Wrong *^a priori* ideas in the study of boundary value problems andperiodic solutions :some personal experiences

Jean Mawhin

Université catholique de Louvain

Wrong *a priori* ideas in the study of boundary value problems and periodic solutions : some personal experiences – p.1/21

I. Nonresonance conditions forDirichlet problems : topological vs variational methods

Nonresonance at the first eigenvalue

 $I = [0, \pi], f \in C(I \times \mathbb{R}, \mathbb{R}), F(x, u) := \int_0^u$ $\int_0^u f(x,s)\,ds$

•
$$
-u'' + f(x, u) = 0, u(0) = 0 = u(\pi)
$$
 (DP)

- Euler-Lagrange eqn for $\ \varphi(u) := \int_I$ [$u \$ $^{\prime}(x)$ 2 $\frac{x_1}{2}-F(x,u(x))\,dx$
- **thm** (LICHTENSTEIN, JRAM, 1915) : *(DP) has ^a solution if* $\lim_{|u|\to\infty} F(x,u) < \infty$ *uniformly in* $x \in I$ **(L)**
- **thm** (HAMMERSTEIN, AcMa, 1930) : *(DP) has ^a solution if* $\overline{\lim}_{|u|\to\infty}^2$ $\frac{2F(x,u)}{u^2} < 1$ uniformly in $x \in I$ **(H)**
	- **proof** : Ritz method minimization limit process
- (H) extends $\lim_{|u|\to\infty}$ $\frac{f(x,u)}{u}$ < 1 uniformly in $x \in I$
- (H) sharp : $\;-u''=u$ $-u''=u+\sin x,\,u(0)=0=u(\pi) \,\,$ not solvable

A surprising improvement

$$
\bullet \quad g \in C(\mathbb{R}), \ G(u) := \int_0^u g(s) \, ds, \ h \in C(I)
$$

- **thm** (FERNANDES-OMARI-ZANOLIN, DIE, 1989) : $-u''=g(u)$ $\lim_{u\to -\infty} \frac{2G(u)}{u^2} < 1$ and $\lim_{u\to +\infty}$ $h(x), u(0) = 0 = u(\pi)$ **(SDP)** *is solvable if* 2 $\frac{2G(u)}{u^2} < 1$ and $\lim_{u \to +\infty}$ 2 $\frac{2G(u)}{u^2} < 1$ (FOZ)
	- $\textbf{improves (H)}$ when $\textstyle\lim_{u\to\mp\infty}$ i.e. when $G(u)/u^2$ **oscillates** at infinity : $\frac{G(u)}{u^2} < \overline{\lim}$ u→∓∞ $\frac{G(u)}{u^2}$ $G(u)=\frac{u^2}{2}\left[a\ +\right.$ $\lim_{n \to \infty}$ 2 $rac{u}{2}$ $\left[a + \sin(\log(u))\right]$ $\overline{}$ $^{2}+1$))] $(0 < a < 1)$ $\overline{\lim}_{|u|\to\infty} \frac{g(u)}{u}$ u→∓∞2 $\frac{2G(u)}{u^2}=a < 1,$ $g(u) \frac{-h(x)}{u}$ $= a + \sqrt{2} > a + 1 = \overline{\lim}_{|u| \to \infty} \frac{2}{u}$ $\frac{2G(u)-hu}{u^2}$
	- **proof** uses ^LERAY-SCHAUDER degree ⁺ time maps (very technical !)

Wrong *^a priori* ideas

- The Fernandes-Omari-Zanolin result (FOZ)
	- used Leray-Schauder degree to obtain better results than thevariational approach for variational probblems
	- killed two of my (many) **wrong** *^a priori* ideas :
		- for variational problems, the variational approach gives betterresults than the Leray-Schauder degree
		- the Leray-Schauder degree cannot prove existence with \bullet assumptions on $F(x, u) = G(u) - h(x)u$ only
- in 1988, at ^a conference in Paris on "Variational Problems", I
	- lectured on the FOZ result
	- did not receive any hint for ^a possible variational proof

