Wrong *a priori* ideas in the study of boundary value problems and periodic solutions : some personal experiences

Jean Mawhin

Université catholique de Louvain

Wrong a priori ideas in the study of boundary value problems and periodic solutions : some personal experiences – p.1/21

I. Nonresonance conditions for Dirichlet problems : topological vs variational methods

Nonresonance at the first eigenvalue

• $I = [0, \pi], f \in C(I \times \mathbb{R}, \mathbb{R}), F(x, u) := \int_0^u f(x, s) ds$

•
$$-u'' + f(x, u) = 0, \ u(0) = 0 = u(\pi)$$
 (DP)

- Euler-Lagrange eqn for $\varphi(u) := \int_{I} \left[\frac{u'(x)^2}{2} F(x, u(x)) \right] dx$
- thm (LICHTENSTEIN, JRAM, 1915) : (DP) has a solution if $\overline{\lim}_{|u|\to\infty}F(x,u)<\infty$ uniformly in $x\in I$ (L)
- thm (HAMMERSTEIN, AcMa, 1930) : (DP) has a solution if $\overline{\lim}_{|u|\to\infty} \frac{2F(x,u)}{u^2} < 1$ uniformly in $x \in I$ (H)
 - **proof** : Ritz method minimization limit process
- (H) extends $\overline{\lim}_{|u| \to \infty} \frac{f(x,u)}{u} < 1$ uniformly in $x \in I$
- (H) sharp : $-u'' = u + \sin x$, $u(0) = 0 = u(\pi)$ not solvable

A surprising improvement

•
$$g \in C(\mathbb{R}), \ G(u) := \int_0^u g(s) \, ds, \ h \in C(I)$$

- thm (FERNANDES-OMARI-ZANOLIN, DIE, 1989): $-u'' = g(u) - h(x), \ u(0) = 0 = u(\pi)$ (SDP) is solvable if $\underline{\lim}_{u \to -\infty} \frac{2G(u)}{u^2} < 1$ and $\underline{\lim}_{u \to +\infty} \frac{2G(u)}{u^2} < 1$ (FOZ)
 - improves (H) when $\underline{\lim}_{u \to \mp \infty} \frac{G(u)}{u^2} < \overline{\lim}_{u \to \mp \infty} \frac{G(u)}{u^2}$ i.e. when $G(u)/u^2$ oscillates at infinity : $G(u) = \frac{u^2}{2} \left[a + \sin(\log(u^2 + 1)) \right] \quad (0 < a < 1)$ $\underline{\lim}_{u \to \mp \infty} \frac{2G(u)}{u^2} = a < 1,$ $\overline{\lim}_{|u| \to \infty} \frac{g(u) - h(x)}{u} = a + \sqrt{2} > a + 1 = \overline{\lim}_{|u| \to \infty} \frac{2G(u) - hu}{u^2}$
 - **proof** uses LERAY-SCHAUDER degree + time maps (very technical !)

Wrong a priori ideas

- The Fernandes-Omari-Zanolin result (FOZ)
 - used Leray-Schauder degree to obtain better results than the variational approach for variational probblems
 - killed two of my (many) wrong a priori ideas :
 - for variational problems, the variational approach gives better results than the Leray-Schauder degree
 - the Leray-Schauder degree cannot prove existence with assumptions on F(x,u) = G(u) h(x)u only
- in 1988, at a conference in Paris on "Variational Problems", I
 - Iectured on the FOZ result
 - did not receive any hint for a possible variational proof

A way to a variational proof for FOZ

- FONDA-GOSSEZ-ZANOLIN (DIE, 1991) : proof of FOZ thm using lower and upper solutions
 - $\alpha \in C^2(I)$ (resp. $\beta \in C^2(I)$) lower (resp. upper) solution of (DP) if $-\alpha''(x) \leq f(x, \alpha(x)), \ \alpha(0) \leq 0, \ \alpha(\pi) \leq 0$ (resp. $-\beta''(x) \geq f(x, \beta(x)), \ \beta(0) \geq 0, \ \beta(\pi) \geq 0$))
 - if $\alpha \leq \beta$ let $\gamma(x, u) := \max\{\alpha(x), \min\{u, \beta(x)\}\}$
- ULS thm : if (DP) has a LS α and an US β with $\alpha \leq \beta$, (DP) has a solution u_0 with $\alpha \leq u_0 \leq \beta$
 - $-u'' + u = \gamma(t, u) + f(t, \gamma(t, u)), \ u(0) = 0 = u(\pi)$ (MDP)
 - if u solves (MDP), then $\alpha \leq u \leq \beta$ and u solves (DP)
 - (MDP) has a solution (by SCHAUDER's FPT for example)

