)$

Then, *u* is minimizing in all of B(R), i.e., for any $w \in W^{s,\frac{n}{s}}(\Sigma)$ such that

• $u \equiv w$ on $\Sigma \setminus B(R)$

• $u \sim w$

we have

$$E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(w,\Sigma)$$

Remarks about removability theorems:

It is not difficult to prove that a map satisfying the $W^{s,\frac{n}{s}}$ -harmonic map equation in $\Sigma \setminus \{0\}$ satisfies the equation in Σ

REMOVABILITY OF SINGULARITIES

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e, For any $\varepsilon > 0$ and $v \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

•
$$u \equiv v$$
 on $B(\varepsilon) \cup (\Sigma \setminus B(R))$

• $u \sim v$

 $E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(v,\Sigma)$

Then, *u* is minimizing in all of B(R), i.e., for any $w \in W^{s,\frac{n}{s}}(\Sigma)$ such that

• $u \equiv w$ on $\Sigma \setminus B(R)$

• $u \sim w$

we have

$$E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(w,\Sigma)$$

Remarks about removability theorems:

It is not difficult to prove that a map satisfying the $W^{s,\frac{n}{s}}$ -harmonic map equation in $\Sigma \setminus \{0\}$ satisfies the equation in Σ But as mentioned before it is a major open problem whether *non-minimizing* $W^{s,\frac{n}{s}}$ -maps are regular

Assume $u \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ - minimizing map in B(R) in homotopy away from the point 0, i.e, For any $\varepsilon > 0$ and $v \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

•
$$u \equiv v$$
 on $B(\varepsilon) \cup (\Sigma \setminus B(R))$

• $u \sim v$

 $E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(v,\Sigma)$

Then, *u* is minimizing in all of B(R), i.e., for any $w \in W^{s,\frac{n}{s}}(\Sigma)$ such that

• $u \equiv w$ on $\Sigma \setminus B(R)$

• $u \sim w$

we have

$$E_{s,\frac{n}{s}}(u,\Sigma) \leq E_{s,\frac{n}{s}}(w,\Sigma)$$

Remarks about removability theorems:

It is not difficult to prove that a map satisfying the $W^{s,\frac{n}{s}}$ -harmonic map equation in $\Sigma \setminus \{0\}$ satisfies the equation in Σ But as mentioned before it is a major open problem whether *non-minimizing* $W^{s,\frac{n}{s}}$ -maps are regular It is quick to prove such a theorem for round target manifolds (using regularity theory)

We need to construct a comparison map

We need to construct a comparison map

Problem?

We need to construct a comparison map

Problem? Yes

$$\int_{\Sigma} \int_{\Sigma} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} = \int_{B(R)} \int_{B(R)} + 2 \int_{\Sigma \setminus B(R)} \int_{B(R)} + \int_{\Sigma \setminus B(R)} \int_{\Sigma \setminus B(R)} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}}$$

$$\leq \int_{B(R)} \int_{B(R)} + 2 \int_{\Sigma \setminus B(R)} \int_{B(R)} + \int_{\Sigma \setminus B(R)} \int_{\Sigma \setminus B(R)} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{2n}}$$

We need to construct a comparison map

Problem? Yes

$$\int_{\Sigma} \int_{\Sigma} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} = \int_{B(R)} \int_{B(R)} +2 \int_{\Sigma \setminus B(R)} \int_{B(R)} +\int_{\Sigma \setminus B(R)} \int_{\Sigma \setminus B(R)} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}}$$
$$\leq \int_{B(R)} \int_{B(R)} +2 \int_{\Sigma \setminus B(R)} \int_{B(R)} +\int_{\Sigma \setminus B(R)} \int_{\Sigma \setminus B(R)} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{2n}}$$

Opening technique by Brezis–Li connects $u \in W^{s,\frac{n}{s}}$ to a constant

U

K. Mazowiecka, A. Schikorra

Fractional harmonic maps

K. Mazowiecka, A. Schikorra

K. Mazowiecka, A. Schikorra

Fractional harmonic maps

K. Mazowiecka, A. Schikorra

Fractional harmonic maps

Theorem

- $0 < s < s_0 < 1$ $ho \in (0, \sqrt{rac{4}{5}})$ $t \in (s, s_0]$
- $u_t \in W^{t,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ minimizing map in its own homotopy class

Theorem

• $0 < s < s_0 < 1$ • $ho \in \left(0, \sqrt{\frac{4}{5}}\right)$ • $t \in \left(s, s_0\right]$

• $u_t \in W^{t,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ - minimizing map in its own homotopy class

