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Problems of interest

We will investigate the asymptotic behaviour of global
solutions (exist on [0, T ] for all T > 0) of problems involving
fractional integrals, integral operators with singular kernels

u(t) = u0 + Iαf(t, u(t)) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s, u(s)) ds

where 0 < α < 1, which corresponds to solutions of a
fractional differential equation

Dα
∗
u(t) = f(t, u(t)), for a.e. t > 0, u(0) = u0.

Dα
∗
u is the Caputo derivative, defined precisely later.
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Problems of interest

We also similarly study

u(t) = u0 + Iαf(t, u(t), Dγ
∗
u(t))

= u0 +
1

Γ(α)

∫ t

0
(t − s)α−1f(s, u(s), Dγ

∗
u(s)) ds.

which corresponds to solution of

Dα
∗
u(t) = f(t, u(t), Dγ

∗
u(t)), for a.e. t > 0, u(0) = u0,

when 0 < γ < α < 1 and f is continuous.
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Problems of interest

We also similarly study

u(t) = u0 + Iαf(t, u(t), Dγ
∗
u(t))

= u0 +
1

Γ(α)

∫ t

0
(t − s)α−1f(s, u(s), Dγ

∗
u(s)) ds.

which corresponds to solution of

Dα
∗
u(t) = f(t, u(t), Dγ

∗
u(t)), for a.e. t > 0, u(0) = u0,

when 0 < γ < α < 1 and f is continuous.
I have done some other problems in the paper, including
some of order between 1 and 2, but I do not discuss them
in this presentation.
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The fractional integral

We consider real valued functions defined on an arbitrary
interval [0, T ], all functions are supposed measurable and
all integrals are Lebesgue integrals.
L1 is the space of integrable functions (defined on [0, T ]
unless specified otherwise), C[0, T ] is the space of
continuous functions, AC[0, T ] is the space of Absolutely
Continuous functions which is the appropriate space for the
fundamental theorem of calculus for Lebesgue integrals:
f ∈ AC if and only if f ′ exists almost everywhere (a.e.) and
belongs to L1 and

f(t) = f(0) +

∫ t

0
f ′(s) ds.
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The fractional integral

For f ∈ L1[0, T ], as are well-known,
If(t) :=

∫ t

0 f(s) ds and I(If)(t) = I2f(t) =
∫ t

0 (t − s) f(s)ds,

I3f(t) =
∫ t

0
(t−s)2

2 f(s)ds so the definition of the
Riemann-Liouville (R-L) fractional integral for a real number
α > 0

Iαf(t) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s) ds

is the natural generalization. The Gamma function is, for
α > 0, given by

Γ(α) :=

∫

∞

0
sα−1 exp(−s) ds,

it extends the factorial function: Γ(n + 1) = n! for n ∈ N.
– p. 4/31



The fractional integral

For Iαf to be defined we want f ∈ L1[0, T ] (at least), then
the formula makes sense for a.e. t.

Iαf(t) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s) ds.

Iαf is the convolution h ∗ f of the L1 functions h, f where
h(t) = tα−1/Γ(α), so, by well known results on convolutions,
Iαf is defined as an L1 function, in particular Iαf(t) is finite
for a.e. t.
When α ≥ 1 this is a regular integral operator, but for
0 < α < 1 there is a singularity along the line t = s.
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Fractional derivatives

The Riemann-Liouville fractional derivative of order
0 < α < 1 of a function u is informally defined by

Dαu(t) = D
(

I1−αu(t)
)

, where Du = u′.

To be a valid and useful definition it is required that
I1−αu ∈ AC.
Then Dαu(t) is defined for a.e. t and is an L1 function.
For higher orders, if m − 1 < β < m the R-L derivative is
defined for a.e. t by Dβu(t) = Dm(Im−βu)(t) provided that
Im−βu ∈ ACm−1 (order m − 1 derivative in AC).
Note that Im−βu is always the case of a singular kernel.
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Fractional derivatives

The Caputo fractional derivative is frequently defined with
the derivative and fractional integral taken in the reverse
order to that of the R-L derivative, that is for order 0 < α < 1,
it is informally defined by

Dα
Cu(t) = (I1−αDu)(t), where Du = u′.

