Two-parameters formulas for general solution to planar weakly delayed linear discrete systems with multiple delays, equivalent non-delayed systems, and conditional stability

Josef Diblík,

IMDETA seminar October 2024

Abstract

Weakly delayed planar linear discrete systems with multiple delays

$$
x(k+1) = Dx(k) + \sum_{l=1}^{n} H^{l}x(k-m_l), \quad k = 0, 1, ...
$$

are considered where $0 < m_1 < m_2 < \cdots < m_n$ are fixed integers, D, $H^1,\ \ldots,\ H^n$ are nonzero 2×2 real constant matrices and $x: \{-m_n, -m_n+1, ...\} \to \mathbb{R}^2$.

Formulas for general solutions are found and simplified, equivalent non-delayed planar linear discrete systems are constructed and conditional stability is analyzed.

J. Diblík, H. Halfarová, J. Šafařík, Two-parameters formulas for general solution to planar weakly delayed linear discrete systems with multiple delays, equivalent non-delayed systems, and conditional stability, Appl. Math. Comput. 459(2023), Paper No. 128270, 14 pp.

Introduction

The notation used throughout the paper is the following: Θ is the zero 2 \times 2 matrix, E is the unit 2 \times 2 matrix, θ is the zero 2 \times 1 vector and, for integers s, q , $s \leq q$, $\mathbb{Z}_s^q = \{s, s+1, \ldots, q\}$. The set \mathbb{Z}_s^{∞} $_s^{\infty}$ is defined in much the same way.

In the paper, weakly delayed (WD) discrete planar systems with multiple delays

$$
x(k+1) = Dx(k) + \sum_{l=1}^{n} H^{l}x(k-m_{l})
$$
 (1)

are considered, where m_1, m_2, \ldots, m_n are fixed integer delays, $0 < m_1 < m_2 < \cdots < m_n$ (in the sequel, we will write m for short rather than m_n if this does not cause ambiguity), $k\in\mathbb{Z}^\infty_0$ $_{0}^{\infty}$, $D, H^1,...,H^n$ are constant 2×2 matrices, $D=\{d_{ij}\}_{i,j=1}^2,$ $\det D\neq 0,$ $H'=\{h_{ij}'\}_{i,j=1}^2\neq\Theta,~l=1,2,\ldots,n,~n\geq1,~\text{and}~x\colon\mathbb{Z}_{-m}^{\infty}\rightarrow\mathbb{R}^2.$

The function x in (1) is called a solution if the equation holds for every $k\in\mathbb{Z}_0^\infty$ $_{0}^{\infty}.$ A unique solution of (1) can be determined by an initial problem

$$
x(k) = \xi(k), \ \ k = -m, -m+1, \ldots, 0 \tag{2}
$$

with given function $\xi\colon \mathbb{Z}_{-m}^0\to \mathbb{R}^2$.

WD systems

The system (1) is a WD system if, for every $\mu \in \mathbb{C} \setminus \{0\}$,

$$
\mathcal{D}(\mu) \equiv \det \left(D - \mu E \right), \tag{3}
$$

where

$$
\mathcal{D}(\mu) := \det \left(D + \sum\nolimits_{l=1}^n \mu^{-m_l} H^l - \mu \boldsymbol{E} \right).
$$

If we look for a solution of (1) in the form $x(k) = \chi \mu^k$, $k \in \mathbb{Z}_{-m}^{\infty}$, where $\mu = \text{const}, \mu \neq 0$ and χ is a nonzero constant vector, then the characteristic equations $\mathcal{D}(\mu) = 0$ to system [\(1\)](#page-0-0) and

 $x(k + 1) = Dx(k)$

are equivalent. Since the value $\mu = 0$ is excluded, throughout the paper we assume that no eigenvalue of D equals zero. This is guaranteed by the assumption det $D \neq 0$. WD systems are invariant to nonsingular transformations.

From formula [\(3\)](#page-0-0), the following criterion can be derived.