Then for any $y_0 \in \mathbb{S}^n$ $\int_{B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \le C \, \rho^{-n(\frac{t}{s} - 1)} \int_{\mathbb{S}^n \setminus B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$

Theorem

- $0 < s < s_0 < 1$ $ho \in (0, \sqrt{rac{4}{5}})$ $t \in (s, s_0]$
- $u_t \in W^{t,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ minimizing map in its own homotopy class

Then for any
$$y_0 \in \mathbb{S}^n$$

$$\int_{\mathcal{B}(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \leq C \rho^{-n(\frac{t}{s} - 1)} \int_{\mathbb{S}^n \setminus \mathcal{B}(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

Theorem

- $0 < s < s_0 < 1$ $ho \in (0, \sqrt{\frac{4}{5}})$ $t \in (s, s_0]$
- $u_t \in W^{t,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ minimizing map in its own homotopy class

Then for any
$$y_0 \in \mathbb{S}^n$$

$$\int_{B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \leq C \rho^{-n(\frac{t}{s} - 1)} \int_{\mathbb{S}^n \setminus B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

Theorem

- $p_0 \in (n,\infty)$ $ho \in (0,\sqrt{rac{4}{5}})$ $p \in (n,p_0]$
- $u_p \in W^{1,p}(\mathbb{S}^n, \mathcal{N})$ *p*-minimizing harmonic map in its own homotopy class

Theorem

- $0 < s < s_0 < 1$ $ho \in (0, \sqrt{\frac{4}{5}})$ $t \in (s, s_0]$
- $u_t \in W^{t,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ minimizing map in its own homotopy class

Then for any
$$y_0 \in \mathbb{S}^n$$

$$\int_{B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \leq C \rho^{-n(\frac{t}{s} - 1)} \int_{\mathbb{S}^n \setminus B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

Theorem

• $p_0 \in (n,\infty)$ • $ho \in (0,\sqrt{rac{4}{5}})$ • $p \in (n,p_0]$

• $u_p \in W^{1,p}(\mathbb{S}^n, \mathcal{N})$ - *p*-minimizing harmonic map in its own homotopy class

Then for any $y_0 \in \mathbb{S}^n$

$$\int_{D(y_0,\rho)} |\nabla u_p|^p \,\mathrm{d} x \leq C \,\rho^{-(p-n)} \int_{\mathbb{S}^n \setminus D(y_0,\rho)} |\nabla u_p|^p \,\mathrm{d} x$$

Theorem

- $0 < s < s_0 < 1$ $ho \in (0, \sqrt{\frac{4}{5}})$ $t \in (s, s_0]$
- $u_t \in W^{t,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ minimizing map in its own homotopy class

Then for any
$$y_0 \in \mathbb{S}^n$$

$$\int_{B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \leq C \rho^{-n(\frac{t}{s} - 1)} \int_{\mathbb{S}^n \setminus B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$
Theorem
• $p_0 \in (n,\infty)$
• $\rho \in (0,\sqrt{\frac{4}{5}})$
• $p \in (n,p_0]$

• $u_p \in W^{1,p}(\mathbb{S}^n, \mathcal{N})$ - p^* -minimizing harmonic map in its own homotopy class

Then for any $y_0 \in \mathbb{S}^n$

$$\int_{D(y_0,\rho)} |\nabla u_p|^p \,\mathrm{d} x \leq C \,\rho^{-(p-n)} \int_{\mathbb{S}^n \setminus D(y_0,\rho)} |\nabla u_p|^p \,\mathrm{d} x$$

Theorem

- $0 < s < s_0 < 1$ $ho \in (0, \sqrt{\frac{4}{5}})$ $t \in (s, s_0]$
- $u_t \in W^{t,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ minimizing map in its own homotopy class

Then for any
$$y_0 \in \mathbb{S}^n$$

$$\int_{B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} dx dy \leq C \rho^{-n(\frac{t}{s} - 1)} \int_{\mathbb{S}^n \setminus B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} dx dy$$
Theorem
• $p_0 \in (n, \infty)$
• $\rho \in (0, \sqrt{\frac{4}{5}})$
• $p \in (n, p_0]$
• $u_p \in W^{1,p}(\mathbb{S}^n, \mathcal{N})$ - p-minimizing harmonic map in its own homotopy class
Then for any $y_0 \in \mathbb{S}^n$
 $C = C(n, p_0, \rho)$

$$\int_{D(y_0,\rho)} |\nabla u_p|^p \,\mathrm{d} x \leq C \,\rho^{-(p-n)} \int_{\mathbb{S}^n \setminus D(y_0,\rho)} |\nabla u_p|^p \,\mathrm{d} x$$

