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Abstract

Weakly delayed planar linear discrete systems with multiple delays

x(k + 1) = Dx(k) +
∑n

l=1
H lx(k −ml), k = 0, 1, . . .

are considered where 0 < m1 < m2 < · · · < mn are fixed integers, D,

H1, . . . , Hn are nonzero 2× 2 real constant matrices and

x : {−mn,−mn + 1, . . . } → R2.

Formulas for general solutions are found and simplified, equivalent

non-delayed planar linear discrete systems are constructed and

conditional stability is analyzed.
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Introduction

The notation used throughout the paper is the following: Θ is the zero

2× 2 matrix, E is the unit 2× 2 matrix, θ is the zero 2× 1 vector and,

for integers s, q , s ≤ q, Zq
s = {s, s + 1, . . . , q}. The set Z∞s is

defined in much the same way.

In the paper, weakly delayed (WD) discrete planar systems with

multiple delays

x(k + 1) = Dx(k) +
∑n

l=1
H lx(k −ml) (1)

are considered, where m1,m2, . . . ,mn are fixed integer delays,

0 < m1 < m2 < · · · < mn (in the sequel, we will write m for short

rather than mn if this does not cause ambiguity), k ∈ Z∞0 ,

D,H1, ...,Hn are constant 2× 2 matrices, D = {dij}2
i ,j=1, detD 6= 0,

H l = {hlij}2
i ,j=1 6= Θ, l = 1, 2, . . . , n, n ≥ 1, and x : Z∞−m → R2.



The function x in (1) is called a solution if the equation holds for every

k ∈ Z∞0 . A unique solution of (1) can be determined by an initial

problem

x(k) = ξ(k), k = −m,−m + 1, . . . , 0 (2)

with given function ξ : Z0
−m → R2.



WD systems

The system (1) is a WD system if, for every µ ∈ C \ {0},

D(µ) ≡ det (D − µE ) , (3)

where

D(µ) := det
(
D +

∑n

l=1
µ−mlH l − µE

)
.

If we look for a solution of (1) in the form x(k) = χµk , k ∈ Z∞−m,

where µ = const, µ 6= 0 and χ is a nonzero constant vector, then the

characteristic equations D(µ) = 0 to system (1) and

x(k + 1) = Dx(k)

are equivalent. Since the value µ = 0 is excluded, throughout the

paper we assume that no eigenvalue of D equals zero. This is

guaranteed by the assumption detD 6= 0. WD systems are invariant to

nonsingular transformations.

From formula (3), the following criterion can be derived.



Theorem

System (1) is a WD system if and only if

hl11 + hl22 = 0,

∣∣∣∣hl11 hl12

hv21 hv22

∣∣∣∣ = 0,

∣∣∣∣d11 d12

hl21 hl22

∣∣∣∣ +

∣∣∣∣hl11 hl12

d21 d22

∣∣∣∣ = 0 (4)

where l , v = 1, 2, . . . , n.



Coefficient criteria for WD systems

Assume that, after a suitable transformation,

x(k) = T y(k) (5)

with 2× 2 regular matrix T , WD system (1) is transformed to a new

WD system

y(k + 1) = J (D)y(k) +
∑n

l=1
H∗ly(k −ml), k ∈ Z∞0 , (6)

where J (D) = T −1DT is the Jordan form of D and H∗l = T −1H lT ,

H∗l = {h∗lij }2
i ,j=1, l = 1, . . . , n.

Initial data to (6) can be derived from (2) and (5) by the formula

y(k) = η(k) := T −1ξ(k), k = −m,−m + 1, . . . , 0. (7)

In the following, we will use the notation

ωl
i (s) := h∗li1η1(s) + h∗li2η2(s), (8)

where i = 1, 2, s = −m, . . . , 0, l = 1, . . . , n.



Coefficient criteria for detecting a WD system for every possible Jordan

form can be deduced.

If the characteristic equation D(µ) = 0 has two real distinct roots µ1,

µ2, then

J (D) = J1 :=

(
µ1 0

0 µ2

)
,

in the case of one double real root µ, we have either

J (D) = J2 :=

(
µ 0

0 µ

)
if µ has geometrical multliplicity 2 or

J (D) = J3 :=

(
µ 1

0 µ

)
if µ has geometrical multiplicity 1, and, finally, if the roots are complex

conjugate, i.e. µ1,2 = α± iβ with β 6= 0, then

J (D) = J4 :=

(
α β

−β α

)
.