A way to ^a variational proof for FOZ

- FONDA-GOSSEZ-ZANOLIN (DIE, 1991) : proof of FOZ thm using **lower and upper solutions**
	- $\alpha\in C^2$ (DP) if $-\alpha''(x) \le f(x, \alpha(x))$ $^{2}(I)$ (resp. $\ \beta\in C^{2}$ $\mathbf{Z}(I))$ lower (resp. upper) solution of $-\alpha''(x) \le f(x, \alpha(x)), \alpha(0) \le 0, \alpha(\pi) \le 0$ (resp. $-\beta''(x)\geq f(x,\beta(x)),\; \beta(0)\geq 0,\; \beta(\pi)\geq 0$ $\beta''(x) \ge f(x,\beta(x)), \ \beta(0) \ge 0, \ \beta(\pi) \ge 0)$
	- if $\alpha \leq \beta$ let $\gamma(x, u) := \max\{\alpha(x), \min\{u, \beta(x)\}\}\$
- **ULS thm** : *if (DP) has a LS* α *and an US* β *with* $\alpha \leq \beta$ *, (DP) has a solution* u_0 *with* $\alpha \leq u_0 \leq \beta$
	- $-u'' + u = \gamma(t, u) + f(t, \gamma(t, u)), u(0) = 0 = u(\pi)$ (MDP)
	- i *f* u solves (MDP), then $\alpha \leq u \leq \beta$ and u solves (DP)
	- *(MDP) has ^a solution* (by ^SCHAUDER's FPT for example)

Variational version of LUS thm

$$
\bullet \ \ C = \{ v \in H_0^1(I) : \alpha \le v \le \beta \}
$$

- **VarULS thm** : *if (DP) has a LS* α *and an US* β *with* $\alpha \leq \beta$, *it* \bm{h} as a solution u_0 with $\varphi(u_0) = \min$ $v{\in}C\ \varphi(v)$
	- $\widetilde{F}(x,u):=\int_0^u$ $\widetilde{\varphi}(u) := \int_I [u'^2/2 + u^2]$ $\int_0^u [\gamma(x,s) + f(x,\gamma(x,s))] \, ds$ $/2 + u$ 2 $\left[2/2-\widetilde{F}(x,u)\right]dx$
	- for $\alpha(x)\leq u\leq \beta(x),\,\, \widetilde{F}(x,u)=\frac{u}{2}$ $\left(\frac{1}{2} \right)$ 2 $\frac{a^2}{2}+F(x, u)+a(x),$ $a(x) := \int_0^{\alpha(x)} [\gamma(x, s)]$ $- s + f(x, \gamma(x, s))$ $f(x,s)]\,ds$
	- $\widetilde{\varphi}\in C^1(H^1_0(I))$ wlsc, coercive reaches its m $^{1}(H_{0}^{1})$ $\mathcal{O}_0^1(I))$ wlsc, coercive reaches its minimum at say $|u_0|$
	- u_0 solves (MDP), hence (DP) and minimizes $\ \widetilde{\varphi}$
	- hence u_0 minimizes $\varphi=$ $\widetilde{\varphi}+\int_{I}a$ on C

FoGZ proof of FOZ result

- show that (SDP) has LS and US with $\,\alpha < 0 < \beta\,$ (say for $\,\beta)$
- if g unbounded below on \mathbb{R}_+ take $\beta\in$ $_+$ take $\beta \in \mathbb{R}_+ : g(\beta) < -|h|_{\infty}$
- if not any positive solution on $|I\>$ of $\> -u''=g(u)+M\>$ (AE) $\Lambda \searrow 1$ and \mathbb{D} is a $-u'' = g(u) + M$ **(AE)**
 Ω Register a positive LIS of (with $|M>|h|_{\infty},\, g(u)+M\geq 1$ on \mathbb{R}_+ is a pos $_{+}$ is a positive US of (SDP)

• write (AE)
$$
-u'' = V'(u)
$$
 with $V(u) = G(u) + Mu$

 $(\textsf{FOZ}) \Rightarrow \exists \varepsilon > 0, \ \exists (u_n) \to +\infty$ $\infty : \frac{(1)}{2}$ ε)u 2 $\, n \,$ $\frac{\varepsilon\,u_n}{2}-V(u_n)\to+\infty$

$$
\bullet \quad \exists u_0 > 0: \frac{(1-\varepsilon)u^2}{2} - V(u) \le \frac{(1-\varepsilon)u_0^2}{2} - V(u_0), \ \forall u \in [0, u_0]
$$

- **time-map** $\, T \,$ = \int_0^u 0 $0 \quad \sqrt$ du $2[V(u_0) - V(u)]$ $\geq \frac{\pi}{2\sqrt{1}}$ $2\sqrt{1\!-\!\varepsilon}$
- the positive solution $\ \beta(x) \,$ of (AE) with $\ \beta(\pi/2) = u_0,$ $\beta'(\pi/2)=0$ vanishes at $\frac{\pi}{2}-T$ and $\frac{\pi}{2}+T$ with $(\pi/2)=0$ vanishes at $\frac{\pi}{2}$ $\frac{\pi}{2}-T$ and $\frac{\pi}{2}$ $\frac{\pi}{2}+T$ with $T > \pi/2$
- $\beta(x)\;$ is a positive US for (SDP)

