Two-parameters formulas for general
solution to planar weakly delayed linear
discrete systems with multiple delays,
equivalent non-delayed systems, and
conditional stability

Josef Diblik,

IMDETA seminar October 2024



Abstract

Weakly delayed planar linear discrete systems with multiple delays

x(k +1) Z x(k—m), k=0,1,...

are considered where 0 < my < mp < --- < m, are fixed integers, D,
HY ... H" are nonzero 2 x 2 real constant matrices and

x: {—my,—m,+1,...} = R2

Formulas for general solutions are found and simplified, equivalent
non-delayed planar linear discrete systems are constructed and
conditional stability is analyzed.
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Introduction

The notation used throughout the paper is the following: © is the zero
2 X 2 matrix, E is the unit 2 X 2 matrix, 6 is the zero 2 x 1 vector and,
for integers s, q, s <q, Z={s,s+1,...,q}. Theset ZX is
defined in much the same way.

In the paper, weakly delayed (WD) discrete planar systems with
multiple delays

x(k+1) = +Z H'x(k — m) (1)

are considered, where my, mo, ..., m, are fixed integer delays,

0<m <my<---<m,(inthe sequel, we will write m for short

rather than m, if this does not cause ambiguity), k € Zg°,

D H, . H” are constant 2 X 2 matrices, D = {dj;}? ij—1, det D # 0,
{h s 70, 1=12...,nn>1 and x: Z*, — R



The function x in (1) is called a solution if the equation holds for every

k € Z¢°. A unique solution of (1) can be determined by an initial
problem

x(k) =¢&(k), k=—-—m,—m+1,....0 (2)
with given function &: Z° —— R?.



WD systems

The system (1) is a WD system if, for every pn € C\ {0},
D(p) = det (D — pE), (3)

where ;
D(p) = det (D + 2/1 pmMH — ,LLE) :

If we look for a solution of (1) in the form x(k) = yu*, k € Z>_,
where 1 = const, u # 0 and x is a nonzero constant vector, then the
characteristic equations D(u) = 0 to system (1) and

x(k + 1) = Dx(k)

are equivalent. Since the value 1 = 0 is excluded, throughout the
paper we assume that no eigenvalue of D equals zero. This is
guaranteed by the assumption det D = 0. WD systems are invariant to
nonsingular transformations.

From formula (3), the following criterion can be derived.



Theorem

System (1) is a WD system if and only if

dip di
hy b

/ /
hll h12
v v
h21 h22

hiy hi
hyy + hy =0, =0, d; dz =0 (4)

where [,v =1,2,...,n.



Coefficient criteria for WD systems
Assume that, after a suitable transformation,
x(k) = Ty(k) (5)

with 2 x 2 regular matrix 7, WD system (1) is transformed to a new
WD system

y(k+1) = +Z H'y(k —m)), k€ Z¥,  (6)

where J(D) = T DT is the Jordan form of D and H* = T H/T,
HY ={hl}2 1, 1=1,...,n

ij=1
Initial data to (6) can be derived from (2) and (5) by the formula
y(k) = (k) = TYEK), k=—m-m+1...0. (7)

In the following, we will use the notation

wi(s) :== hiim(s) + hma(s). (8)

where i =1,2, s=—-—m,...,0,/=1,...,n.



Coefficient criteria for detecting a WD system for every possible Jordan
form can be deduced.
If the characteristic equation D(11) = 0 has two real distinct roots 11,

{1, then
D)=, = ! O)

in the case of one double real root 11, we have either

if 11 has geometrical multiplicity 1, and, finally, if the roots are complex
conjugate, i.e. p1o = a £ if with 8 # 0, then

J(D) = Ty := (_0‘5 i) .



If J(D) = J1, the necessary and sufficient conditions (4) for
system (6) are reduced to

il = hyy =0, hishyl =0, (9)

where [, v =1,2,...,n. Condition H' #£©, 1 =1,2,...,nand (9)
imply the following. If hi} = 0 for a value /, then h3Y % 0 for all
v=12...,n.

If J(D) = J>, the necessary and sufficient conditions (4) for
system (6) are reduced to

hiy + h3 = 0. hithyy — hiphy) =0, (10)

where [,v =1,2,...,n.



If J(D) = J3, the necessary and sufficient conditions (4) for
system (6) are reduced to

hil=hmbh=h =0 1=1,2,... n (11)

Then, A1, #0, I =1,2,...,n since, in the opposite case, H' = ©,
I =1,2....,n, and this is a contradiction with our assumptions.