Theorem

- $0 < s < s_0 < 1$ $ho \in (0, \sqrt{\frac{4}{5}})$ $t \in (s, s_0]$
- $u_t \in W^{t, \frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ minimizing map in its own homotopy class

Then for any
$$y_0 \in \mathbb{S}^n$$

$$\int_{B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} dx dy \leq C \rho^{-n(\frac{t}{s} - 1)} \int_{\mathbb{S}^n \setminus B(y_0,\rho)} \int_{\mathbb{S}^n} \frac{|u_t(x) - u_t(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} dx dy$$
Theorem
• $p_0 \in (n, \infty)$
• $\rho \in (0, \sqrt{\frac{4}{5}})$
• $p \in (n, p_0]$
• $u_p \in W^{1,p}(\mathbb{S}^n, \mathcal{N})$ - p-minimizing harmonic map in its own homotopy class
Then for any $y_0 \in \mathbb{S}^n$
 $\int_{D(y_0,\rho)} |\nabla u_p|^p dx \leq C \rho^{-(p-n)} \int_{\mathbb{S}^n \setminus D(y_0,\rho)} |\nabla u_p|^p dx$

As a consequence we get that the energy of our approximate map cannot concentrate only in a single point and vanish everywhere else

BALANCED ENERGY ESTIMATES — IDEA OF PROOF

Consider the simple case $\Sigma = \mathbb{R}^n$
Consider the simple case $\Sigma = \mathbb{R}^n$

Let $v \in W^{t,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$ be minimizing in its homotopy class

Consider the simple case $\Sigma = \mathbb{R}^n$

Let $v \in W^{t,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$ be minimizing in its homotopy class

Since t > s the energy $E_{t,\frac{n}{s}}$ is not scaling invariant

Consider the simple case $\Sigma = \mathbb{R}^n$

Let $v \in W^{t,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$ be minimizing in its homotopy class

Since t > s the energy $E_{t,\frac{n}{s}}$ is not scaling invariant

Consider the rescaled map $v_{\lambda}(x) = v(\lambda x)$

Consider the simple case $\Sigma = \mathbb{R}^n$

Let $v \in W^{t,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$ be minimizing in its homotopy class

Since t > s the energy $E_{t,\frac{n}{s}}$ is not scaling invariant

Consider the rescaled map $v_{\lambda}(x) = v(\lambda x)$

Then *u* and u_{λ} belong to the same homotopy class

Consider the simple case $\Sigma = \mathbb{R}^n$

Let $v \in W^{t,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$ be minimizing in its homotopy class

Since t > s the energy $E_{t,\frac{n}{s}}$ is not scaling invariant

Consider the rescaled map $v_{\lambda}(x) = v(\lambda x)$

Then *u* and u_{λ} belong to the same homotopy class

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v_\lambda(x) - v_\lambda(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$
$$= \lambda^{n\left(\frac{t - s}{s}\right)} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

Consider the simple case $\Sigma = \mathbb{R}^n$

Let $v \in W^{t,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$ be minimizing in its homotopy class

Since t > s the energy $E_{t,\frac{n}{s}}$ is not scaling invariant

Consider the rescaled map $v_{\lambda}(x) = v(\lambda x)$

Then *u* and u_{λ} belong to the same homotopy class

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v_\lambda(x) - v_\lambda(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

essible if $v = const$
$$= \lambda^{n\left(\frac{t-s}{s}\right)} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

Which is only po

Consider the simple case $\Sigma = \mathbb{R}^n$

Let $v \in W^{t,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$ be minimizing in its homotopy class

Since t > s the energy $E_{t,\frac{n}{s}}$ is not scaling invariant

Consider the rescaled map $v_{\lambda}(x) = v(\lambda x)$

Then *u* and u_{λ} belong to the same homotopy class

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v_\lambda(x) - v_\lambda(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

= $\lambda^{n\left(\frac{t-s}{s}\right)} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$

Which is only possible if v = const

Consider the simple case $\Sigma = \mathbb{R}^n$

Let $v \in W^{t,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$ be minimizing in its homotopy class

Since t > s the energy $E_{t,\frac{n}{s}}$ is not scaling invariant

Consider the rescaled map $v_{\lambda}(x) = v(\lambda x)$

Then *u* and u_{λ} belong to the same homotopy class

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v_\lambda(x) - v_\lambda(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

= $\lambda^{n\left(\frac{t-s}{s}\right)} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$

Which is only possible if v = const

Consider the simple case $\Sigma = \mathbb{R}^n$

Let $v \in W^{t,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$ be minimizing in its homotopy class