It is required that u ∈ AC, then Dα
Cu is defined for a.e. t.
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Fractional derivatives

This definition has a disadvantage. We want solutions of
the initial value problem (IVP)

Dα
Cu(t) = f(t), u(0) = u0 (with f continuous)

to be given by
u ∈ C[0, T ] and u(t) = u0 + Iαf(t).
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Fractional derivatives

This definition has a disadvantage. We want solutions of
the initial value problem (IVP)

Dα
Cu(t) = f(t), u(0) = u0 (with f continuous)

to be given by
u ∈ C[0, T ] and u(t) = u0 + Iαf(t).

If u ∈ AC satisfies Dα
Cu(t) = f(t), u(0) = u0 then u ∈ C[0, T ]

does satisfy u(t) = u0 + Iαf(t).
Unfortunately Iα does not map all of C[0, T ] into AC[0, T ]
(Weierstrass type function, as shown by Hardy and
Littlewood 1928).
So u ∈ C[0, T ] and u(t) = u0 + Iαf(t) does not imply Dα

Cu

exists without extra (often unwanted) conditions on f .
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Alternative Caputo definition

The way round is to define, for 0 < α < 1 and 1 < β < 2, as
in Diethelm’s well known text, the Caputo fractional operator
(we only use this definition and call it the Caputo derivative)

Dα
∗
u(t) = Dα(u − u0)(t); Dβ

∗
u(t) = Dβ(u − u0 − tu′(0))(t),

under the appropriate conditions for the R-L derivatives to
exist.
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Alternative Caputo definition

NOTE: Fractional integrals commute IαIβf = Iα+βf
(semigroup property) but fractional derivatives do not in
general.

Dα
∗
(Dβ

∗
u) 6= Dβ

∗
(Dα

∗
u) 6= Dα+β

∗
u,

equality can occur but it usually does not.
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Alternative Caputo definition

NOTE: Fractional integrals commute IαIβf = Iα+βf
(semigroup property) but fractional derivatives do not in
general.

Dα
∗
(Dβ

∗
u) 6= Dβ

∗
(Dα

∗
u) 6= Dα+β

∗
u,

equality can occur but it usually does not.
For 0 < α < 1, when u ∈ AC the two definitions coincide,

Dα
Cu(t) = Dα

∗
u(t) for a.e. t. In fact,

Dα
∗
u(t) = DI1−α(u − u0) = DI1−α(Iu′)

= DI I1−αu′ = I1−αu′ = Dα
Cu.

– p. 6/31



Caputo advantages

The main advantages of the Caputo derivative Dα
∗
u over the

R-L derivative are that Dα
∗
(c) = 0 when c is a constant

function (any α > 0), whereas the R-L derivative (for
0 < α < 1) of a constant has a singularity at zero; and initial
value problems for the Caputo derivative are well posed
when initial values are prescribed on the function and its
ordinary derivatives, fractional integrals and derivatives
should be prescribed in the R-L case.
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Caputo advantages

The main advantages of the Caputo derivative Dα
∗
u over the

R-L derivative are that Dα
∗
(c) = 0 when c is a constant

function (any α > 0), whereas the R-L derivative (for
0 < α < 1) of a constant has a singularity at zero; and initial
value problems for the Caputo derivative are well posed
when initial values are prescribed on the function and its
ordinary derivatives, fractional integrals and derivatives
should be prescribed in the R-L case.

Fractional derivatives are nonlocal operators, Dα
∗
u(t)

depends on all values u(s), s ∈ [0, t]. Hence they are used in
models where there are memory effects.
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Some properties of fractional integrals.

Fractional integrals were studied in depth long ago, for
example G. H. Hardy and J. E. Littlewood, Some properties
of fractional integrals. I., Math. Z. 27 (1928), 565–606.
There became renewed interest with the study of fractional
differential equations, which has grown enormously in the
last twenty years.
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Some properties of fractional integrals.

For 0 < α < 1 (the singular kernel case) we list some
properties of the fractional integrals (on a finite interval
[0, T ]).

Iα is a bounded linear operator from Lp[0, T ] into Lp for
all 1 ≤ p ≤ ∞.

For p > 1/α, the fractional integral operator Iα is
bounded from Lp into a Hölder space, that is for f ∈ Lp,
Iαf is Hölder continuous with exponent α − 1/p, thus
Iαf is continuous.
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Some properties of fractional integrals.

For 0 < α < 1 (the singular kernel case) we list some
properties of the fractional integrals (on a finite interval
[0, T ]).