If J (D) = J1, the necessary and sufficient conditions (4) for

system (6) are reduced to

h∗l11 = h∗l22 = 0, h∗l12h
∗v
21 = 0, (9)

where l , v = 1, 2, . . . , n. Condition H l 6= Θ, l = 1, 2, . . . , n and (9)

imply the following. If h∗l12 = 0 for a value l , then h∗v21 6= 0 for all

v = 1, 2, . . . , n.

If J (D) = J2, the necessary and sufficient conditions (4) for

system (6) are reduced to

h∗l11 + h∗l22 = 0, h∗l11h
∗v
22 − h∗l12h

∗v
21 = 0, (10)

where l , v = 1, 2, . . . , n.



If J (D) = J3, the necessary and sufficient conditions (4) for

system (6) are reduced to

h∗l11 = h∗l22 = h∗l21 = 0, l = 1, 2, . . . , n. (11)

Then, h∗l12 6= 0, l = 1, 2, . . . , n since, in the opposite case, H l = Θ,

l = 1, 2, . . . , n, and this is a contradiction with our assumptions.

Let J (D) = J4. Then, there exists no WD system (1). The necessary

and sufficient conditions (4) imply h∗l11 = h∗l22 = h∗l21 = h∗l12 = 0,

l = 1, 2, . . . , n.

This is a contradiction with the assumption H l 6= Θ, l = 1, 2, . . . , n.



General Solutions of WD Systems

Theorem
Let J (D) = J1. Then, the problem (1), (2) has a solution

x(k) = T y(k), y(k) = (y1(k), y2(k))T , k ∈ Z∞−m

and, for k ∈ Z∞0 ,

y1(k) = µk1η1(0) +
η2(0)

µ1 − µ2

∑n

l=1
h∗l12

(
k −ml

0

)[
µ
k−ml
1 − µk−ml

2

]
+
∑n

l=1
h∗l12

∑ml

s=1
η2(−ml − 1 + s)

(
k − s

0

)
µk−s1 , (12)

y2(k) = µk2η2(0) +
η1(0)

µ1 − µ2

∑n

l=1
h∗l21

(
k −ml

0

)[
µ
k−ml
1 − µk−ml

2

]
+
∑n

l=1
h∗l21

∑ml

s=1
η1(−ml − 1 + s)

(
k − s

0

)
µk−s2 . (13)



Theorem
Let J (D) = J2. Then, the problem (1), (2) has a solution

x(k) = T y(k), y(k) = (y1(k), y2(k))T , k ∈ Z∞−m

and, for k ∈ Z∞0 ,

y1(k) = µkη1(0) +
∑n

l=1

[∑ml

s=1
ωl

1(−ml − 1 + s)

(
k − s

0

)
µk−s

]
+
∑n

l=1
(k −ml)

(
k −ml

0

)
ωl

1(0)µk−ml−1, (14)

y2(k) = µkη2(0) +
∑n

l=1

[∑ml

s=1
ωl

2(−ml − 1 + s)

(
k − s

0

)
µk−s

]
+
∑n

l=1
(k −ml)

(
k −ml

0

)
ωl

2(0)µk−ml−1. (15)



Theorem
Let J (D) = J3. Then, the problem (1), (2) has a solution

x(k) = T y(k), y(k) = (y1(k), y2(k))T , k ∈ Z∞−m

and, for k ∈ Z∞0 ,

y1(k) = µkη1(0) + kµk−1η2(0)

+
∑n

l=1

[∑ml

s=1
ωl

1(−ml − 1 + s)

(
k − s

0

)
µk−s

]
+
∑n

l=1
(k −ml)

(
k −ml

0

)
ωl

1(0)µk−ml−1 (16)

and

y2(k) = µkη2(0). (17)



Simple Formulas for General Solutions

The case J (D) = J1

C1 := η1(0) +
η2(0)

µ1 − µ2

∑n

l=1
h∗l12µ

−ml
1

+
∑n

l=1
h∗l12

∑ml

s=1
η2(−ml − 1 + s)µ−s1 , (18)

C2 := η2(0)− η1(0)

µ1 − µ2

∑n

l=1
h∗l21µ

−ml
2

+
∑n

l=1
h∗l21

∑ml

s=1
η1(−ml − 1 + s)µ−s2 . (19)



Theorem

Let J (D) = J1. Then, the problem (1), (2) has a solution

x(k) = T y(k), y(k) = (y1(k), y2(k))T , k ∈ Z∞−m and, for k ∈ Z∞m ,

y1(k) = C1µ
k
1 − C2

µk2
µ1 − µ2

∑n

l=1
h∗l12µ

−ml
2 , (20)

y2(k) = C1
µk1

µ1 − µ2

∑n

l=1
h∗l21µ

−ml
1 + C2µ

k
2, (21)

where C1, C2 are arbitrary parameters connected with arbitrary initial

values (2) through formulas (7), (18), (19).