System [\(1\)](#page-0-0) is a WD system if and only if

 $h_{11}^l + h_{22}^l = 0,$ $\overline{}$ $\overline{}$ $\overline{}$ \vert h'_{11} h'_{1} 12 h_{21}^{ν} h_{2}^{ν} 22 $\overline{}$ $\overline{}$ $\overline{}$ \vert $= 0,$ $\overline{}$ $\overline{}$ $\overline{}$ \vert d_{11} d_{12} h'_{21} h'_{2} 22 $\overline{}$ $\overline{}$ $\overline{}$ \vert $+$ $\overline{}$ $\overline{}$ $\overline{}$ \vert h'_{11} h'_{1} 12 d_{21} d_{22} $\overline{}$ $\overline{}$ $\overline{}$ \vert $^{(4)}$ where $l, v = 1, 2, ..., n$.

Coefficient criteria for WD systems

Assume that, after a suitable transformation,

$$
x(k) = \mathcal{T}y(k) \tag{5}
$$

with 2 \times 2 regular matrix T, WD system [\(1\)](#page-0-0) is transformed to a new WD system

$$
y(k+1) = \mathcal{J}(D)y(k) + \sum_{l=1}^{n} H^{*l}y(k-m_l), \ k \in \mathbb{Z}_{0}^{\infty}, \qquad (6)
$$

where $\mathcal{J}(D)=\mathcal{T}^{-1}D\mathcal{T}$ is the Jordan form of D and $H^{*}{'}=\mathcal{T}^{-1}H^{\prime}\mathcal{T},$ $H^{*} = \{h_{ij}^{*}\}_{i,j=1}^2$, $l = 1, \ldots, n$. Initial data to (6) can be derived from (2) and (5) by the formula

$$
y(k) = \eta(k) := \mathcal{T}^{-1}\xi(k), \quad k = -m, -m+1, \ldots, 0.
$$
 (7)

In the following, we will use the notation

$$
\omega_i^l(s) := h_{i1}^{*l} \eta_1(s) + h_{i2}^{*l} \eta_2(s), \qquad (8)
$$

where $i = 1, 2, s = -m, \ldots, 0, l = 1, \ldots, n$.

Coefficient criteria for detecting a WD system for every possible Jordan form can be deduced.

If the characteristic equation $\mathcal{D}(\mu) = 0$ has two real distinct roots μ_1 , μ_2 , then

$$
\mathcal{J}(D)=\mathcal{J}_1:=\begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix},
$$

in the case of one double real root μ , we have either

$$
\mathcal{J}(D)=\mathcal{J}_2:=\begin{pmatrix} \mu & 0 \\ 0 & \mu \end{pmatrix}
$$

if μ has geometrical multliplicity 2 or

$$
\mathcal{J}(D) = \mathcal{J}_3 = \begin{pmatrix} \mu & 1 \\ 0 & \mu \end{pmatrix}
$$

if μ has geometrical multiplicity 1, and, finally, if the roots are complex conjugate, i.e. $\mu_{1,2} = \alpha \pm i\beta$ with $\beta \neq 0$, then

$$
\mathcal{J}(D)=\mathcal{J}_4:=\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}.
$$

If $\mathcal{J}(D) = \mathcal{J}_1$, the necessary and sufficient conditions [\(4\)](#page-0-0) for system (6) are reduced to

$$
h_{11}^{*l}=h_{22}^{*l}=0, \quad h_{12}^{*l}h_{21}^{*v}=0,
$$
 (9)

where $l, v = 1, 2, \ldots, n$. Condition $H^l \neq \Theta$, $l = 1, 2, \ldots, n$ and (9) imply the following. If $h_{12}^{*} = 0$ for a value *l*, then $h_{21}^{*v} \neq 0$ for all $v = 1, 2, \ldots, n$.

If $\mathcal{J}(D) = \mathcal{J}_2$, the necessary and sufficient conditions [\(4\)](#page-0-0) for system (6) are reduced to

$$
h_{11}^{*l} + h_{22}^{*l} = 0, \quad h_{11}^{*l}h_{22}^{*v} - h_{12}^{*l}h_{21}^{*v} = 0,
$$
 (10)

where $l, v = 1, 2, ..., n$.

If $\mathcal{J}(D) = \mathcal{J}_3$, the necessary and sufficient conditions [\(4\)](#page-0-0) for system (6) are reduced to

$$
h_{11}^{*l}=h_{22}^{*l}=h_{21}^{*l}=0, l=1,2,\ldots,n.
$$
 (11)

Then, $h_{12}^{*l} \neq 0, \ \ l=1,2,\ldots,n$ since, in the opposite case, $H^l = \Theta$, $l = 1, 2, \ldots, n$, and this is a contradiction with our assumptions.