Let 7 (D) = Js4. Then, there exists no WD system (1). The necessary
and sufficient conditions (4) imply Al = h3) = k3l = h}} =
I=1,2.....n

This is a contradiction with the assumption H' #©, I =1,2,....n



General Solutions of WD Systems

Theorem
Let J(D) = J1. Then, the problem (1), (2) has a solution

X(k) - TY(k)v Y(k) - (yl(k)7y2(k))T7 k € Z(iom

and, for k € Zg°,

n 0 n * k_m/ —m —m
) = () + 2O 57 (47 [t

M1 — H2

1) = @) + O 5 gt (™)

M1 — K2

n « my k — S e
+Z/:1 har s=1 nl(_m,—1+s)< 0 )Mé - (13)



Theorem
Let J(D) = J,. Then, the problem (1), (2) has a solution

X(k) — Ty(k)v Y(k) - (Y1(k)7Y2(k))T7 k € Ziom
and, for k € Zg°,

n(k) = pm(0) + 3" 1[25 o m/_lﬂ)(kgs)uks]
+Z (k — my <k—0m/)w{(0)/ﬂm/1, (14)

ya(k) = p*na(0) + 27:1 [Zjll wao=m =1+ 3) (k ; 5) M“]
DRI Wl FIOMEEN



Theorem
Let J(D) = J5. Then, the problem (1), (2) has a solution

X(k) — Ty(k)v Y(k) — (Y1(k)7Y2(k))T7 k € Ziom
and, for k € Zg°,
yi(k) = 1*ni(0) + k" n(0)

[ e m g (* )]
+ Z;(k — my) (k _Oml> wy (0)pk—m=1 (16)

and
ya(k) = pfn2(0). (17)



Simple Formulas for General Solutions
The case J(D) = 71

o 772(0) n x[ —m
G ==m(0) + n— Z,Zl hiatty

n * M -5
) Y m(=m =1 s)ug (18)

771(0) n x[ —m
G == mp(0) — g h /
> 1= 1(0) 11 — iy At 21H2

n * M —S
> m Y m(em =14 s)uy” (19)



Theorem

Let J(D) = J1. Then, the problem (1), (2) has a solution
x(k) = Ty(k), y(k) = (y1(k), y2(k))", k € Z*,, and, for k € 7,

k
lu n * —m
yi(k) = Gpf — G—=2 Z,_l Y (20)

/“Ll n x/ —m k
k)= C § h '+ G, 21
y2(k) 1#1 ~ iy A= 21H1 2142 (21)

where C;, C, are arbitrary parameters connected with arbitrary initial
values (2) through formulas (7), (18), (19).



The case J(D) = J»

Theorem

Let J(D) = Jp. Assume hii # 0. Then, the problem (1), (2) has a
solution x(k) = Ty(k), y(k) = (y1(k), y2(k))", k € Z*_ and, for
k € 727,

n(k) = Gk + G (Zl—l hﬂ/ﬁ_m’_1> kp”, (22)

yo(k) = (hi1/hi3) (-G + G)
— (/BN (D Rl kit (23)

where C;, C, are arbitrary parameters.



Theorem
Let J(D) = J,. Assume hi} = 0. Then, the problem (1), (2) has a

solution x(k) = Ty(k), y(k) = (y1(k), y2(k))", k € Z>°_ and, for
k e 727,

yi(k) = G + Czk,ukzhlzﬂ -

= 1

ya(k) = G +C1k,uk2h21,u -
/=1

where C;, C, are arbitrary parameters.



The case J (D) = J3

Theorem
Let J(D) = Js. Then, the problem (1), (2) has a solution
x(k) = Ty(k), y(k) = (v1(k), y2(k))", k € Z%, and, for k € Z,

1+ hi‘éu"”] ,

=1

yi(k) = Gk + Gk

yo(k) = G,

where C1, G, are arbitrary parameters.



Merging of solutions

Theorem
Let J(D) = J1. Let constants C; := C; and G, := C; be fixed. If the

initial values (7) satisfy

Up) 0 n —m
771(0)+ 0 Z/ 1h1£,u1 /

— M2
+Z,1 o (=m =14 s = G
. 771(0) n x[  —m
12(0) — Z, ) h21M2
+Zl1 =1 1( m/—1+5),LL2 :C27

then these initial values define, for k € 7.7, the same solutions of (1).