The case J (D) = J2

Theorem
Let J (D) = J2. Assume h∗111 6= 0. Then, the problem (1), (2) has a

solution x(k) = T y(k), y(k) = (y1(k), y2(k))T , k ∈ Z∞−m and, for

k ∈ Z∞m ,

y1(k) = C1µ
k + C2

(∑n

l=1
h∗l11µ

−ml−1
)
kµk , (22)

y2(k) = (h∗111/h
∗1
12) (−C1 + C2)µk

− (h∗111/h
∗1
12)C2

(∑n

l=1
h∗l11µ

−ml−1
)
kµk , (23)

where C1, C2 are arbitrary parameters.



Theorem
Let J (D) = J2. Assume h∗111 = 0. Then, the problem (1), (2) has a

solution x(k) = T y(k), y(k) = (y1(k), y2(k))T , k ∈ Z∞−m and, for

k ∈ Z∞m ,

y1(k) = C1µ
k + C2kµ

k
n∑

l=1

h∗l12µ
−ml−1,

y2(k) = C2µ
k + C1kµ

k
n∑

l=1

h∗l21µ
−ml−1,

where C1, C2 are arbitrary parameters.



The case J (D) = J3

Theorem
Let J (D) = J3. Then, the problem (1), (2) has a solution

x(k) = T y(k), y(k) = (y1(k), y2(k))T , k ∈ Z∞−m and, for k ∈ Z∞m ,

y1(k) = C1µ
k + C2kµ

k−1

[
1 +

n∑
l=1

h∗l12µ
−ml

]
,

y2(k) = C2µ
k ,

where C1, C2 are arbitrary parameters.



Merging of solutions

Theorem
Let J (D) = J1. Let constants C1 := C ∗1 and C2 := C ∗2 be fixed. If the

initial values (7) satisfy

η1(0)+
η2(0)

µ1 − µ2

∑n

l=1
h∗l12µ

−ml
1

+
∑n

l=1
h∗l12

∑ml

s=1
η2(−ml − 1 + s)µ−s1 = C ∗1 ,

η2(0)− η1(0)

µ1 − µ2

∑n

l=1
h∗l21µ

−ml
2

+
∑n

l=1
h∗l21

∑ml

s=1
η1(−ml − 1 + s)µ−s2 = C ∗2 ,

then these initial values define, for k ∈ Z∞m , the same solutions of (1).



Theorem
Let J (D) = J2. Assume h∗111 6= 0. Let constants

C1 := C ∗1 , C2 := C ∗2

be fixed. If the initial values (7) satisfy

η1(0)

+
∑n

l=1

[
−mlω

l
1(0)µ−ml−1 +

∑ml

s=1
ωl

1(−ml − 1 + s)µ−s
]

= C ∗1 ,

ωl
1(0)/h∗11 = C ∗2 ,

then these initial values define, for k ∈ Z∞m , the same solutions of (1).



Theorem
Let J (D) = J2. Assume h∗111 = 0. Let constants

C1 := C ∗1 , C2 := C ∗2

be fixed. If the initial values (7) satisfy

η1(0) +
∑n

l=1
h∗l12

[
−mlη2(0)µ−ml−1 +

∑ml

s=1
η2(−ml − 1 + s)µ−s

]
= C ∗1 ,

η2(0) +
∑n

l=1
h∗l21

[
−mlη1(0)µ−ml−1 +

∑ml

s=1
η1(−ml − 1 + s)µ−s

]
= C ∗2 ,

then these initial values define, for k ∈ Z∞m , the same solutions of (1).



Theorem
Let J (D) = J3. Let constants

C1 := C ∗1 , C2 := C ∗2

be fixed. If initial values (7) satisfy

η1(0)

+
∑n

l=1
h∗l12

[∑ml

s=1
η2(−ml − 1 + s)µ−s − η2(0)

∑n

l=1
mlµ

−ml−1
]

= C ∗1 ,

η2(0) = C ∗2 ,

then these initial values define, for k ∈ Z∞m , the same solutions of (1).



Non-delayed Systems
Equivalent to WD Systems

Consider a non-delayed planar linear discrete system

w(k + 1) = Gw(k), k ∈ Z∞m (24)

where G = {gij}2
i ,j=1,2.