β in pictures

Remarks and open problems

- FOZ thm : **both** ^a topological and ^a variational proof
- condition (H) can be extended to **systems** $-u''=\nabla_u F(x,u),\ u(0)=0=u(\pi)$ in the form $\limsup_{|u| \to \infty} 2F(x,u)/|u|^2 < 1$ uniformly in x $Z < 1$ **uniformly in** $x \in I$
	- **open** : extension of condition (FOZ) to systems)
- FOZ thm and its proofs are easily extended to $\ h\in L^{\infty}(I)$
	- **open** : case where $h \in L^p(I)$ $(1 \leq p < \infty)$
- **extensions of FOZ thm** to other ODEs or radial solutions of PDEs
	- **open** : sharp conditions for radial solutions
- corresponding results for the **Neumann or periodic problems** : replace $\,1\,$ by $\,0\,$ in (FOZ) – similar but more easy proofs
- **open** : **non variational proof** for Hammerstein's condition

II. The coincidence degree forperiodic solutions of someautonomous differential equations

Periodic solutions of Duffing equations

- DING TONGREN, <mark>I</mark>ANNACCI, ZANOLIN (JM<mark>AA</mark>, 1991)
- $x'' + g(x) = p(t, x, x')$) **(DEp)**
	- p T-periodic in t and bounded on \mathbb{R}^3 $, g \in C(\mathbb{R})$
- **T-periodic solution (TPS)** of (DEp) : $x(t+T) = x(t), \forall t \in \mathbb{R}$
	- $C_{\bm{\tau}}^{\bm{k}}$ $T'x := \{x \in C^k\}$ $^{k}(\mathbb{R}):x$ T-periodic $\}$
- **method** : continuation thm of coincidence degree for the homotopy $x'' + g(x) = \lambda p(t, x, x') \; (\lambda \in [0, 1])$
- **problem** : compute the coincidence degree $d_L[L+\gamma_0,D]$ for

$$
\bullet \quad L:C_T^2\to C_T^0, \ Lx=x''
$$

- \sim \sim \sim \sim \sim $\gamma_p : C_T^1$ $T^1 \rightarrow C^0_T$ $T^{0}, \ \gamma_{p}(x) = g(x)$ $-p(\cdot, x, x^{\prime})$)
- open bounded $D\subset C_T^1$: $Lx^ \frac{d}{dx}$: $Lx + \gamma_0(x) \neq 0$ on ∂D

The frailty of non constant closed orbits

 $x'' + g(x) = 0$ (DE0)

observation : it is very easy to kill the **non constant** TPS of (DE0) :

- for $\varepsilon \neq 0$: $x'' + \varepsilon x$ $' + g(x) = 0$ **(DDE0)**
- x TPS of (DDE0) $\Rightarrow \int_0^T$ $\mathcal{L}(\mathcal{N})$ and $\mathcal{L}(\mathcal{N})$ and $\mathcal{L}(\mathcal{N})$ $\int\limits_0^\cdot {x''x}$ $\prime + \varepsilon x$ ′2 $x^2+g(x)x$ ′] $\int dt = 0$
	- \Rightarrow \int_0^T $0\;\;x$ $\chi^2 dt = 0 \Rightarrow x(t) = c \Rightarrow g(c) = 0$ (equilibrium)
- $d_L[L+\gamma_0,D]$ remains the same for small perturbations of $\,\gamma_0$ \Rightarrow for $\delta: C_T^1$
 d - $[I + c\delta]$ \perp \sim \perp \parallel \perp \perp $T^1 \rightarrow C^0_T$ T , $x \mapsto x$ $d_L[L + \varepsilon \delta + \gamma_0, D] = d_L[L + \gamma_0, D]$ $^{\prime },\text{\ and \ }\left\vert \varepsilon \right\vert \ll 0,$
- as $L+\varepsilon\delta+\gamma_0$ has only **constant** zeros, one can hope to find a
famoula family L is a Subscribed D^1 formula for $d_L[L+\varepsilon\delta+\gamma_0,D]$

The computation of $d_L|L+\gamma$ $\overline{}$ $_{0},D$]
]