Iα is a bounded linear operator from Lp[0, T ] into Lp for
all 1 ≤ p ≤ ∞.

For p > 1/α, the fractional integral operator Iα is
bounded from Lp into a Hölder space, that is for f ∈ Lp,
Iαf is Hölder continuous with exponent α − 1/p, thus
Iαf is continuous.

Iα maps C[0, T ] into C[0, T ] and AC[0, T ] into AC[0, T ].

Iα does not map C1[0, T ] into C1[0, T ].

Iα does not map C[0, T ] into AC[0, T ] (it maps C[0, T ]

into the Hölder space C0,α).
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Classical Gronwall inequality

THEOREM (Simple version of the classical Gronwall
inequality) Suppose that u ∈ C+[0, T ] satisfies

u(t) ≤ a +
∫ t

0 φ(s)u(s) ds

for t ∈ [0, T ], where a > 0 and φ ∈ L1
+[0, T ]. Then

u(t) ≤ a exp
(

∫ t

0 φ(s) ds
)

for t ∈ [0, T ].

If also φ ∈ L1[0,∞) then u is uniformly bounded for all t > 0.
Subscript + means functions are non-negative.
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Classical Gronwall inequality

THEOREM (Simple version of the classical Gronwall
inequality) Suppose that u ∈ C+[0, T ] satisfies

u(t) ≤ a +
∫ t

0 φ(s)u(s) ds

for t ∈ [0, T ], where a > 0 and φ ∈ L1
+[0, T ]. Then

u(t) ≤ a exp
(

∫ t

0 φ(s) ds
)

for t ∈ [0, T ].

If also φ ∈ L1[0,∞) then u is uniformly bounded for all t > 0.
Subscript + means functions are non-negative.
The proof of this simple case is easy. Let
w(t) := a +

∫ t

0 φ(s)u(s) ds, then w(t) ≥ w(0) = a > 0,
w′(t) = φ(t)u(t) ≤ φ(t)w(t). Thus w′(t)/w(t) ≤ φ(t) which can
be integrated to give the result.
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Singular kernel Gronwall inequality

For Gronwall type inequalities with singular kernels the
pioneering work was done by Dan Henry, Geometric theory
of semilinear parabolic equations. Lecture Notes in
Mathematics, No. 840. Springer-Verlag, Berlin-New York,
1981.
He used an iteration method and gave results as infinite
series. A version of one result is as follows.
THEOREM. Let a, b be positive and let 0 < α < 1. If
u ∈ L∞

+ [0, T ] satisfies the inequality

u(t) ≤ a + b

∫ t

0
(t − s)α−1u(s)ds, t ∈ [0, T ],

then u(t) ≤ aEα(bΓ(α)tα) where Eα is the Mittag-Leffler
function.
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Exponential function version

The Mittag-Leffler function is an entire function of z ∈ C

defined by a power series Eα(z) =
∑

∞

k=0
zk

Γ(αk+1) . The

special case E1(z) is the exponential function.
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Exponential function version

The Mittag-Leffler function is an entire function of z ∈ C

defined by a power series Eα(z) =
∑

∞

k=0
zk

Γ(αk+1) . The

special case E1(z) is the exponential function.

In Nonlinear Evolution Equations–Global Behavior of
Solutions, Lecture Notes in Mathematics, No. 841,
Springer–Verlag, Berlin–New York, 1981

Haraux proved, for the special case α = 1/2, using a
method he attributed to Pazy of reducing to the classical
Gronwall inequality, an estimate involving the exponential
function instead of the Mittag-Leffler function.
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Previous exponential function version

I used the ideas of that proof to extend Haraux’s result to all
α ∈ (0, 1), also with u replaced by t−γu, with 0 < γ < α, in
the paper
JRLW, Weakly singular Gronwall inequalities and
applications to fractional differential equations, J. Math.
Anal. Appl. 471 (2019), 692–711.
To make progress on the asymptotic behaviour I realized
that a more general result was required, and could be done
by the same method.
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Previous exponential function version

I used the ideas of that proof to extend Haraux’s result to all
α ∈ (0, 1), also with u replaced by t−γu, with 0 < γ < α, in
the paper
JRLW, Weakly singular Gronwall inequalities and
applications to fractional differential equations, J. Math.
Anal. Appl. 471 (2019), 692–711.
To make progress on the asymptotic behaviour I realized
that a more general result was required, and could be done
by the same method.
Medved (1997) used Hölder’s inequality and other
techniques to prove a version involving exponential
functions of a different type, not simple enough to write
here. Also Zhu (2020) has used Medved’s ideas to get
some other versions.
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New singular kernel Gronwall inequality