Theorem
Let J (D) = J1. Then, for k ∈ Z∞m , the general solution of the

problem (1) is given by the formula x(k) = T w(k), where

w(k) = (w1(k),w2(k))T is the general solution of non-delayed

system (24) and G is concretized as follows,

G :=

(
µ1

∑n
l=1 h

∗l
12µ
−ml
2∑n

l=1 h
∗l
21µ
−ml
1 µ2

)
. (25)



Theorem
Let J (D) = J2. Assume h∗111 6= 0. Then, for k ∈ Z∞m , the general

solution of the problem (1) is given by the formula x(k) = T w(k),

where w(k) = (w1(k),w2(k))T is the general solution of non-delayed

system (24) and G is concretized as follows,

G :=

(
µ +

∑n
l=1 h

∗l
11µ
−ml h∗112(h∗111)−1

∑n
l=1 h

∗l
11µ
−ml

h∗111(h∗112)−1
∑n

l=1 h
∗l
22µ
−ml µ +

∑n
l=1 h

∗l
22µ
−ml

)
.

Theorem
Let J (D) = J2. Assume h∗111 = 0. Then, for k ∈ Z∞m , the general

solution of the problem (1) is given by formula x(k) = T w(k), where

w(k) = (w1(k),w2(k))T is the general solution of non-delayed

system (24) and G is concretized as follows,

G :=

(
µ

∑n
l=1 h

∗l
12µ
−ml∑n

l=1 h
∗l
21µ
−ml µ

)
.



Theorem
Let J (D) = J3. Then, for k ∈ Z∞m , the general solution of the

problem (1) is given by the formula x(k) = T w(k), where

w(k) = (w1(k),w2(k))T is the general solution of non-delayed

system (24) and G is concretized as follows,

G :=

(
µ 1 +

∑n
l=1 h

∗l
12µ
−ml

0 µ

)
.



Conditional Stability

Definition
An unstable trivial solution of (1) is said to be conditionally stable

(CS) if, given ε > 0, there exists a δ > 0 such that every initial

function ξ(k), k ∈ Z 0
−m where ‖ξ(r)‖ < δ, r = −m, . . . , 0 defines a

solution x to (1) satisfying ‖x(k)‖ < ε for all k > 0, provided that the

coordinates

(ξ(−m), ξ(−m + 1), . . . , ξ(0)) ∈M ⊂ R2(m+1),

where M is a set of the initial values and 1 ≤ dimM < 2(m + 1).

If, moreover, limk→∞ ‖x(k)‖ = 0, we say that the trivial solution is

conditionally asymptotically stable (CAS).



Theorem
Let J (D) = J1.

(i) If

η1(0) +
η2(0)

(µ1 − µ2)

∑n

l=1
h∗l12µ

−ml
1

+
∑n

l=1
h∗l12

∑ml

s=1
η2(−ml − 1 + s)µ−s1 = 0, (26)

then, the trivial solution is CS if |µ2| ≤ 1 and CAS if |µ2| < 1.

(ii) If

η2(0)− η1(0)

µ1 − µ2

∑n

l=1
h∗l21µ

−ml
2

+
∑n

l=1
h∗l21

∑ml

s=1
η1(−ml − 1 + s)µ−s2 = 0, (27)

then the trivial solution is CS if |µ1| ≤ 1 and CAS if |µ1| < 1.

(iii) If (26) and (27) both hold, then the trivial solution is CAS.



Theorem
Let J (D) = J2. Assume h∗111 6= 0.

(i) If

η1(0) +
∑n

l=1

∑ml

s=1
ωl

1(−ml − 1 + s)µ−s = 0, (28)

ω1
1(0) = 0, (29)

then, the trivial solution is CAS.

(ii) If |µ| = 1 and (29) holds, then the trivial solution is CS.

(iii) If |µ| = 1 and
∑n

l=1 h
∗l
11µ
−ml−1 = 0, then the trivial solution is

stable.



Theorem
Let J (D) = J2. Assume h∗111 = h∗112 = 0.

(i) If

η1(0) = 0, (30)

η2(0) +
∑n

l=1
h∗l21

∑ml

s=1
η1(−ml − 1 + s)µ−s = 0,

then, the trivial solution is CAS.

(ii) If |µ| = 1 and (30) holds, then the trivial solution is CS.

(iii) If |µ| = 1 and
∑n

l=1 h
∗l
21µ
−ml = 0, then the trivial solution is stable.



Theorem
Let J (D) = J2. Assume h∗111 = h∗121 = 0.

(i) If

η1(0) +
∑n

l=1
h∗l12

∑ml

s=1
η2(−ml − 1 + s)µ−s = 0, (31)

η2(0) = 0, (32)

then, the trivial solution is CAS.

(ii) If |µ| = 1 and (32) holds, then the trivial solution is CS.

(iii) If |µ| = 1 and
∑n

l=1 h
∗l
12µ
−ml = 0, then the trivial solution is stable.