Let $\mathcal{J}(D) = \mathcal{J}_4$. Then, there exists no WD system [\(1\)](#page-0-0). The necessary and sufficient conditions [\(4\)](#page-0-0) imply $h_{11}^{*l} = h_{22}^{*l} = h_{21}^{*l} = h_{12}^{*l} = 0$, $l = 1, 2, \ldots, n$.

This is a contradiction with the assumption $H^1 \neq \Theta$, $l = 1, 2, \ldots, n$.

General Solutions of WD Systems

Theorem

Let $\mathcal{J}(D) = \mathcal{J}_1$. Then, the problem [\(1\)](#page-0-0), [\(2\)](#page-0-0) has a solution

$$
x(k)=\mathcal{T}y(k), y(k)=(y_1(k),y_2(k))^T, k\in\mathbb{Z}_{-m}^{\infty}
$$

and, for $k \in \mathbb{Z}_0^\infty$ $_{0}^{\infty}$,

$$
y_1(k) = \mu_1^k \eta_1(0) + \frac{\eta_2(0)}{\mu_1 - \mu_2} \sum_{l=1}^n h_{12}^{*l} {k - m_l \choose 0} \left[\mu_1^{k - m_l} - \mu_2^{k - m_l} \right] + \sum_{l=1}^n h_{12}^{*l} \sum_{s=1}^{m_l} \eta_2(-m_l - 1 + s) {k - s \choose 0} \mu_1^{k - s}, \quad (12)
$$

$$
y_2(k) = \mu_2^k \eta_2(0) + \frac{\eta_1(0)}{\mu_1 - \mu_2} \sum_{l=1}^n h_{21}^{*l} {k - m_l \choose 0} \left[\mu_1^{k - m_l} - \mu_2^{k - m_l} \right] + \sum_{l=1}^n h_{21}^{*l} \sum_{s=1}^{m_l} \eta_1(-m_l - 1 + s) {k - s \choose 0} \mu_2^{k - s}.
$$
 (13)

Let $\mathcal{J}(D) = \mathcal{J}_2$. Then, the problem [\(1\)](#page-0-0), [\(2\)](#page-0-0) has a solution $\mathsf{x}(k)=\mathcal{T}\mathsf{y}(k),\;\;\mathsf{y}(k)=(\mathsf{y}_1(k),\mathsf{y}_2(k))^\mathsf{T},\;\;k\in\mathbb{Z}_{-k}^\infty$ $-m$ and, for $k \in \mathbb{Z}_0^\infty$ $_{0}^{\infty}$,

$$
y_1(k) = \mu^k \eta_1(0) + \sum_{l=1}^n \left[\sum_{s=1}^{m_l} \omega_1^l (-m_l - 1 + s) \binom{k-s}{0} \mu^{k-s} \right] + \sum_{l=1}^n (k - m_l) \binom{k-m_l}{0} \omega_1^l(0) \mu^{k-m_l-1}, \tag{14}
$$

$$
y_2(k) = \mu^k \eta_2(0) + \sum_{l=1}^n \left[\sum_{s=1}^{m_l} \omega_2^l (-m_l - 1 + s) \binom{k-s}{0} \mu^{k-s} \right] + \sum_{l=1}^n (k - m_l) \binom{k-m_l}{0} \omega_2^l(0) \mu^{k-m_l-1}.
$$
 (15)

Let $\mathcal{J}(D) = \mathcal{J}_3$. Then, the problem [\(1\)](#page-0-0), [\(2\)](#page-0-0) has a solution $\mathsf{x}(k)=\mathcal{T}\mathsf{y}(k),\;\;\mathsf{y}(k)=(\mathsf{y}_1(k),\mathsf{y}_2(k))^\mathsf{T},\;\;k\in\mathbb{Z}_{-k}^\infty$ $-m$ and, for $k \in \mathbb{Z}_0^\infty$ $_{0}^{\infty}$,

$$
y_1(k) = \mu^k \eta_1(0) + k \mu^{k-1} \eta_2(0)
$$

+
$$
\sum_{l=1}^n \left[\sum_{s=1}^{m_l} \omega_1^l (-m_l - 1 + s) \binom{k-s}{0} \mu^{k-s} \right]
$$