Since t > s the energy $E_{t,\frac{n}{s}}$ is not scaling invariant

Consider the rescaled map $v_{\lambda}(x) = v(\lambda x)$

Then *u* and u_{λ} belong to the same homotopy class

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v_\lambda(x) - v_\lambda(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

ssible if $v = const$
$$= \lambda^{n\left(\frac{t-s}{s}\right)} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

Which is only possible if v = const

K. Mazowiecka, A. Schikorra

Consider the simple case $\Sigma = \mathbb{R}^n$

Let $v \in W^{t,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$ be minimizing in its homotopy class

Since t > s the energy $E_{t,\frac{n}{s}}$ is not scaling invariant

Consider the rescaled map $v_{\lambda}(x) = v(\lambda x)$

Then *u* and u_{λ} belong to the same homotopy class

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v_\lambda(x) - v_\lambda(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

= $\lambda^{n\left(\frac{t-s}{s}\right)} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$

Which is only possible if v = const

K. Mazowiecka, A. Schikorra

Consider the simple case $\Sigma = \mathbb{R}^n$

Let $v \in W^{t,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$ be minimizing in its homotopy class

Since t > s the energy $E_{t,\frac{n}{s}}$ is not scaling invariant

Consider the rescaled map $v_{\lambda}(x) = v(\lambda x)$

Then *u* and u_{λ} belong to the same homotopy class

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v_\lambda(x) - v_\lambda(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

ssible if $v = const$
$$= \lambda^{n\left(\frac{t-s}{s}\right)} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^{\frac{n}{s}}}{|x - y|^{n + \frac{tn}{s}}} \, \mathrm{d}x \, \mathrm{d}y$$

Which is only possible if v = const

Fix a homotopy class X in $C^0(\Sigma, \mathcal{N})$

Fix a homotopy class *X* in $C^0(\Sigma, \mathcal{N})$

Take u_t - sequence of minimizers of $E_{t,\frac{n}{s}}$ in X

Fix a homotopy class *X* in $C^0(\Sigma, \mathcal{N})$

Take u_t - sequence of minimizers of $E_{t,\frac{n}{s}}$ in XFrom regularity: $\exists u_s \in W^{s,\frac{n}{s}}(\Sigma, \mathcal{N})$ such that

 $u_t \to u_s$ strongly in $W^{s_0, \frac{n}{s}}(\Sigma \setminus A)$,

Fix a homotopy class X in $C^0(\Sigma, \mathcal{N})$

Take u_t - sequence of minimizers of $E_{t,\frac{n}{c}}$ in X

From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that

 $u_t \rightarrow u_s$ strongly in $W^{s_0, \frac{n}{s}}(\Sigma \setminus A)$, A - set of points

Fix a homotopy class *X* in $C^0(\Sigma, \mathcal{N})$

Take u_t - sequence of minimizers of $E_{t,\frac{n}{s}}$ in X

From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that

 $u_t \rightarrow u_s$ strongly in $W^{s_0, \frac{n}{s}}(\Sigma \setminus A)$, A - set of points

From removability: $u_s \in W^{s_0, \frac{n}{s}}(\Sigma)$

Fix a homotopy class X in $C^0(\Sigma, \mathcal{N})$

Take u_t - sequence of minimizers of $E_{t,\frac{n}{s}}$ in X

From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that

 $u_t
ightarrow u_s$ strongly in $W^{s_0,rac{n}{s}}(\Sigma \setminus A)$, A - set of points

From removability: $u_s \in W^{s_0, \frac{n}{s}}(\Sigma)$

It is enough to show that the convergence is strong everywhere

Fix a homotopy class *X* in $C^0(\Sigma, \mathcal{N})$

Take u_t - sequence of minimizers of $E_{t,\frac{n}{s}}$ in X

From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that

 $u_t
ightarrow u_s$ strongly in $W^{s_0,rac{n}{s}}(\Sigma \setminus A)$, A - set of points

From removability: $u_s \in W^{s_0, \frac{n}{s}}(\Sigma)$

It is enough to show that the convergence is strong everywhere

We construct a comparison map v_t

Fix a homotopy class *X* in $C^0(\Sigma, \mathcal{N})$

Take u_t - sequence of minimizers of $E_{t,\frac{n}{c}}$ in X

From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that

 $u_t \rightarrow u_s$ strongly in $W^{s_0, \frac{n}{s}}(\Sigma \setminus A)$, A - set of points

From removability: $u_s \in W^{s_0, \frac{n}{s}}(\Sigma)$

It is enough to show that the convergence is strong everywhere

Fix a homotopy class *X* in $C^0(\Sigma, \mathcal{N})$

Take u_t - sequence of minimizers of $E_{t,\frac{n}{c}}$ in X

From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that

 $u_t
ightarrow u_s$ strongly in $W^{s_0, rac{n}{s}}(\Sigma \setminus A)$, A - set of points