Variational version of LUS thm

$$C = \{ v \in H^1_0(I) : \alpha \le v \le \beta \}$$

- VarULS thm : if (DP) has a LS α and an US β with $\alpha \leq \beta$, it has a solution u_0 with $\varphi(u_0) = \min_{v \in C} \varphi(v)$
 - $\widetilde{F}(x,u) := \int_0^u [\gamma(x,s) + f(x,\gamma(x,s))] ds$ $\widetilde{\varphi}(u) := \int_I [u'^2/2 + u^2/2 - \widetilde{F}(x,u)] dx$
 - for $\alpha(x) \le u \le \beta(x), \ \widetilde{F}(x,u) = \frac{u^2}{2} + F(x,u) + a(x),$ $a(x) := \int_0^{\alpha(x)} [\gamma(x,s) - s + f(x,\gamma(x,s)) - f(x,s)] \, ds$
 - $\widetilde{\varphi} \in C^1(H^1_0(I))$ wisc, coercive reaches its minimum at say u_0
 - u_0 solves (MDP), hence (DP) and minimizes \widetilde{arphi}
 - hence u_0 minimizes $\varphi = \widetilde{\varphi} + \int_I a$ on C

FoGZ proof of FOZ result

- show that (SDP) has LS and US with $\alpha < 0 < \beta$ (say for β)
- ${}$ if g unbounded below on \mathbb{R}_+ take $eta\in\mathbb{R}_+:g(eta)<-|h|_\infty$
- if not any positive solution on I of -u'' = g(u) + M (AE) with $M > |h|_{\infty}, g(u) + M \ge 1$ on \mathbb{R}_+ is a positive US of (SDP)
- write (AE) -u'' = V'(u) with V(u) = G(u) + Mu
- (FOZ) $\Rightarrow \exists \varepsilon > 0, \exists (u_n) \to +\infty : \frac{(1-\varepsilon)u_n^2}{2} V(u_n) \to +\infty$
- $\exists u_0 > 0 : \frac{(1-\varepsilon)u^2}{2} V(u) \le \frac{(1-\varepsilon)u_0^2}{2} V(u_0), \ \forall u \in [0, u_0]$
- time-map $T = \int_0^{u_0} \frac{du}{\sqrt{2[V(u_0) V(u)]}} \ge \frac{\pi}{2\sqrt{1-\varepsilon}}$
- the positive solution $\beta(x)$ of (AE) with $\beta(\pi/2) = u_0$, $\beta'(\pi/2) = 0$ vanishes at $\frac{\pi}{2} - T$ and $\frac{\pi}{2} + T$ with $T > \pi/2$
- $\beta(x)$ is a positive US for (SDP)

β in pictures

Remarks and open problems

- FOZ thm : both a topological and a variational proof
- condition (H) can be extended to systems $-u'' = \nabla_u F(x, u), \ u(0) = 0 = u(\pi)$ in the form $\limsup_{|u|\to\infty} 2F(x, u)/|u|^2 < 1$ uniformly in $x \in I$
 - **open** : extension of condition (FOZ) to systems)
- FOZ thm and its proofs are easily extended to $h \in L^{\infty}(I)$
 - open : case where $h \in L^p(I)$ $(1 \le p < \infty)$
- extensions of FOZ thm to other ODEs or radial solutions of PDEs
 - open : sharp conditions for radial solutions
- corresponding results for the Neumann or periodic problems : replace 1 by 0 in (FOZ) – similar but more easy proofs
- open : non variational proof for Hammerstein's condition

II. The coincidence degree for periodic solutions of some autonomous differential equations

Periodic solutions of Duffing equations

- DING TONGREN, IANNACCI, ZANOLIN (JMAA, 1991)
- x'' + g(x) = p(t, x, x') (DEp)
 - p T-periodic in t and bounded on $\mathbb{R}^3, g \in C(\mathbb{R})$
- **•** T-periodic solution (TPS) of (DEp) : $x(t+T) = x(t), \forall t \in \mathbb{R}$
 - $C_T^k := \{x \in C^k(\mathbb{R}) : x \text{ T-periodic}\}$
- method : continuation thm of coincidence degree for the homotopy
 $x'' + g(x) = \lambda p(t, x, x') \quad (\lambda \in [0, 1])$
 - **problem** : compute the coincidence degree $\ d_L[L+\gamma_0,D]$ for