+
$$
\sum_{l=1}^n (k - m_l) \binom{k-m_l}{0} \omega_1^l (0) \mu^{k-m_l-1} (16)
$$

and

$$
y_2(k) = \mu^k \eta_2(0). \tag{17}
$$

Simple Formulas for General Solutions The case $\mathcal{J}(D) = \mathcal{J}_1$

$$
C_1 := \eta_1(0) + \frac{\eta_2(0)}{\mu_1 - \mu_2} \sum_{l=1}^n h_{12}^{*l} \mu_1^{-m_l} + \sum_{l=1}^n h_{12}^{*l} \sum_{s=1}^{m_l} \eta_2(-m_l - 1 + s) \mu_1^{-s},
$$
(18)

$$
C_2 := \eta_2(0) - \frac{\eta_1(0)}{\mu_1 - \mu_2} \sum_{l=1}^n h_{21}^{*l} \mu_2^{-m_l} + \sum_{l=1}^n h_{21}^{*l} \sum_{s=1}^{m_l} \eta_1(-m_l - 1 + s) \mu_2^{-s}.
$$
 (19)

Let $\mathcal{J}(D) = \mathcal{J}_1$. Then, the problem [\(1\)](#page-0-0), [\(2\)](#page-0-0) has a solution $x(k)=\mathcal{T}y(k)$, $y(k)=(y_1(k),y_2(k))^{\mathsf{T}}$, $k\in\mathbb{Z}_{-m}^\infty$ and, for $k\in\mathbb{Z}_{m}^\infty$,

$$
y_1(k) = C_1 \mu_1^k - C_2 \frac{\mu_2^k}{\mu_1 - \mu_2} \sum_{l=1}^n h_{12}^{*l} \mu_2^{-m_l}, \qquad (20)
$$

$$
y_2(k) = C_1 \frac{\mu_1^k}{\mu_1 - \mu_2} \sum_{l=1}^n h_{21}^{*l} \mu_1^{-m_l} + C_2 \mu_2^k, \qquad (21)
$$

where C_1 , C_2 are arbitrary parameters connected with arbitrary initial values (2) through formulas (7) , (18) , (19) .

The case $\mathcal{J}(D) = \mathcal{J}_2$

Theorem

Let $\mathcal{J}(D)=\mathcal{J}_2$. Assume $h_{11}^{*1}\neq 0$. Then, the problem (1) , (2) has a solution $x(k) = \mathcal{T}y(k)$, $y(k) = (y_1(k), y_2(k))^T$, $k \in \mathbb{Z}_{-m}^{\infty}$ and, for $k\in\mathbb{Z}_{m}^{\infty}$,

$$
y_1(k) = C_1 \mu^k + C_2 \left(\sum_{l=1}^n h_{11}^{*l} \mu^{-m_l - 1} \right) k \mu^k, \tag{22}
$$

$$
y_2(k) = (h_{11}^{*1} / h_{12}^{*1}) (-C_1 + C_2) \mu^k - (h_{11}^{*1} / h_{12}^{*1}) C_2 \left(\sum_{l=1}^n h_{11}^{*l} \mu^{-m_l - 1} \right) k \mu^k, \tag{23}
$$

where C_1 , C_2 are arbitrary parameters.

Let $\mathcal{J}(D)=\mathcal{J}_2$. Assume $h_{11}^{*1}=0$. Then, the problem (1) , (2) has a solution $x(k) = \mathcal{T}y(k)$, $y(k) = (y_1(k), y_2(k))^T$, $k \in \mathbb{Z}_{-m}^{\infty}$ and, for $k\in\mathbb{Z}_{m}^{\infty}$,

$$
y_1(k) = C_1 \mu^k + C_2 k \mu^k \sum_{l=1}^n h_{12}^{*l} \mu^{-m_l-1},
$$

$$
y_2(k) = C_2 \mu^k + C_1 k \mu^k \sum_{l=1}^n h_{21}^{*l} \mu^{-m_l-1},
$$

where C_1 , C_2 are arbitrary parameters.

The case $\mathcal{J}(D) = \mathcal{J}_3$

Theorem

Let $\mathcal{J}(D) = \mathcal{J}_3$. Then, the problem [\(1\)](#page-0-0), [\(2\)](#page-0-0) has a solution $x(k)=\mathcal{T}y(k)$, $y(k)=(y_1(k),y_2(k))^{\mathsf{T}}$, $k\in\mathbb{Z}_{-m}^\infty$ and, for $k\in\mathbb{Z}_{m}^\infty$,

$$
y_1(k) = C_1 \mu^k + C_2 k \mu^{k-1} \left[1 + \sum_{l=1}^n h_{12}^{*l} \mu^{-m_l} \right],
$$

 $y_2(k) = C_2 \mu^k,$

where C_1 , C_2 are arbitrary parameters.