From removability: $u_s \in W^{s_0, \frac{n}{s}}(\Sigma)$

It is enough to show that the convergence is strong everywhere

We construct a comparison map v_t

This map is homotopic to u_t because $\pi_n(\mathcal{N}) = 0$

Fix a homotopy class *X* in $C^0(\Sigma, \mathcal{N})$

Take u_t - sequence of minimizers of $E_{t,\frac{n}{c}}$ in X

From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that

 $u_t
ightarrow u_s$ strongly in $W^{s_0, rac{n}{s}}(\Sigma \setminus A)$, A - set of points

From removability: $u_s \in W^{s_0, \frac{n}{s}}(\Sigma)$

It is enough to show that the convergence is strong everywhere

The map v_t for $\Sigma = \mathbb{S}^n$

We construct a comparison map v_t This map is homotopic to u_t because $\pi_n(\mathcal{N}) = 0$

Comparing the energies we obtain

$$\int_{\Sigma}\int_{B(x_0,r)}\frac{|u_t(x)-u_t(y)|^{\frac{n}{s}}}{|x-y|^{n+t\frac{n}{s}}}<\varepsilon$$

Fix a homotopy class *X* in $C^0(\Sigma, \mathcal{N})$

Take u_t - sequence of minimizers of $E_{t,\frac{n}{c}}$ in X

From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\Sigma, \mathcal{N})$ such that

 $u_t
ightarrow u_s$ strongly in $W^{s_0,rac{n}{s}}(\Sigma \setminus A)$, A - set of points

From removability: $u_s \in W^{s_0, \frac{n}{s}}(\Sigma)$

It is enough to show that the convergence is strong everywhere

The map v_t for $\Sigma = \mathbb{S}^n$

We construct a comparison map v_t This map is homotopic to u_t because $\pi_n(\mathcal{N}) = 0$ Comparing the energies we obtain

$$\int_{\Sigma}\int_{B(x_0,r)}\frac{|u_t(x)-u_t(y)|^{\frac{n}{s}}}{|x-y|^{n+t\frac{n}{s}}}<\varepsilon$$

From regularity theory we have strong convergence in x_0

The case when $\pi_n(\mathcal{N}) eq 0 \ \mathfrak{C} = \mathbb{S}^n$

There exists a $\theta = \theta(s, n, N)$ such that the following holds

The case when $\pi_n(\mathcal{N}) eq 0 ~ \&mathcase \mathcal{S}^n$

There exists a $\theta = \theta(s, n, N)$ such that the following holds

Let $\Gamma_0 \in \pi_0 C^0(\mathbb{S}^n, \mathcal{N})$. Then at least one of the following cases holds:

THE CASE WHEN $\pi_n(\mathcal{N}) \neq 0$ or $\Sigma = \mathbb{S}^n$ Set of free homotopy classes of $C^0(\mathbb{S}^n, \mathcal{N})$

There exists a $\theta = \theta(s, n, N)$ such that the following holds Let $\Gamma_0 \in \pi_0 \tilde{C}^0(\mathbb{S}^n, N)$. Then at least one of the following cases holds:

THE CASE WHEN $\pi_n(\mathcal{N}) \neq 0$ or $\Sigma = \mathbb{S}^n$ Set of free homotopy classes of $C^0(\mathbb{S}^n, \mathcal{N})$

There exists a $\theta = \theta(s, n, N)$ such that the following holds

Let $\Gamma_0 \in \pi_0 C^0(\mathbb{S}^n, \mathcal{N})$. Then at least one of the following cases holds:

• There exists a minimizer of $E_{s,\frac{n}{s}}(\cdot, \mathbb{S}^n)$ in Γ_0

THE CASE WHEN $\pi_n(\mathcal{N}) \neq 0$ or $\Sigma = \mathbb{S}^n$ Set of free homotopy classes of $C^0(\mathbb{S}^n, \mathcal{N})$

There exists a $\theta = \theta(s, n, N)$ such that the following holds

Let $\Gamma_0 \in \pi_0 \widetilde{C^0}(\mathbb{S}^n, \mathcal{N})$. Then at least one of the following cases holds:

- There exists a minimizer of $E_{s,\frac{n}{s}}(\cdot, \mathbb{S}^n)$ in Γ_0
- For every $\delta > 0$, there exist nontrivial free homotopy classes $\Gamma_1 = \pi_1(\mathcal{N})\gamma_1$ and $\Gamma_2 = \pi_1(\mathcal{N})\gamma_2$ such that