Theorem
Let J (D) = J3.

(i) If (31), (32) both hold, then the trivial solution is CAS.

(ii) If |µ| = 1 and (32) holds, then, the trivial solution is CS.

(iii) If |µ| = 1 and
∑n

l=1 h
∗l
12µ
−ml = −1, then the trivial solution is

stable.



Example

Let a system (1), where n = 3, m1 = 1, m2 = 2 and m = m3 = 3, be

of the form

x1(k + 1) = 3x1(k) + x2(k) + x1(k − 1) + x2(k − 1)

+ 2x1(k − 2) + 2x2(k − 2) + 3x1(k − 3)

+ 3x2(k − 3), (33)

x2(k + 1) =−2x1(k) − x1(k − 1)− x2(k − 1)

− 2x1(k − 2)− 2x2(k − 2)− 3x1(k − 3)− 3x2(k − 3).

(34)

We have

D =

(
3 1

−2 0

)
, H1 =

(
1 1

−1 −1

)
, H2 = 2H1, H3 = 3H1

and µ1 = 2, µ2 = 1.



Transforming (33), (34) by (5) where

T =

(
1 −1

−1 2

)
, T −1 =

(
2 1

1 1

)
we derive a system of the type (6)

y1(k + 1) = 2y1(k) + y2(k − 1) + 2y2(k − 2) + 3y2(k − 3), (35)

y2(k + 1) = y2(k) (36)

where

J (D) = J1 =

(
2 0

0 1

)
, H∗1 =

(
0 1

0 0

)
, H∗2 = 2H∗1, H∗3 = 3H∗1.



System (12), (13) reduces, for k ≥ m = 3, to

y1(k) = 2k
[
η1(0) +

11

8
η2(0) +

11

8
η2(−1) +

7

4
η2(−2) +

3

2
η2(−3)

]
− 6η2(0), (37)

y2(k) = η2(0). (38)



We can write (37), (38) in the form

y1(k) = C12k − 6C2, y2(k) = C2 (39)

where C1, C2 are arbitrary parameters defined by (37), (38) as

C1 = η1(0) +
11

8
η2(0) +

11

8
η2(−1) +

7

4
η2(−2) +

3

2
η2(−3),

C2 = η2(0)

and η1(0), η2(k), k = −3,−2,−1, 0 are connected with initial data (2)

through formula (7), i.e.,

η(k) =

(
η1(k)

η2(k)

)
:= T −1ξ(k)

=

(
2 1

1 1

)(
ξ1(k)

ξ2(k)

)
=

(
2ξ1(k) + ξ2(k)

ξ1(k) + ξ2(k)

)
. (40)



If k ≥ 3 from (5) and (39), we derive

x1(k) = C12k − 7C2, x2(k) = −C12k + 8C2 (41)

and arbitrary parameters C1, C2 can be expressed through the initial

values (2) as

C1 =
27

8
ξ1(0) +

19

8
ξ2(0) +

11

8
(ξ1(−1) + ξ2(−1))

+
7

4
(ξ1(−2) + ξ2(−2))

+
3

2
(ξ1(−3) + ξ2(−3)) , (42)

C2 = ξ1(0) + ξ2(0). (43)

Some of the initial values given by C1 = C2 = 0 are shown in Table 1

with the solutions x(k) = (x1(k), x2(k))T defined by them being

visualized in Figure 1 by a sequence of points (k, x1(k), x2(k)), where

k ≥ −3, fitted with a line (represented by a suitable spline with the

corresponding colour).



Table: 1

Initial values given by C1 = C2 = 0.

colouring ξ1(−3) ξ2(−3) ξ1(−2) ξ2(−2) ξ1(−1) ξ2(−1) ξ1(0) ξ2(0)

red 1 −3 0 −1 14/11 0 3 −3
blue 1 −3 1 0 0 -14/11 3 −3
green 1 −3 0 −2 28/11 0 3 −3
yellow 1 −3 0 2 0 -28/11 3 −3



Figure: Solutions of the problem (33) – (34).



Moreover, if values of C1, C2 are arbitrary but fixed, then

equations (42), (43) determine the sets of the initial values generating

the same solutions for k ∈ Z∞3 .

That is, after three steps, such solutions, although defined by different

initial data, are merged into a single solution.

Finally, for k ∈ Z∞3 , a non-delayed system (24) with the matrix

G =

(
2 6

0 1

)
has the same solutions as the system (35), (36) and, for k ∈ Z∞3 ,

solutions x(k) = T w(k) coincide with solutions of system (33), (34).



Thank you for your attention!