Merging of solutions

Theorem

Let $\mathcal{J}(D)=\mathcal{J}_1$. Let constants $\mathcal{C}_1:=\mathcal{C}_1^*$ S_1^* and $C_2 := C_2^*$ $\frac{1}{2}$ be fixed. If the initial values [\(7\)](#page-0-0) satisfy

$$
\eta_1(0) + \frac{\eta_2(0)}{\mu_1 - \mu_2} \sum_{l=1}^n h_{12}^{*l} \mu_1^{-m_l} + \sum_{l=1}^n h_{12}^{*l} \sum_{s=1}^{m_l} \eta_2(-m_l - 1 + s) \mu_1^{-s} = C_1^*,
$$

$$
\eta_2(0) - \frac{\eta_1(0)}{\mu_1 - \mu_2} \sum_{l=1}^n h_{21}^{*l} \mu_2^{-m_l} + \sum_{l=1}^n h_{21}^{*l} \sum_{s=1}^{m_l} \eta_1(-m_l - 1 + s) \mu_2^{-s} = C_2^*,
$$

Let $\mathcal{J}(D)=\mathcal{J}_2$. Assume $h_{11}^{*1}\neq 0$. Let constants

 $C_1 := C_1^*$ C_1^* , $C_2 := C_2^*$ 2

be fixed. If the initial values (7) satisfy

$$
\eta_1(0)
$$

+ $\sum_{l=1}^n \left[-m_l \omega_1^l(0) \mu^{-m_l-1} + \sum_{s=1}^{m_l} \omega_1^l(-m_l-1+s) \mu^{-s} \right] = C_1^*,$

$$
\omega_1^l(0)/h_{11}^* = C_2^*,
$$

Let $\mathcal{J}(D)=\mathcal{J}_2$. Assume $h_{11}^{*1}=0$. Let constants

 $C_1 := C_1^*$ C_1^* , $C_2 := C_2^*$ 2

be fixed. If the initial values (7) satisfy

$$
\eta_1(0) + \sum_{l=1}^n h_{12}^{*l} \left[-m_l \eta_2(0) \mu^{-m_l-1} + \sum_{s=1}^{m_l} \eta_2(-m_l-1+s) \mu^{-s} \right]
$$

= C_1^* ,

$$
\eta_2(0) + \sum_{l=1}^n h_{21}^{*l} \left[-m_l \eta_1(0) \mu^{-m_l-1} + \sum_{s=1}^{m_l} \eta_1(-m_l-1+s) \mu^{-s} \right]
$$

= C_2^* ,

Let $\mathcal{J}(D) = \mathcal{J}_3$. Let constants

$$
\mathcal{C}_1:=\mathcal{C}_1^*,\ \ \mathcal{C}_2:=\mathcal{C}_2^*
$$

be fixed. If initial values [\(7\)](#page-0-0) satisfy

$$
\eta_1(0)
$$

+ $\sum_{l=1}^n h_{12}^{*l} \left[\sum_{s=1}^{m_l} \eta_2(-m_l - 1 + s) \mu^{-s} - \eta_2(0) \sum_{l=1}^n m_l \mu^{-m_l - 1} \right]$
= C_1^* ,

$$
\eta_2(0) = C_2^*,
$$

Non-delayed Systems Equivalent to WD Systems

Consider a non-delayed planar linear discrete system

$$
w(k+1) = Gw(k), \quad k \in \mathbb{Z}_m^{\infty}
$$
 (24)

where $G=\{\textbf{\emph{g}}_{ij}\}_{i.}^{2}$ 2
i,j=1,2·

Theorem

Let $\mathcal{J}(D) = \mathcal{J}_1$. Then, for $k \in \mathbb{Z}_m^\infty$, the general solution of the problem [\(1\)](#page-0-0) is given by the formula $x(k) = \mathcal{Tw}(k)$, where $w(k)=(w_1(k),w_2(k))^T$ is the general solution of non-delayed system [\(24\)](#page-0-0) and G is concretized as follows,

$$
G := \begin{pmatrix} \mu_1 & \sum_{l=1}^n h_{12}^{*l} \mu_2^{-m_l} \\ \sum_{l=1}^n h_{21}^{*l} \mu_1^{-m_l} & \mu_2 \end{pmatrix} . \tag{25}
$$