- $\forall \, \varepsilon \neq 0, \; \forall \, T >0, \; \forall \, \lambda \in (0,1),$ the <code>TPS</code> of $x'' + \lambda(1 - \lambda)\varepsilon x' + \lambda$ *are the zeros of* g (proved like in previous slide) $(-\lambda)\varepsilon x'+\frac{1}{2}$ λ $\frac{-\lambda}{T} \int_0^T$ $\frac{d}{d\theta}g(x(s))\,ds + \lambda g(x) = 0$ **(HDE0)**
- **lem** (DING-IANNACCI-ZANOLIN, 1991) : *if* 0 ∉ $(L + \gamma_0)(\partial D)$ *, then*
⊙ ∈ (ΩD⊙™) = { I [I + D] = I [D⊙™ 0] $0 \not\in g(\partial D \cap \mathbb{R})$ and $d_L[L + \gamma_0, D] = d_B[g, D \cap \mathbb{R}, 0]$
	- **homotopy** $L + Γ(·, λ)$ with $Γ : C^1_T × [0, 1]$ - $(1-\lambda)$ \in $(1-\lambda)$ \in T $(1-\lambda)$ \in T $T^1 \times [0,1] \rightarrow C_T^0$ $T\hspace{.5pt},$ $x\mapsto\lambda(1$ $(-\lambda)\varepsilon\delta(x) + \frac{(1-\lambda)\varepsilon}{2}$ $\frac{-\lambda)}{T}\int_0^T$ $\int_0^1 g(x(s)) ds + \lambda \gamma$ $_{0}(x)$
	- $\lambda \in (0,1),$ $Lx + \Gamma(x,\lambda) = 0 \Rightarrow x(t) = c, g(c) = 0$
	- $\lambda = 0: Lx + \frac{1}{T}$ $\frac{1}{T} \int_0^T$ $\frac{1}{0}$ g($x(s)$) $ds = 0 \implies x(t) = c, g(c) = 0$
	- in both cases $Lx + \Gamma(x, \lambda) \neq 0$ on ∂D
	- homotopy invariance and reduction thm of coincidence degree : $d_L[L + \gamma_0, D] = d_L[L + \Gamma(\cdot, 1), D] = d_L[L + \Gamma(\cdot, 0), D]$ $=d_B[g, D \cap \mathbb{R}, 0]$

A continuation theorem for (DEp)

thm (DING-IANNACCI-ZANOLIN, JMAA, 1991) : *if* ∃R≥ ^d > 0*:(i)* sgn x · $g(x) > |p|_{\infty}$ for $|x| \ge d$ $\forall \lambda \in [0,1], \,\, \textit{any possible TPS} \,\, x \,\, \textit{of}$ $x'' + g(x) = \lambda p(t, x, x')$ t hen (DEp) has a TPS with $\ max_{\mathbb{R}} x < R$) satisfies $\max_{\mathbb{R}} x(t) \neq R$

- sign condition on g \Rightarrow *a priori* estimate $-S < x(t) < R$,
 $\vert x' \vert$ ∠ N for the possible TPS of the homotopy $|x'|_\infty < N$ for the possible TPS of the homotopy $|_{\infty} < N$ for the possible TPS of the homotopy
- Ding-Iannacci-Zanolin lemma for
	- $D=% \begin{bmatrix} 1\frac{1}{2} & 1$ $\Rightarrow d_L[L+\gamma_p, D] = d_L[L+\gamma_0, D] = d_B[g, D\cap \mathbb{R}, 0]$ ${x \in C_T^1}$ $T^1(\mathbb{R}) : -S < x(t) < R, \ |x'|$ $(t)| < N$
- sign condition on $g\Rightarrow dg[g, D\cap\mathbb{R}, 0] = 1$

A natural question

- can one extend the degree computation to sets of TPS of an \boldsymbol{x} arbitrary autonomous system \boldsymbol{x} with $\ f\in C(\mathbb{R}^n,\mathbb{R}^n),\,$ in the space $\ C_T$. $^{\prime}$ $=$ $f(x)$ (AS) $x:\mathbb{R}\to\mathbb{R}^n$? $^{n},\mathbb{R}^{n}$ $\sp{n}),\;$ in the space $\;C_T\;$ of T-periodic continuous
	- the special trick of the **added friction** does not work anymore
	- $L: D(L) \subset C_T \to C_T, x \mapsto x$ $\prime, \phi: C_T \to C_T, x \mapsto f(x)$
- ^a (very) **partial answer** (MAWHIN, CBMS No 40, 1979) : *if* $f(x) = V'$ **Service** \mathbf{u} \mathbf{u} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} (x) *for some* $V \in C^1$ $\frac{1}{\mathbb{R}^n}$ $|x|=r,$ then $d_L[L-\phi,B(r)]=d_B[V',B(r),$ $^{\textit{n}}$, $\mathbb{R})$ and V' $(x) \neq 0$ for −− $[-\phi, B(r)] = d_B[V', B(r), 0]$
	- \overline{a} and \overline{a} and homotopy Lx −1λ $\frac{-\lambda}{T} \int_0^T$ $\rm 0$ V^\prime $\left(x(s) \right) ds$ $\lambda \phi(x) \; (\lambda \in [0,1])$
	- all its TPS are constant and zeros of $\ V'$