•
$$L: C_T^2 \to C_T^0, \ Lx = x''$$

- $\gamma_p : C_T^1 \to C_T^0, \ \gamma_p(x) = g(x) p(\cdot, x, x')$
- open bounded $D \subset C_T^1$: $Lx + \gamma_0(x) \neq 0$ on ∂D

The frailty of non constant closed orbits

• x'' + g(x) = 0 (DE0)

observation : it is very easy to kill the non constant TPS of (DE0) :

• for $\varepsilon \neq 0$: $x'' + \varepsilon x' + g(x) = 0$ (DDE0)

- $x \text{ TPS of (DDE0)} \Rightarrow \int_0^T [x''x' + \varepsilon x'^2 + g(x)x'] dt = 0$ $\Rightarrow \int_0^T x'^2 dt = 0 \Rightarrow x(t) = c \Rightarrow g(c) = 0 \text{ (equilibrium)}$
- $\Rightarrow J_0 \quad x \quad at = 0 \quad \Rightarrow x(t) = c \Rightarrow g(c) = 0 \quad (equilibrium)$ $\bullet \quad d_L[L + \gamma_0, D] \quad \text{remains the same for small perturbations of} \quad \gamma_0$
- $a_L[L + \gamma_0, D]$ remains the same for small perturbations of γ \Rightarrow for $\delta : C_T^1 \to C_T^0, \ x \mapsto x', \ \text{and} \ |\varepsilon| \ll 0,$ $d_L[L + \varepsilon \delta + \gamma_0, D] = d_L[L + \gamma_0, D]$
- as $L + \varepsilon \delta + \gamma_0$ has only constant zeros, one can hope to find a formula for $d_L[L + \varepsilon \delta + \gamma_0, D]$

The computation of $d_L[L + \gamma_0, D]$

- $\forall \varepsilon \neq 0, \ \forall T > 0, \ \forall \lambda \in (0, 1), \ \text{the TPS of}$ $x'' + \lambda(1 - \lambda)\varepsilon x' + \frac{1 - \lambda}{T} \int_0^T g(x(s)) \ ds + \lambda g(x) = 0$ (HDE0) are the zeros of g (proved like in previous slide)
- lem (DING-IANNACCI-ZANOLIN, 1991) : if $0 \notin (L + \gamma_0)(\partial D)$, then $0 \notin g(\partial D \cap \mathbb{R})$ and $d_L[L + \gamma_0, D] = d_B[g, D \cap \mathbb{R}, 0]$
 - homotopy $L + \Gamma(\cdot, \lambda)$ with $\Gamma : C_T^1 \times [0, 1] \to C_T^0$, $x \mapsto \lambda(1 - \lambda)\varepsilon\delta(x) + \frac{(1 - \lambda)}{T} \int_0^T g(x(s)) \, ds + \lambda\gamma_0(x)$
 - $\lambda \in (0,1), \ Lx + \Gamma(x,\lambda) = 0 \implies x(t) = c, \ g(c) = 0$
 - $\lambda = 0: Lx + \frac{1}{T} \int_0^T g(x(s)) \, ds = 0 \implies x(t) = c, \ g(c) = 0$
 - in both cases $Lx + \Gamma(x, \lambda) \neq 0$ on ∂D
 - homotopy invariance and reduction thm of coincidence degree : $d_L[L + \gamma_0, D] = d_L[L + \Gamma(\cdot, 1), D] = d_L[L + \Gamma(\cdot, 0), D]$ $= d_B[g, D \cap \mathbb{R}, 0]$

A continuation theorem for (DEp)

• thm (DING-IANNACCI-ZANOLIN, JMAA, 1991) : if $\exists R \ge d > 0$: (i) $sgn x \cdot g(x) > |p|_{\infty}$ for $|x| \ge d$ (ii) $\forall \lambda \in [0, 1]$, any possible TPS x of $x'' + g(x) = \lambda p(t, x, x')$ satisfies $\max_{\mathbb{R}} x(t) \ne R$ then (DEp) has a TPS with $max_{\mathbb{R}}x < R$

- sign condition on $g \Rightarrow a \text{ priori}$ estimate -S < x(t) < R, $|x'|_{\infty} < N$ for the possible TPS of the homotopy
- Ding-lannacci-Zanolin lemma for $D = \{x \in C_T^1(\mathbb{R}) : -S < x(t) < R, |x'(t)| < N\}$ $\Rightarrow d_L[L + \gamma_p, D] = d_L[L + \gamma_0, D] = d_B[g, D \cap \mathbb{R}, 0]$
- sign condition on $g \Rightarrow d_B[g, D \cap \mathbb{R}, 0] = 1$