Let $\mathcal{J}(D) = \mathcal{J}_2$. Assume $h_{11}^{*1} \neq 0$. Then, for $k \in \mathbb{Z}_m^{\infty}$, the general solution of the problem [\(1\)](#page-0-0) is given by the formula $x(k) = \mathcal{Tw}(k)$, where $w(k) = (w_1(k), w_2(k))^T$ is the general solution of non-delayed system [\(24\)](#page-0-0) and G is concretized as follows,

$$
G := \begin{pmatrix} \mu + \sum_{l=1}^n h_{11}^{*l} \mu^{-m_l} & h_{12}^{*1} (h_{11}^{*1})^{-1} \sum_{l=1}^n h_{11}^{*l} \mu^{-m_l} \\ h_{11}^{*1} (h_{12}^{*1})^{-1} \sum_{l=1}^n h_{22}^{*l} \mu^{-m_l} & \mu + \sum_{l=1}^n h_{22}^{*l} \mu^{-m_l} \end{pmatrix}.
$$

Theorem

Let $\mathcal{J}(D) = \mathcal{J}_2$. Assume $h_{11}^{*1} = 0$. Then, for $k \in \mathbb{Z}_m^{\infty}$, the general solution of the problem [\(1\)](#page-0-0) is given by formula $x(k) = \mathcal{Tw}(k)$, where $w(k)=(w_1(k), w_2(k))^{\top}$ is the general solution of non-delayed system [\(24\)](#page-0-0) and G is concretized as follows,

$$
G:=\begin{pmatrix} \mu & \sum_{l=1}^n h_{12}^{*l} \mu^{-m_l} \\ \sum_{l=1}^n h_{21}^{*l} \mu^{-m_l} & \mu \end{pmatrix}.
$$

Let $\mathcal{J}(D) = \mathcal{J}_3$. Then, for $k \in \mathbb{Z}_m^\infty$, the general solution of the problem [\(1\)](#page-0-0) is given by the formula $x(k) = \mathcal{Tw}(k)$, where $w(k)=(w_1(k),w_2(k))^{\top}$ is the general solution of non-delayed system [\(24\)](#page-0-0) and G is concretized as follows,

$$
G:=\begin{pmatrix} \mu & 1+\sum_{l=1}^n h_{12}^{*l}\mu^{-m_l} \\ 0 & \mu \end{pmatrix}.
$$

Conditional Stability

Definition

An unstable trivial solution of (1) is said to be conditionally stable (CS) if, given $\varepsilon > 0$, there exists a $\delta > 0$ such that every initial function $\xi(k)$, $k \in Z_{-m}^0$ where $\|\xi(r)\| < \delta$, $r = -m, \ldots, 0$ defines a solution x to [\(1\)](#page-0-0) satisfying $||x(k)|| < \varepsilon$ for all $k > 0$, provided that the coordinates

 $(\xi(-m), \xi(-m+1), \ldots, \xi(0)) \in \mathcal{M} \subset \mathbb{R}^{2(m+1)},$

where M is a set of the initial values and $1 \leq$ dim $\mathcal{M} < 2(m+1)$. If, moreover, $\lim_{k\to\infty} ||x(k)|| = 0$, we say that the trivial solution is conditionally asymptotically stable (CAS).

Let $\mathcal{J}(D) = \mathcal{J}_1$. (i) If

$$
\eta_1(0) + \frac{\eta_2(0)}{(\mu_1 - \mu_2)} \sum_{l=1}^n h_{12}^{*l} \mu_1^{-m_l} + \sum_{l=1}^n h_{12}^{*l} \sum_{s=1}^{m_l} \eta_2(-m_l - 1 + s) \mu_1^{-s} = 0, \tag{26}
$$

then, the trivial solution is CS if $|\mu_2|\leq 1$ and CAS if $|\mu_2|< 1$. (ii) If

$$
\eta_2(0) - \frac{\eta_1(0)}{\mu_1 - \mu_2} \sum_{l=1}^n h_{21}^{*l} \mu_2^{-m_l} + \sum_{l=1}^n h_{21}^{*l} \sum_{s=1}^{m_l} \eta_1(-m_l - 1 + s) \mu_2^{-s} = 0, \tag{27}
$$

then the trivial solution is CS if $|\mu_1| \leq 1$ and CAS if $|\mu_1| < 1$. (iii) If [\(26\)](#page-0-0) and [\(27\)](#page-0-0) both hold, then the trivial solution is CAS.