 $\underbrace{\mathbb{S}^n}_{\text{S}^n}$ Set of free homotopy classes of $C^0(\mathbb{S}^n, \mathcal{N})$ The case when $\pi_n(\mathcal{N}) \neq 0$ is There exists a $\theta = \theta(s, n, N)$ such that the following holds Let $\Gamma_0 \in \pi_0 C^0(\mathbb{S}^n, \mathcal{N})$. Then at least one of the following cases holds: Action of $\pi_1(\mathcal{N})$ on $\pi_n(\mathcal{N})$

- There exists a minimizer of $E_{s,\frac{n}{s}}(\cdot, \mathbb{S}^n)$ in Γ_0
- For every $\delta > 0$, there exist nontrivial free homotopy classes $\Gamma_1 = \pi_1(\mathcal{N})\gamma_1$ and $\Gamma_2 = \pi_1(\mathcal{N})\gamma_2$ such that

 $= \mathbb{S}^n$ Set of free homotopy classes of $C^0(\mathbb{S}^n, \mathcal{N})$ The case when $\pi_n(\mathcal{N}) \neq 0$ 27 There exists a $\theta = \theta(s, n, N)$ such that the following holds Let $\Gamma_0 \in \pi_0 C^0(\mathbb{S}^n, \mathcal{N})$. Then at least one of the following cases holds: Action of $\pi_1(\mathcal{N})$ on $\pi_n(\mathcal{N})$

- There exists a minimizer of $E_{s,\frac{n}{s}}(\cdot, \mathbb{S}^n)$ in Γ_0
- For every $\delta > 0$, there exist nontrivial free homotopy classes $\Gamma_1 = \pi_1(\mathcal{N})\gamma_1$ and $\Gamma_2 = \pi_1(\mathcal{N})\gamma_2$ such that

$$\Gamma_0 = \pi_1(\mathcal{N})\gamma_0 \subset \pi_1(\mathcal{N})\gamma_1 + \pi_1(\mathcal{N})\gamma_2$$

 $= \underbrace{\mathbb{S}^n}_{\text{Set of free homotopy classes of } C^0(\mathbb{S}^n, \mathcal{N})}$ The case when $\pi_n(\mathcal{N}) \neq 0$ or There exists a $\theta = \theta(s, n, N)$ such that the following holds Let $\Gamma_0 \in \pi_0 \check{C}^0(\mathbb{S}^n, \mathcal{N})$. Then at least one of the following cases holds: Action of $\pi_1(\mathcal{N})$ on $\pi_n(\mathcal{N})$

- There exists a minimizer of $E_{s,\frac{n}{s}}(\cdot, \mathbb{S}^n)$ in Γ_0
- For every $\delta > 0$, there exist nontrivial free homotopy classes $\Gamma_1 = \pi_1(\mathcal{N})\gamma_1$ and $\Gamma_2 = \pi_1(\mathcal{N})\gamma_2$ such that

$$\bar{\gamma}_0 = \pi_1(\mathcal{N})\gamma_0 \subset \pi_1(\mathcal{N})\gamma_1 + \pi_1(\mathcal{N})\gamma_2$$

 $\#\Gamma_1 + \#\Gamma_2 \leq \#\Gamma_0 + \delta$

Set of free homotopy classes of $C^0(\mathbb{S}^n, \mathcal{N})$ The case when $\pi_n(\mathcal{N}) \neq 0$ There exists a $\theta = \theta(s, n, N)$ such that the following holds Let $\Gamma_0 \in \pi_0 C^0(\mathbb{S}^n, \mathcal{N})$. Then at least one of the following cases holds: Action of $\pi_1(\mathcal{N})$ on $\pi_n(\mathcal{N})$

- There exists a minimizer of $E_{s,\frac{n}{s}}(\cdot, \mathbb{S}^n)$ in Γ_0
- For every $\delta > 0$, there exist nontrivial free homotopy classes $\Gamma_1 = \pi_1(\mathcal{N})\gamma_1$ and $\Gamma_2 = \pi_1(\mathcal{N})\gamma_2$ such that

$$\Gamma_0 = \pi_1(\mathcal{N})\gamma_0 \subset \pi_1(\mathcal{N})\gamma_1 + \pi_1(\mathcal{N})\gamma_2$$

$$\#\Gamma_1 + \#\Gamma_2 \le \#\Gamma_0 + \delta$$
$$\theta < \#\Gamma_1 < \#\Gamma_0 - \frac{\theta}{2}$$

 $= \mathbb{S}^n$ Set of free homotopy classes of $C^0(\mathbb{S}^n, \mathcal{N})$ The case when $\pi_n(\mathcal{N}) \neq 0$ There exists a $\theta = \theta(s, n, N)$ such that the following holds Let $\Gamma_0 \in \pi_0 C^0(\mathbb{S}^n, \mathcal{N})$. Then at least one of the following cases holds: Action of $\pi_1(\mathcal{N})$ on $\pi_n(\mathcal{N})$