•
$$
d_L[L - \phi, B(r)] = d_L[L - (1/T) \int_0^T V'(x(s)) ds, B(r)]
$$

= $d_B[V', B(r), 0]$

A non trivial answer

- ${\sf lem}$ (CAPIETTO-MAWHIN-ZANOLIN, ${\sf TAMS}$, 1992) : *if* $\Omega\subset C_T$ *is open bounded such that no TPS of (AS) lies in*∂Ω, *then* $d_L[L]$ − $[-\phi, \Omega] = d_B[f, \Omega \cap \mathbb{R}^n]$ $^{n},0]$
	- general case reduced to the generic one where equilibria andclosed orbits are isolated using **Kupka-Smale thm**
	- **•** homotopy
		- first to a system $|x|$ having only equilibria as TPS $'=\lambda^*$ ${}^*f(x)$ (for some $\,\lambda^*$ $^* \in (0,1)$
		- then to the averaged system \ket{x} $^\prime$ $=$ $(\lambda^*/T)\int_0^T$ $\int_0^{\cdot}{f(x(s))\,ds}$
	- use of reduction thm to express its coincidence degree by theBrouwer degree of $\ f$

A general continuation theorem

- **thm** (CAPIETTO, MAWHIN, ZANOLIN, **TAMS**, 1992) : *let* $h(t, x, \lambda)$
the \mathcal{T} contribution from the left of the $h(t, x, \lambda)$ *be T-periodic in t, continuous, with* $h(t,x,0) = f(x)$ *and* $\Omega \in C_T$ *open bounded and such that* $\partial \mathcal{L}(\mathcal{U}) \ \ \forall \ \lambda \in [0,1), \ x' = h(t,x,\lambda)$ has no TPS in $\partial \Omega$ *(ii)* $d_B[f, \Omega \cap \mathbb{R}^n, 0]$ *then* $x' = h(t)$ $n, 0] \neq 0$ $\mathcal{C}' = h(t, x, 1)$ *has at least one TPS in* Ω
- for $x'=$.
Santa de la Terr $^{\prime}$ $=$ $f(x) + p(t)$ with $p \in C_T,$ examples show that this thm may give better results than the homotopy $|x|$ $^{\prime}$ $=$ $\lambda[f(x)+p(t)]$
- extensions to TPS of **functional differential equations** and of differential equations in some **nonlinear spaces**
- many applications, including **perturbations problems**
- another proof (BARTSCH-MAWHIN, JDE, 1991) uses ^a **reduction**<code>theorem</code> for <code>LS-degree</code> of S^1 -invariant mappings in $\ C_T$

Remarks and questions

- **open** : give an elementary proof of the degree lemma
- CMZ lemma shows that $\ d_L[L]$ **periodic orbits of autonomous systems** only detects **equilibria** \sim $\gamma_0, \Omega]$, **blind to non constant**
- ^a TPS of ^a T-periodically forced autonomous system obtained by degree 'reduce' to some equilibria when the forcing tends to zero
- CMZ lemma kills an old **wrong** *^a priori* **idea** :
	- to prove the existence of limit cycles by degree in $\left\vert C_{T}\right\vert$ in order to move beyond planar problems and phase plane methods
	- the hope was proving the existence of periodic motions for ^a shell model of pulsating star (a system of *N* second order ode's (motion) coupled with *N* first order ode's (heat transfer)
	- it could have been the topics of my PhD thesis (some 55 yearsago) and is still open

Thank you for your kind attention !

Bibliography

- T. Bartsch, J. Mawhin, J. Differential Equations 92 (1991), 90–99
- A. Capietto, J. Mawhin, F. Zanolin, Trans. Amer. Math. Soc. 329(1992), 41–72
- T. G. Ding, R. Iannacci, F. Zanolin, J. Math. Anal. Appl. 158 (1991), 316–332
- M.L.C. Fernandes, P. Omari, F. Zanolin, Differential Integral Equations 2 (1989), 63–79
- A. Fonda, J.P. Gossez, F. Zanolin, Differential Integral Equations ⁴(1991), 945-951
- J. Mawhin, Topological Degree Methods in Nonlinear BoundaryValue Problems, CBMS Regional Conf. 40, AMS, Providence, 1979
- J. Mawhin, Variational Problems (Paris 1988), Birkkhauser, Basel, ¨1990, 209–218