Let $\mathcal{J}(D) = \mathcal{J}_2$. Assume $h_{11}^{*1} \neq 0$. (i) If

$$
\eta_1(0) + \sum_{l=1}^n \sum_{s=1}^{m_l} \omega_1^l (-m_l - 1 + s) \mu^{-s} = 0, \qquad (28)
$$

$$
\omega^1_1(0)=0,\qquad \quad \textbf{(29)}
$$

then, the trivial solution is CAS. (ii) If $|\mu| = 1$ and [\(29\)](#page-0-0) holds, then the trivial solution is CS. (iii) If $|\mu|=1$ and $\sum_{l=1}^n h_{11}^{*l}\mu^{-m_l-1}=0$, then the trivial solution is stable.

Theorem Let $\mathcal{J}(D) = \mathcal{J}_2$. Assume $h_{11}^{*1} = h_{12}^{*1} = 0$. (i) If

 $\eta_1(0) = 0,$ (30)

$$
\eta_2(0)+\sum\nolimits_{l=1}^n h_{21}^{*l}\sum\nolimits_{s=1}^{m_l}\eta_1(-m_l-1+s)\mu^{-s}=0,
$$

then, the trivial solution is CAS. (ii) If $|\mu| = 1$ and [\(30\)](#page-0-0) holds, then the trivial solution is CS. (iii) If $|\mu|=1$ and $\sum_{l=1}^n h_2^{*l} \mu^{-m_l}=0$, then the trivial solution is stable.

Theorem Let $\mathcal{J}(D) = \mathcal{J}_2$. Assume $h_{11}^{*1} = h_{21}^{*1} = 0$. (i) If

$$
\eta_1(0) + \sum_{l=1}^n h_{12}^{*l} \sum_{s=1}^{m_l} \eta_2(-m_l - 1 + s)\mu^{-s} = 0, \qquad (31)
$$

$$
\eta_2(0) = 0, \qquad (32)
$$

then, the trivial solution is CAS.

(ii) If $|\mu| = 1$ and [\(32\)](#page-0-0) holds, then the trivial solution is CS. (iii) If $|\mu|=1$ and $\sum_{l=1}^n h_{12}^{*l}\mu^{-m_l}=0$, then the trivial solution is stable.

Theorem

Let $\mathcal{J}(D) = \mathcal{J}_3$. (i) If (31) , (32) both hold, then the trivial solution is CAS. (ii) If $|\mu| = 1$ and [\(32\)](#page-0-0) holds, then, the trivial solution is CS. (iii) If $|\mu|=1$ and $\sum_{l=1}^n h_{12}^{*l}\mu^{-m_l}=-1$, then the trivial solution is stable.

Example

Let a system [\(1\)](#page-0-0), where $n = 3$, $m_1 = 1$, $m_2 = 2$ and $m = m_3 = 3$, be of the form

$$
x_1(k+1) = 3x_1(k) + x_2(k) + x_1(k-1) + x_2(k-1) + 2x_1(k-2) + 2x_2(k-2) + 3x_1(k-3) + 3x_2(k-3),
$$
\n(33)

$$
x_2(k+1) = -2x_1(k) -x_1(k-1) -x_2(k-1) -2x_1(k-2) -2x_2(k-2) -3x_1(k-3) -3x_2(k-3).
$$
\n(34)

We have

$$
D = \begin{pmatrix} 3 & 1 \\ -2 & 0 \end{pmatrix}, \quad H^1 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \quad H^2 = 2H^1, \quad H^3 = 3H^1
$$

and $\mu_1 = 2$, $\mu_2 = 1$.