THEOREM. Let a > 0, 0 < β < 1 and let φ be
non-increasing, φ ∈ L1

+[0, T ] for all T > 0. Suppose that
u ∈ C+[0,∞) satisfies the inequality

u(t) ≤ a +

∫ t

0
(t − s)−βφ(s)u(s) ds, for t > 0,

If there exists r ∈ (0, 1) and tr > 0 such that

(I1−βφ)(t) ≤
r

Γ(1 − β)
for 0 ≤ t ≤ tr, then

u(t) ≤
a

1 − r
exp

( 1

tβr (1 − r)

∫ t

0
φ(s) ds

)

, for every t > 0.

– p. 13/31



New singular kernel Gronwall inequality

Moreover, if, in addition, φ ∈ L1
+[0,∞) then

u(t) ≤
a

1 − r
exp

( 1

tβr (1 − r)

∫

∞

0
φ(s) ds

)

,

so that u(t) is uniformly bounded.
Often r1 = 1/2 is an allowed value (as in the next slide)
giving the simpler expression

u(t) ≤ 2a exp
(

2 t−β
r1

∫ t

0
φ(s)ds

)

.
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New singular kernel Gronwall inequality

The result allows φ to have a singularity at 0. A suitable tr
exists for any r ∈ (0, 1) (e.g. r = 1/2) if I1−βφ(t) → 0 as
t → 0+. Example, if for some 0 < η < 1 − β, φ(t) = t−ηv(t), v
bounded for all small t, then

I1−βφ(t) = 1
Γ(1−β)

∫ t

0 (t − s)−βs−ηv(s) ds

= 1
Γ(1−β)t

1−β−η
∫ 1
0 (1 − σ)−βσ−ηv(tσ) dσ,

which proves the limit is 0, since v is bounded and
∫ 1
0 (1 − σ)−βσ−η dσ = B(1 − β, 1 − η). Beta function.
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New singular kernel Gronwall inequality

The result allows φ to have a singularity at 0. A suitable tr
exists for any r ∈ (0, 1) (e.g. r = 1/2) if I1−βφ(t) → 0 as
t → 0+. Example, if for some 0 < η < 1 − β, φ(t) = t−ηv(t), v
bounded for all small t, then

I1−βφ(t) = 1
Γ(1−β)

∫ t

0 (t − s)−βs−ηv(s) ds

= 1
Γ(1−β)t

1−β−η
∫ 1
0 (1 − σ)−βσ−ηv(tσ) dσ,

which proves the limit is 0, since v is bounded and
∫ 1
0 (1 − σ)−βσ−η dσ = B(1 − β, 1 − η). Beta function.

B(p, q) :=
∫ 1
0 (1 − s)p−1sq−1 ds well defined Lebesgue integral

for p > 0, q > 0 and B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
.
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Proof of the Gronwall type inequality

We will use the notation u∗(t) := maxs∈[0,t] u(s). Let t > 0

and let τ ∈ (0, t] be arbitrary (fixed). For τ ≤ tr we have

u(τ) ≤ a+

∫ τ

0
(τ − s)−βφ(s)u(s) ds

≤ a + u∗(t)

∫ τ

0
(τ − s)−βφ(s) ds

= a + Γ(1 − β)
(

I1−βφ
)

(τ)u∗(t) ≤ a + ru∗(t).
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Proof of the Gronwall type inequality

Now we consider the case when τ > tr. We have

u(τ) ≤ a+

∫ τ−tr

0
(τ−s)−βφ(s)u(s) ds+

∫ τ

τ−tr

(τ−s)−βφ(s)u(s) ds.

In the first integral we use the fact that τ − s ≥ tr so that
(τ − s)−β ≤ t−β

r , while in the second integral we use
s ≥ s − (τ − tr) ≥ 0 and the fact that φ is non-increasing.
This gives

u(τ) ≤a +

∫ τ−tr

0
t−β
r φ(s)u∗(s) ds

+ u∗(t)

∫ τ

τ−tr

(τ − s)−βφ(s − (τ − tr)) ds.
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Proof of the Gronwall type inequality

In the second integral we now let σ = s − (τ − tr) and it
becomes

∫ tr

0
(tr − σ)−βφ(σ)dσ = Γ(1 − β)(I1−βφ)(tr) ≤ r.
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Proof of the Gronwall type inequality

In the second integral we now let σ = s − (τ − tr) and it
becomes

∫ tr

0
(tr − σ)−βφ(σ)dσ = Γ(1 − β)(I1−βφ)(tr) ≤ r.