A natural question

- can one extend the degree computation to sets of TPS of an **arbitrary autonomous system** x' = f(x) (AS) with $f \in C(\mathbb{R}^n, \mathbb{R}^n)$, in the space C_T of T-periodic continuous $x : \mathbb{R} \to \mathbb{R}^n$?
 - the special trick of the added friction does not work anymore
 - $L: D(L) \subset C_T \to C_T, x \mapsto x', \ \phi: C_T \to C_T, x \mapsto f(x)$
- a (very) partial answer (MAWHIN, CBMS No 40, 1979) : if f(x) = V'(x) for some $V \in C^1(\mathbb{R}^n, \mathbb{R})$ and $V'(x) \neq 0$ for |x| = r, then $d_L[L - \phi, B(r)] = d_B[V', B(r), 0]$
 - homotopy $Lx \frac{1-\lambda}{T} \int_0^T V'(x(s)) \, ds \lambda \phi(x) \quad (\lambda \in [0,1])$
 - $\, {m s} \,$ all its TPS are constant and zeros of $\, V' \,$

•
$$d_L[L - \phi, B(r)] = d_L[L - (1/T) \int_0^T V'(x(s)) \, ds, B(r)]$$

= $d_B[V', B(r), 0]$

A non trivial answer

- lem (CAPIETTO-MAWHIN-ZANOLIN, TAMS, 1992) : if $\Omega \subset C_T$ is open bounded such that no TPS of (AS) lies in $\partial\Omega$, then $d_L[L-\phi,\Omega] = d_B[f,\Omega \cap \mathbb{R}^n,0]$
 - general case reduced to the generic one where equilibria and closed orbits are isolated using Kupka-Smale thm
 - homotopy
 - first to a system $x' = \lambda^* f(x)$ (for some $\lambda^* \in (0, 1)$) having only equilibria as TPS
 - then to the averaged system $x' = (\lambda^*/T) \int_0^T f(x(s)) ds$
 - use of reduction thm to express its coincidence degree by the Brouwer degree of f

A general continuation theorem

- thm (CAPIETTO, MAWHIN, ZANOLIN, TAMS, 1992) : let $h(t, x, \lambda)$ be T-periodic in t, continuous, with h(t, x, 0) = f(x) and $\Omega \in C_T$ open bounded and such that (i) $\forall \lambda \in [0, 1), x' = h(t, x, \lambda)$ has no TPS in $\partial \Omega$ (ii) $d_B[f, \Omega \cap \mathbb{R}^n, 0] \neq 0$ then x' = h(t, x, 1) has at least one TPS in $\overline{\Omega}$
- for x' = f(x) + p(t) with $p \in C_T$, examples show that this thm may give better results than the homotopy $x' = \lambda[f(x) + p(t)]$
- extensions to TPS of functional differential equations and of differential equations in some nonlinear spaces
- many applications, including perturbations problems
- another proof (BARTSCH-MAWHIN, JDE, 1991) uses a reduction theorem for LS-degree of S^1 -invariant mappings in C_T

Remarks and questions

- open : give an elementary proof of the degree lemma
- CMZ lemma shows that $d_L[L \gamma_0, \Omega]$, blind to non constant periodic orbits of autonomous systems only detects equilibria
- a TPS of a T-periodically forced autonomous system obtained by degree 'reduce' to some equilibria when the forcing tends to zero
- CMZ lemma kills an old wrong a priori idea :
 - to prove the existence of limit cycles by degree in C_T in order to move beyond planar problems and phase plane methods
 - In the hope was proving the existence of periodic motions for a shell model of pulsating star (a system of N second order ode's (motion) coupled with N first order ode's (heat transfer)
 - it could have been the topics of my PhD thesis (some 55 years ago) and is still open

Thank you for your kind attention !

Bibliography

- T. Bartsch, J. Mawhin, J. Differential Equations 92 (1991), 90–99
- A. Capietto, J. Mawhin, F. Zanolin, Trans. Amer. Math. Soc. 329 (1992), 41–72
- T. G. Ding, R. Iannacci, F. Zanolin, J. Math. Anal. Appl. 158 (1991), 316–332
- M.L.C. Fernandes, P. Omari, F. Zanolin, Differential Integral Equations 2 (1989), 63–79
- A. Fonda, J.P. Gossez, F. Zanolin, Differential Integral Equations 4 (1991), 945-951
- J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conf. 40, AMS, Providence, 1979
- J. Mawhin, Variational Problems (Paris 1988), Birkkhäuser, Basel, 1990, 209–218