- There exists a minimizer of $E_{s,\frac{n}{s}}(\cdot, \mathbb{S}^n)$ in Γ_0
- For every $\delta > 0$, there exist nontrivial free homotopy classes $\Gamma_1 = \pi_1(\mathcal{N})\gamma_1$ and $\Gamma_2 = \pi_1(\mathcal{N})\gamma_2$ such that

$$\mathsf{\Gamma}_0=\pi_1(\mathcal{N})\gamma_0\subset\pi_1(\mathcal{N})\gamma_1+\pi_1(\mathcal{N})\gamma_2$$

$$\#\Gamma_1 + \#\Gamma_2 \le \#\Gamma_0 + \delta$$
$$\theta < \#\Gamma_1 < \#\Gamma_0 - \frac{\theta}{2}$$
$$\theta < \#\Gamma_2 < \#\Gamma_0 - \frac{\theta}{2}$$

THE CASE WHEN $\pi_n(\mathcal{N}) \neq 0$ or $\Sigma = \mathbb{S}^n$ Set of free homotopy classes of $C^0(\mathbb{S}^n, \mathcal{N})$ There exists a $\theta = \theta(s, n, N)$ such that the following holds Let $\Gamma_0 \in \pi_0 C^0(\mathbb{S}^n, \mathcal{N})$. Then at least one of the following cases holds: Action of $\pi_1(\mathcal{N})$ on $\pi_n(\mathcal{N})$

- There exists a minimizer of $E_{s,\frac{n}{s}}(\cdot, \mathbb{S}^n)$ in Γ_0
- For every $\delta > 0$, there exist nontrivial free homotopy classes $\Gamma_1 = \pi_1(\mathcal{N})\gamma_1$ and $\Gamma_2 = \pi_1(\mathcal{N})\gamma_2$ such that

$$\mathsf{\Gamma}_0=\pi_1(\mathcal{N})\gamma_0\subset\pi_1(\mathcal{N})\gamma_1+\pi_1(\mathcal{N})\gamma_2$$

$$\#\Gamma_{1} + \#\Gamma_{2} \leq \#\Gamma_{0} + \delta$$
$$\theta < \#\Gamma_{1} < \#\Gamma_{0} - \frac{\theta}{2}$$
$$\theta < \#\Gamma_{2} < \#\Gamma_{0} - \frac{\theta}{2}$$

where $\#\Gamma \coloneqq \inf_{u \in \Gamma \cap W^{s,\frac{n}{s}}(\mathbb{S}^n,\mathcal{N})} E_{s,\frac{n}{s}}(u,\mathbb{S}^n) = \lim_{t \to s^+} \inf_{u \in \Gamma \cap W^{t,\frac{n}{s}}(\mathbb{S}^n,\mathcal{N})} E_{t,\frac{n}{s}}(u,\mathbb{S}^n)$

COROLLARY

There exists a number $k \in \mathbb{Z}, k \neq 0$ such that

$$\inf \left\{ E_{s,\frac{n}{s}}(u,\mathbb{S}^n) \colon \ u \in C^0 \cap W^{s,\frac{n}{s}}(\mathbb{S}^n,\mathbb{S}^n), \ \deg u = k \right\}$$

is attained

COROLLARY

Of course $\pi_n(\mathbb{S}^n) \neq 0$

There exists a number $k \in \mathbb{Z}, k \neq 0$ such that

$$\inf \left\{ E_{s,\frac{n}{s}}(u,\mathbb{S}^n) \colon \ u \in C^0 \cap W^{s,\frac{n}{s}}(\mathbb{S}^n,\mathbb{S}^n), \ \deg u = k \right\}$$

is attained

COROLLARY

Of course $\pi_n(\mathbb{S}^n) \neq 0$

There exists a number $k \in \mathbb{Z}$, $k \neq 0$ such that

$$\inf \left\{ E_{s,\frac{n}{s}}(u,\mathbb{S}^n) \colon \ u \in C^0 \cap W^{s,\frac{n}{s}}(\mathbb{S}^n,\mathbb{S}^n), \ \deg u = k \right\}$$

is attained

Still open

ls

$$\inf \left\{ E_{s,\frac{n}{s}}(u,\mathbb{S}^n) \colon \ u \in C^0 \cap W^{s,\frac{n}{s}}(\mathbb{S}^n,\mathbb{S}^n), \ \deg u = 1 \right\}$$

attained?
COROLLARY

There exists a number $k \in \mathbb{Z}$, $k \neq 0$ such that

$$\inf \left\{ E_{s,\frac{n}{s}}(u,\mathbb{S}^n) \colon \ u \in C^0 \cap W^{s,\frac{n}{s}}(\mathbb{S}^n,\mathbb{S}^n), \ \deg u = k \right\}$$

is attained

Still open

ls

$$\inf \left\{ E_{s,\frac{n}{s}}(u,\mathbb{S}^n) \colon \ u \in C^0 \cap W^{s,\frac{n}{s}}(\mathbb{S}^n,\mathbb{S}^n), \ \deg u = 1 \right\}$$

attained?