Thus we get

u(τ) ≤ a + b

∫ τ−tr

0
t−β
r φ(s)u∗(s) ds + ru∗(t)

≤ a + b

∫ τ

0
t−β
r φ(s)u∗(s) ds + ru∗(t).
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Proof continuing

With the first part we see that the last equation holds for all
τ ∈ (0, t]. Taking the supτ∈(0,t], we obtain

u∗(t) ≤ a +

∫ t

0
t−β
r φ(s)u∗(s) ds + ru∗(t).

Hence we have

u∗(t) ≤
a

1 − r
+

1

1 − r

∫ t

0
t−β
r φ(s)u∗(s) ds, for all t > 0.
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Proof continuing

This is now the classical Gronwall inequality, and we can
immediately deduce that

u(t) ≤ u∗(t) ≤
a

1 − r
exp

( 1

1 − r
t−β
r

∫ t

0
φ(s)ds

)

, for all t > 0.
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Proof continuing

This is now the classical Gronwall inequality, and we can
immediately deduce that

u(t) ≤ u∗(t) ≤
a

1 − r
exp

( 1

1 − r
t−β
r

∫ t

0
φ(s)ds

)

, for all t > 0.

The uniform boundedness if φ ∈ L1[0,∞) is now obvious.

– p. 15/31



Boundedness property

The following fact will be important in the following
discussions. The non-increasing property of the function is
important for our proof and prevents φ having any spikes.

THEOREM. Let 0 < α < 1 and suppose that φ is
non-increasing, φ ∈ L1

+(0,∞) and there exist t1 > 0 and a
constant M > 0 such that (Iαφ)(t) ≤ M for 0 ≤ t ≤ t1 (no
blow-up at 0). Then Iαφ(t) is uniformly bounded for all t > 0.
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Boundedness property

The following fact will be important in the following
discussions. The non-increasing property of the function is
important for our proof and prevents φ having any spikes.

THEOREM. Let 0 < α < 1 and suppose that φ is
non-increasing, φ ∈ L1

+(0,∞) and there exist t1 > 0 and a
constant M > 0 such that (Iαφ)(t) ≤ M for 0 ≤ t ≤ t1 (no
blow-up at 0). Then Iαφ(t) is uniformly bounded for all t > 0.

The proof uses the same method of splitting the integral as
in the proof of the Gronwall type inequality.
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Boundedness property

The following fact will be important in the following
discussions. The non-increasing property of the function is
important for our proof and prevents φ having any spikes.

THEOREM. Let 0 < α < 1 and suppose that φ is
non-increasing, φ ∈ L1

+(0,∞) and there exist t1 > 0 and a
constant M > 0 such that (Iαφ)(t) ≤ M for 0 ≤ t ≤ t1 (no
blow-up at 0). Then Iαφ(t) is uniformly bounded for all t > 0.

The hypotheses do not imply that Iαφ ∈ L1[0,∞).
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Example

EXAMPLE. Let f(t) = t−γ

1+t
for 0 < γ < 1. Then f ∈ L1[0,∞)

and for 0 < γ < α < 1 we have Iαf(t) → 0 as t → 0+. Iαf is
uniformly bounded but Iαf /∈ L1[0,∞).
In fact,

Iαf(t) =
1

Γ(α)

∫ t

0
(t − s)α−1 s−γ

1 + s
ds

≥
1

Γ(α)

∫ t

0
(t − s)α−1 t−γ

1 + t
ds

=
tα−γ

Γ(α + 1)(1 + t)
,

which shows that Iαf /∈ L1[0,∞) since α − γ > 0.
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Asymptotic behaviour, order α < 1

The asymptotic behaviour of global solutions of a problem
such as

u(t) = u0 + Iαf(t, u(t)),

where 0 < α < 1, clearly depends on the behaviour of
Iαf(t, u(t)) as t → ∞, which depends on the behaviour of
the term f(t, u). Our standard type of hypothesis is that f
has linear growth in the dependent variable, that is
|f(t, u)| ≤ φ(t)(1 + |u|) for suitable φ.
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Asymptotic behaviour, order α < 1