Theorem
Let J(D) = J,. Assume hi} # 0. Let constants

Cl = Cl*, C2 = CQ*
be fixed. If the initial values (7) satisfy

11(0)

—my—1 mi / . . -S| _— *
—I—Z [ mywi(0) +Zszlw1( m —1+s)u Cy,

wi(0)/hiy = G,

then these initial values define, for k € 7,59, the same solutions of (1).



Theorem
Let J(D) = J,. Assume hi = 0. Let constants

Cl = Cl*, C2 = CQ*
be fixed. If the initial values (7) satisfy

n " —m— my )
mO) + Y kb |—mm(@)u S (== 1+ )]

n * —my— M —
12(0) + Z/:l h1 [—m/m(o)u et Zs:l m(—m —1+s)u S]
=,

then these initial values define, for k € 7.7, the same solutions of (1).



Theorem
Let J(D) = J5. Let constants

Cl = Cl*, C2 = CQ*
be fixed. If initial values (7) satisfy
m(0)

n % my s n o
+ 2/21 hlé [Zs:l Nno(—m; — 1+ s)u™° — n(0) Z/Zl ™ 1]
= Cl*v

772(0) = C2*7

then these initial values define, for k € 7°°, the same solutions of (1).



Non-delayed Systems
Equivalent to WD Systems

Consider a non-delayed planar linear discrete system
w(k +1) = Gw(k), ke Z> (24)

where G = {gj}7,_1,.

Theorem

Let J(D) = J1. Then, for k € Z2°, the general solution of the
problem (1) is given by the formula x(k) = T w(k), where
w(k) = (wi(k), wa(k))" is the general solution of non-delayed
system (24) and G is concretized as follows,

G — < 251 . 27:1 hféﬂzm) . (25)
27:1 hS{M / 2



Theorem

Let J(D) = J,. Assume hii # 0. Then, for k € Z2°, the general
solution of the problem (1) is given by the formula x(k) = T w(k),
where w(k) = (wi(k), wa(k))" is the general solution of non-delayed
system (24) and G is concretized as follows,

oo mrXiahne™ hn(h) T S b
hit(hid) 200l hopp™™ e+ 0 b

Theorem

Let (D) = J». Assume hit = 0. Then, for k € Z°°, the general
solution of the problem (1) is given by formula x(k) = T w(k), where
w(k) = (w1(k), wa(k))" is the general solution of non-delayed
system (24) and G is concretized as follows,

c ( T §:71hﬂu“>.

> 1 ™ i



Theorem

Let J(D) = Js. Then, for k € Z°°, the general solution of the
problem (1) is given by the formula x(k) = T w(k), where
w(k) = (wi(k), wa(k))" is the general solution of non-delayed
system (24) and G is concretized as follows,

G = M 1 + 27:1 hfé/vb_m/
: 0 y .



Conditional Stability

Definition

An unstable trivial solution of (1) is said to be conditionally stable
(CS) if, given € > 0, there exists a § > 0 such that every initial
function £(k), k € Z°,_ where ||E(r)|| < 6, r = —m, ..., 0 defines a
solution x to (1) satisfying ||x(k)|| < € for all k > 0, provided that the
coordinates

(E(=m),E(—=m+1),...,£(0)) € M C RA™HD),

where M is a set of the initial values and 1 < dim M < 2(m + 1).
If, moreover, limy_, ||x(k)|| = 0, we say that the trivial solution is
conditionally asymptotically stable (CAS).



Theorem

Let j(D) = J1.
(i) If
0 "
m(0) + % >, o™

n * M -5
+ lel hs X m(—m —1+s)u;® =0, (26)

S—

then, the trivial solution is CS if |uy| < 1 and CAS if |us| < 1.
(if) If
771(0) n x[ —m
0) — h /
12(0) 0 — o lel 212
n * mi —S
+ lel hzi 1771(—”7/ —1+5)u,”> =0, (27)

S=

then the trivial solution is CS if |p1] <1 and CAS if |u1| < 1.
(iii) If (26) and (27) both hold, then the trivial solution is CAS.



Theorem
Let 7(D) = J>. Assume hii # 0.
(i) If

n my —g
mO)+Y > wil=m—1+s)u =0, (28)

wr(0) = 0, (29)

then, the trivial solution is CAS.

(if) If || = 1 and (29) holds, then the trivial solution is CS.

(iii) If || = 1 and ) hiiu~™~1 = 0, then the trivial solution is
stable.