Yes, if $\frac{n}{s} = 2$ (Mironescu)

Idea of the proof, $\pi_n(\mathcal{N})
eq 0$

Fix a homotopy class Γ_0 in $C^0(\mathbb{S}^n, \mathcal{N})$

Idea of the proof, $\pi_n(\mathcal{N}) eq 0$

Fix a homotopy class Γ_0 in $C^0(\mathbb{S}^n, \mathcal{N})$ take u_t - sequence of minimizers of $E_{t, \frac{n}{s}}$ in Γ_0

Idea of the proof, $\pi_n(\mathcal{N}) eq 0$

Fix a homotopy class Γ_0 in $C^0(\mathbb{S}^n, \mathcal{N})$ take u_t - sequence of minimizers of $E_{t, \frac{n}{s}}$ in Γ_0 From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ such that $u_t \to u_s$ strongly in $W^{s_0, \frac{n}{s}}(\mathbb{S}^n \setminus A)$,

IDEA OF THE PROOF, $\pi_n(\mathcal{N}) \neq 0$ Fix a homotopy class Γ_0 in $C^0(\mathbb{S}^n, \mathcal{N})$ take u_t - sequence of minimizers of $E_{t,\frac{n}{s}}$ in Γ_0 From regularity: $\exists u_s \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ such that $u_t \to u_s$ strongly in $W^{s_0,\frac{n}{s}}(\mathbb{S}^n \setminus A)$,

IDEA OF THE PROOF, $\pi_n(\mathcal{N}) \neq 0$ Fix a homotopy class Γ_0 in $C^0(\mathbb{S}^n, \mathcal{N})$ take u_t - sequence of minimizers of $E_{t, \frac{n}{s}}$ in Γ_0 From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ such that $u_t \to u_s$ strongly in $W^{s_0, \frac{n}{s}}(\mathbb{S}^n \setminus A)$, From removability: $u_s \in W^{s_0, \frac{n}{s}}(\mathbb{S}^n)$

IDEA OF THE PROOF, $\pi_n(\mathcal{N}) \neq 0$ Fix a homotopy class Γ_0 in $C^0(\mathbb{S}^n, \mathcal{N})$ take u_t - sequence of minimizers of $E_{t, \frac{n}{s}}$ in Γ_0 From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ such that $u_t \to u_s$ strongly in $W^{s_0, \frac{n}{s}}(\mathbb{S}^n \setminus A)$, From removability: $u_s \in W^{s_0, \frac{n}{s}}(\mathbb{S}^n)$

Either A is empty (first case)

IDEA OF THE PROOF, $\pi_n(\mathcal{N}) \neq 0$ Fix a homotopy class Γ_0 in $C^0(\mathbb{S}^n, \mathcal{N})$ take u_t - sequence of minimizers of $E_{t,\frac{n}{s}}$ in Γ_0 From regularity: $\exists u_s \in W^{s,\frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ such that $u_t \to u_s$ strongly in $W^{s_0,\frac{n}{s}}(\mathbb{S}^n \setminus A)$, From removability: $u_s \in W^{s_0,\frac{n}{s}}(\mathbb{S}^n)$

Or there is a blow-up point

Either *A* is empty (first case)

IDEA OF THE PROOF, $\pi_n(\mathcal{N}) \neq 0$ Fix a homotopy class Γ_0 in $C^0(\mathbb{S}^n, \mathcal{N})$ take u_t - sequence of minimizers of $E_{t, \frac{n}{s}}$ in Γ_0 From regularity: $\exists u_s \in W^{s, \frac{n}{s}}(\mathbb{S}^n, \mathcal{N})$ such that $u_t \to u_s$ strongly in $W^{s_0, \frac{n}{s}}(\mathbb{S}^n \setminus A)$, From removability: $u_s \in W^{s_0, \frac{n}{s}}(\mathbb{S}^n)$ Either A is empty (first case) Or there is a blow-up point

Say, the North Pole

K. Mazowiecka, A. Schikorra

Fractional harmonic maps

Thank you for your attention!

K. Mazowiecka, A. Schikorra

Fractional harmonic maps