We first study a simple case of the asymptotic behaviour of
solutions (in C[0, T ] for all T > 0) of the integral equation

u(t) = u0 + Iα(f(t, u(t)))

= u0 +
1

Γ(α)

∫ t

0
(t − s)α−1f(s, u(s)) ds,

with 0 < α < 1 and f satisfying |f(t, u)| ≤ φ(t)(1 + |u|). This
corresponds to solutions of

Dα
∗
u(t) = f(t, u(t)), for a.e. t > 0, u(0) = u0.
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Asymptotic behaviour, order α < 1

Our result for this problem is the following.

THEOREM. Let 0 < α < 1, φ ∈ L1
+[0,∞), and let φ be

non-increasing and suppose that Iαφ(t) → 0 as t → 0. Let f
satisfy |f(t, u)| ≤ φ(t)(1 + |u|) for all t ∈ [0,∞) and all u ∈ R.
If u is a global solution of the integral equation

u(t) = u0 + Iαf(t, u(t))

then |u| is uniformly bounded on [0,∞).
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Asymptotic behaviour, order α < 1

Proof. We note that Iαφ(t) ≤ C0 for every t > 0 by the
boundedness property. Then we have

|u(t)| ≤ |u0| +
1

Γ(α)

∫ t

0
(t − s)α−1φ(s)(1 + |u(s)|) ds

≤ |u0| + C0 +
1

Γ(α)

∫ t

0
(t − s)α−1φ(s)|u(s)|) ds.

By the fractional Gronwall inequality, for t1 chosen so that
Γ(α)(Iαφ)(t) < 1/2 for t ≤ t1, we obtain

u(t) ≤ 2(|u0| + C0) exp
(

2tα−1
1

∫ t

0 φ(s) ds
)

, for every t > 0,

hence |u(t)| ≤ 2(|u0| + C0) exp
(

2tα−1
1

∫

∞

0 φ(s) ds
)

, that is |u| is
uniformly bounded.
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f depends on fractional derivatives

We now turn to the much trickier case, when 0 < γ < α < 1,
of global solutions of the integral equation

u(t) = u0 + Iαf(t, u(t), Dγ
∗
u(t))

= u0 +
1

Γ(α)

∫ t

0
(t − s)α−1f(s, u(s), Dγ

∗
u(s)) ds.

This corresponds to solutions of the fractional derivative
equation

Dα
∗
u(t) = f(t, u(t), Dγ

∗
u(t)), for a.e. t > 0, u(0) = u0,
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f depends on fractional derivatives

These can only be equivalent problems in an appropriate
space, in this case

X := {u ∈ C[0, T ], Dγ
∗
u ∈ C[0, T ]}

endowed with the norm ‖u‖X := ‖u‖∞ + ‖Dγ
∗u‖∞. Thus

u ∈ X is equivalent to u ∈ C[0, T ] and I1−γ(u−u0) ∈ C1[0, T ].
We will not discuss existence but assume a global solution
exists, that is we assume that for every T > 0 a solution
exists in the Banach space X.
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Bounded asymptotic behaviour

THEOREM. Let 0 < γ < α < 1. Let f satisfy
|f(t, u, p)| ≤ φ(t)(1 + |u|+ |p|) for all t ∈ [0,∞) and all u, p ∈ R,
where (Iα−γφ)(t) → 0 as t → 0+, and φ(s) and sγφ(s) are
non-increasing L1[0,∞) functions. If u is a global solution of

u(t) = u0 + Iαf(t, u(t), Dγ
∗u(t)),

then |u| and |Dγ
∗u| are uniformly bounded on [0,∞).
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Useful fact

We need the following result.
Let f ∈ L1[0, T ] and α ≥ β > 0. Then

Γ(α)(Iα|f |)(t)

tα
≤

Γ(β)(Iβ |f |)(t)

tβ
for a.e. t ∈ (0, T ).
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Useful fact

We need the following result.
Let f ∈ L1[0, T ] and α ≥ β > 0. Then

Γ(α)(Iα|f |)(t)

tα
≤

Γ(β)(Iβ |f |)(t)

tβ
for a.e. t ∈ (0, T ).