Theorem
Let 7(D) = Jp. Assume hil = bl = 0.
(i) If

my

m(0) + ) ha

then, the trivial solution is CAS.
(i) If || = 1 and (30) holds, then the trivial solution is CS.

1?71(—”7/ —1+s)u =0,

S—

(30)

(iii) If |u| = 1 and ") hsipu~™ = 0, then the trivial solution is stable.



Theorem
Let (D) = Jp. Assume hi} = hi{ =

(i) If

0)+ Y Y m(—m 148 =0,  (31)
772(0) =0, (32)

then, the trivial solution is CAS.
(if) If || = 1 and (32) holds, then the trivial solution is CS.
(iii) If |u| = 1 and > hihu=™ = 0, then the trivial solution is stable.

Theorem

Let j(D) = j3.

(1) If (31), (32) both hold, then the trivial solution is CAS.

(i) If || = 1 and (32) holds, then, the trivial solution is CS.

(iii) If |p] = 1 and S°]_, hihu=™ = —1, then the trivial solution is
stable.



Example

Let a system (1), where n =3, m; =1, my =2 and m = m3 = 3, be
of the form
x1(k+1) = 3xi(k) + x(k) + x1(k — 1) + xo(k — 1)
+ 2x1(k — 2) + 2x0(k — 2) + 3x1(k — 3)

+3x(k — 3), (33)
XQ(/( + 1) :—2X1(k) — Xl(k — ].) — Xg(k — 1)
— 2X1(k — 2) — 2X2(k — 2) — 3X1(k — 3) — 3X2(k — 3)
(34)
We have
_ 3 1 1 _ 1 1 2 _ 1 3 _ 1
D_<_2 o)’ H _<_1 _1), H?> =2H', H®=3H



Transforming (33), (34) by (5) where

(1 -1 L (21
() )

we derive a system of the type (6)

vilk +1) = 2y1(k) + ya(k — 1) + 2y2(k — 2) + 3ya(k — 3),  (35)
vk +1) = y(k) (36)

where

20 x1 01 *2 x1 x3 x1
J(D) =T (0 1), H (o o)’ H?2 = 2H", 3



System (12), (13) reduces, for k > m = 3, to
11 11 7 3

yi(k) =2 |m(0) + 5772(0) + §772(—1) + 1772(—2) + 5772(—3)

— 6m2(0), (37)

y2(k) = m2(0). (38)



We can write (37), (38) in the form
n(k) = G2 =66, ylk) = G (39)

where C;, G, are arbitrary parameters defined by (37), (38) as

G = 11(0) + (0) + —ora(—1) + Lipa(~2) + i(—3).

3 8 4 2
Co = 12(0)

and 71(0), ma2(k), k = —3,—2, —1,0 are connected with initial data (2)
through formula (7), i.e.,

0 = (10]) =70

m2(k)
- (1) (o) = (et s) - @



If k > 3 from (5) and (39), we derive
xi(k) = G2 = 7G, xo(k) = —CGi2% + 86, (41)

and arbitrary parameters C;, G, can be expressed through the initial
values (2) as

G = 26(0) + 50(0) + 5 (E(-1) + &(-1)

+ 2 (6(-2) + &(-2)

2 (6(-3) + &(-3), (@2
G = &(0) + &(0). (43)

Some of the initial values given by ¢; = (; = 0 are shown in Table 1
with the solutions x(k) = (x;(k), x2(k))" defined by them being
visualized in Figure 1 by a sequence of points (k, x1(k), x2(k)), where
k > —3, fitted with a line (represented by a suitable spline with the
corresponding colour).



Initial values given by GG = G, = 0.

Table: 1

colouring || &1(—3) | £2(—3) || &1(=2) | &(=2) || &i(=1) | &(=1) || &(0) | £(0)
red 1 -3 0 -1 14/11 0 3 -3
blue 1 =3 1 0ol 0 |-14/11| 3 | -3
green 1 -3 0 -2 || 28/11 0 3 -3
yellow 1 -3 0 2 0 -28/11 3 -3




Figure: Solutions of the problem (33)—(34).



Moreover, if values of C;, G, are arbitrary but fixed, then

equations (42), (43) determine the sets of the initial values generating
the same solutions for k € Z5°.

That is, after three steps, such solutions, although defined by different
initial data, are merged into a single solution.

Finally, for k € Z$°, a non-delayed system (24) with the matrix

)

has the same solutions as the system (35), (36) and, for k € Z5°,
solutions x(k) = T w(k) coincide with solutions of system (33), (34).



Thank you for your attention!