Transforming (33) , (34) by (5) where

$$
\mathcal{T} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}, \quad \mathcal{T}^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

we derive a system of the type [\(6\)](#page-0-0)

$$
y_1(k+1) = 2y_1(k) + y_2(k-1) + 2y_2(k-2) + 3y_2(k-3), \quad (35)
$$

$$
y_2(k+1) = y_2(k)
$$
 (36)

where

$$
\mathcal{J}(D)=\mathcal{J}_1=\begin{pmatrix}2 & 0 \\ 0 & 1\end{pmatrix}, \quad H^{*1}=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix}, \quad H^{*2}=2H^{*1}, \quad H^{*3}=3H^{*1}.
$$

System [\(12\)](#page-0-0), [\(13\)](#page-0-0) reduces, for $k \ge m = 3$, to $y_1(k)=2^k$ $\int_{\eta_1(0) + \frac{11}{\rho}}$ 8 $\eta_2(0)+\frac{11}{8}$ 8 $\eta_2(-1) + \frac{7}{4}$ 4 $\eta_2(-2) + \frac{3}{2}$ 2 $\eta_2(-3)$ $-6\eta_2(0),$ (37)

$$
y_2(k) = \eta_2(0). \tag{38}
$$

We can write (37) , (38) in the form

$$
y_1(k) = C_1 2^k - 6C_2, \quad y_2(k) = C_2 \tag{39}
$$

where C_1 , C_2 are arbitrary parameters defined by (37) , (38) as

$$
C_1 = \eta_1(0) + \frac{11}{8}\eta_2(0) + \frac{11}{8}\eta_2(-1) + \frac{7}{4}\eta_2(-2) + \frac{3}{2}\eta_2(-3),
$$

$$
C_2 = \eta_2(0)
$$

and $\eta_1(0)$, $\eta_2(k)$, $k = -3, -2, -1, 0$ are connected with initial data [\(2\)](#page-0-0) through formula [\(7\)](#page-0-0), i.e.,

$$
\eta(k) = \begin{pmatrix} \eta_1(k) \\ \eta_2(k) \end{pmatrix} := \mathcal{T}^{-1}\xi(k) \n= \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \xi_1(k) \\ \xi_2(k) \end{pmatrix} = \begin{pmatrix} 2\xi_1(k) + \xi_2(k) \\ \xi_1(k) + \xi_2(k) \end{pmatrix} . \tag{40}
$$

If $k > 3$ from [\(5\)](#page-0-0) and [\(39\)](#page-0-0), we derive

$$
x_1(k) = C_1 2^k - 7C_2, \ \ x_2(k) = -C_1 2^k + 8C_2 \tag{41}
$$

and arbitrary parameters C_1 , C_2 can be expressed through the initial values [\(2\)](#page-0-0) as

$$
C_1 = \frac{27}{8}\xi_1(0) + \frac{19}{8}\xi_2(0) + \frac{11}{8}(\xi_1(-1) + \xi_2(-1))
$$

+ $\frac{7}{4}(\xi_1(-2) + \xi_2(-2))$
+ $\frac{3}{2}(\xi_1(-3) + \xi_2(-3)),$ (42)

$$
C_2 = \xi_1(0) + \xi_2(0). \tag{43}
$$

Some of the initial values given by $C_1 = C_2 = 0$ $C_1 = C_2 = 0$ $C_1 = C_2 = 0$ are shown in Table 1 with the solutions $\mathsf{x}(k) = (x_1(k), x_2(k))^{\mathsf{T}}$ defined by them being visualized in Figure [1](#page-0-0) by a sequence of points $(k, x_1(k), x_2(k))$, where $k \ge -3$, fitted with a line (represented by a suitable spline with the corresponding colour).

Table: 1

Initial values given by $C_1 = C_2 = 0$.

Figure: Solutions of the problem $(33) - (34)$ $(33) - (34)$ $(33) - (34)$.

Moreover, if values of C_1 , C_2 are arbitrary but fixed, then equations (42) , (43) determine the sets of the initial values generating the same solutions for $k\in\mathbb{Z}_3^\infty$ $_{3}^{\infty}.$

That is, after three steps, such solutions, although defined by different initial data, are merged into a single solution.

Finally, for $k \in \mathbb{Z}_3^\infty$ $_{3}^{\infty}$, a non-delayed system (24) with the matrix

$$
G = \begin{pmatrix} 2 & 6 \\ 0 & 1 \end{pmatrix}
$$

has the same solutions as the system (35) , (36) and, for $k\in\mathbb{Z}_3^\infty$ $_{3}^{\infty}$, solutions $x(k) = \mathcal{Tw}(k)$ coincide with solutions of system [\(33\)](#page-0-0), [\(34\)](#page-0-0).

Thank you for your attention!