We can suppose f ≥ 0, then for a.e. t we have

Γ(α)Iαf(t) =

∫ t

0
(t − s)α−1f(s) ds =

∫ t

0
tα−1(1 − s/t)α−1f(s) ds

≤

∫ t

0
tα−1(1 − s/t)β−1f(s) ds =

∫ t

0
tα−β(t − s)β−1f(s) ds

= tα−βΓ(β)Iβf(t).
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Proof of Theorem.

If u ∈ X and u(t) = u0 + Iα
(

f(t, u(t), Dγ
∗u(t))

)

, then, using
the useful fact above, we obtain

|u − u0| = |Iα(f)| ≤ Iα|f | ≤ tγΓ(α − γ)Iα−γ |f |,

hence |u| ≤ |u0| + tγΓ(α − γ)Iα−γ |f |.

Also we have, by definition, and the semigroup property that

Dγ
∗
u = D(I1−γ)(u − u0) = D(I1−γIα)f = DIIα−γf = Iα−γf,

and hence |Dγ
∗u(t)| ≤ Iα−γ |f | a.e.
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Proof

We now have

Iα−γ |f | =
1

Γ(α − γ)

∫ t

0
(t − s)α−γ−1|f(s, u(s), Dγ

∗
u(s))| ds

≤
1

Γ(α − γ)

∫ t

0
(t − s)α−γ−1φ(s)(1 + |u(s)| + |Dγ

∗
u(s))| ds

≤
1

Γ(α − γ)

∫ t

0
(t − s)α−γ−1φ(s)×

×
(

1 + |u0| + sγΓ(α − γ)Iα−γ |f | + Iα−γ |f |
)

ds.
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Proof

Write v(t) := Iα−γ |f |(t), then v satisfies the inequality

v(t) ≤
1

Γ(α − γ)

∫ t

0
(t − s)α−γ−1φ(s)×

×
(

1 + |u0| + sγΓ(α − γ)v(s) + v(s)
)

ds,

= (1 + |u0|)(I
α−γφ)(t)

+
1

Γ(α − γ)

∫ t

0
(t − s)α−γ−1φ(s)

(

Γ(α − γ)sγ + 1)
)

v(s) ds
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Proof

Now we note that Iα−γφ is bounded on [0,∞) by the
boundedness property, say Iα−γφ(t) ≤ M for all t ≥ 0. Then

v(t) ≤ M(1+ |u0|)+

∫ t

0
(t− s)α−γ−1φ(s)

(

sγ +
1

Γ(α − γ)

)

v(s) ds.
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Proof

Now we note that Iα−γφ is bounded on [0,∞) by the
boundedness property, say Iα−γφ(t) ≤ M for all t ≥ 0. Then

v(t) ≤ M(1+ |u0|)+

∫ t

0
(t− s)α−γ−1φ(s)

(

sγ +
1

Γ(α − γ)

)

v(s) ds.

By the fractional Gronwall inequality we deduce that,

v(t) ≤ 2M(1 + |u0|) exp
(

2 t1+γ−α
1

∫ t

0
φ(s)

(

sγ +
1

Γ(α − γ)

)

ds
)

,

≤ 2M(1 + |u0|) exp
(

2 t1+γ−α
1

∫

∞

0
φ(s)

(

sγ +
1

Γ(α − γ)

)

ds
)

,

a constant, M1 (say). Since |Dγ
∗u(t)| ≤ Iα−γ |φf | = v(t) this

has proved that |Dγ
∗u(t)| ≤ M1.
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Proof

Next we have u(t) = u0 + Iαf thus |u(t)| ≤ |u0| + Iα|f |. This
gives

|u(t) ≤ |u0| +
1

Γ(α)

∫ t

0
(t − s)α−1|f(s, u(s), Dγ

∗
u(s))| ds

≤ |u0| +
1

Γ(α)

∫ t

0
(t − s)α−1φ(s)(1 + |u(s)| + M1) ds

= |u0| + (1 + M1)I
αφ(t) +

∫ t

0
(t − s)α−1φ(s)|u(s)| ds.
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Proof concluded

Since Iαφ(t) is uniformly bounded, we have

|u(t)| ≤ M2 +

∫ t

0
(t − s)α−1φ(s)|u(s)| ds.

By the fractional Gronwall inequality we deduce that
|u(t)| ≤ M3 for all t > 0. This completes the proof.
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Proof concluded

Since Iαφ(t) is uniformly bounded, we have

|u(t)| ≤ M2 +

∫ t

0
(t − s)α−1φ(s)|u(s)| ds.

By the fractional Gronwall inequality we deduce that
|u(t)| ≤ M3 for all t > 0. This completes the proof.
The apparently more general case when
|f(t, u, p)| ≤ φ(t)(a + b|u| + c|p|) is really the same since
a + b|u| + c|p| ≤ max{a, b, c}(1 + |u| + |p|).

This problem was recently studied by Kassim and Tatar
(Electron. J. Diff. Eqs 2020) and they proved boundedness
of |u| and |Dγ

∗u| assuming f satisfies a special multiplicative
type inequality which seems more restrictive than our sum
inequality.
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Other problems

We also investigated some higher order problems such as
the integral equation

u(t) = u0 + a(t)u1 + Iα+βf(t, u(t)), t > 0,
where a is continuous, u0, u1 are constants, 0 < α, β ≤ 1
with 1 < α + β < 2.
For a(t) = t this arises from seeking solutions of the IVP

Dα+β
∗ (t) = f(t, u(t)), u(0) = u0, u

′(0) = u1,

and for a(t) = tβ with 0 < β < 1 it arises from the similar
problem

Dα
∗
(Dβ

∗u)(t) = f(t, u(t)), u(0) = u0, D
β
∗ (0) = u1Γ(β + 1).
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Other problems

We assume
φ ∈ L1[0,∞), a φ ∈ L1[0,∞), tα+β−1φ(t) ∈ L1[0,∞),
Here the classical Gronwall inequality is sufficient, then φ
does not have to be non-increasing. The result found is
u(t) −

(

u0 + a(t)u1 + Ltα+β−1
)

→ 0 as t → ∞,
where L = 1

Γ(α+β)

∫

∞

0 f(s, u(s)) ds, proved to exist so is a
constant.
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Other problems

We also considered the problem
u(t) = u0 + Iβb1 + Iα+βf(t, u(t), Dγ

∗u(t)),
for 0 < γ ≤ β ≤ 1, 0 < α ≤ α + β − γ < 1 and α + β > 1; (no
ordering between α and β). This corresponds to the
sequential fractional differential problem

Dα
∗

(

Dβ
∗
u(t)

)

= f(t, u(t), Dγ
∗
u(t)), a.e.

u(0) = u0, Dβ
∗
u(0) = b1.

In this case, under some hypotheses, there is L such that
u(t) −

(

u0 + b1

Γ(β+1)t
β + Ltα+β−1

)

→ 0 as t → ∞.

Since α < 1 the term with L can be discarded. This used a
combination of Classical and fractional Gronwall
inequalities.

– p. 28/31



References

K. Diethelm, The analysis of fractional differential
equations. Lecture Notes in Mathematics No. 2004.
Springer-Verlag, Berlin, 2010.
A. Haraux, Nonlinear Evolution Equations, Global Behavior
of Solutions, Lecture Notes in Mathematics, No. 841,
Springer-Verlag, Berlin, New York, 1981
D. Henry, Geometric theory of semilinear parabolic
equations. Lecture Notes in Mathematics, No. 840.
Springer-Verlag, Berlin, New York, 1981
G. H. Hardy and J. E. Littlewood, Some properties of
fractional integrals. I., Math. Z. 27 (1928), 565–606.
M. Medved’, A new approach to an analysis of Henry type
integral inequalities and their Bihari type versions, J. Math.
Anal. Appl. 214, (1997), 349–366.

– p. 29/31



More references

T. Zhu, Fractional integral inequalities and global solutions
of fractional differential equations, Electron. J. Qual. Theory
Differ. Equ. 2020, Paper No. 5, 16 pp.
J. R. L. Webb, Weakly singular Gronwall inequalities and
applications to fractional differential equations, J. Math.
Anal. Appl. 471 (2019), 692–711.
M. D. Kassim, N.-E. Tatar, Convergence of solutions of
fractional differential equations to power-type functions,
Electron. J. Differential Equations, Vol. 2020 (2020), No.
111, 14 pp.
J. R. L. Webb, A fractional Gronwall inequality and the
asymptotic behaviour of global solutions of Caputo
fractional problems, Electron. J. Differential Equations, Vol.
2021, No. 80, 22 pp.

– p. 30/31



Thank you for listening!
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