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What are compartmental epidemiological models?

Well mixed, homogeneous population.

Population is divided into compartments based on the status

of the disease: susceptible, infected, infectious, recovered....

The independent variable is time t.

The rates of change of the size of each compartment are

expressed as derivatives with respect to t of the sizes of the

compartments.

The processes of infection, recovery, etc., are deterministic.

The assumptions require large populations and then lead to

systems of differential equations.
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Warning.

Remember that all models are wrong; the practical

question is how wrong do they have to be to not be

useful.(Box and Draper)
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Main concepts. Basic reproduction number

R0

is the average number of secondary infections caused by one

infectious individual in a completely susceptible population.

Basic aim of mathematical epidemiology is to determine the long

term behaviour of solutions of the model and, in particular, the

existence and stability of

disease free equilibria (DFE) – equilibria of the population at

which the infection ceases to persist, and

endemic equilibria (EE) – equilibria of the population at which

the disease persists.
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In the model, R0 is a combination of the parameters of the

equation. Intuitively, when R0 < 1, then DFE should be stable and

loses the stability, when R0 passes through R0 = 1; then endemic

equilibria may appear. For example,
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Figure: Bifurcation diagram and appearance of one stable endemic

equilibrium. Forward bifurcation (left) and backward bifurcation (right).
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Why and when do we need demography in epidemiological

modelling?

Diseases of duration comparable with life-span.

Lethal diseases.

Epidemics.

Long-term impact of a disease on the affected population.
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Basic Epidemiological Models

We begin with a simple model of a nonlethal disease in a

homogeneous population divided into three classes: susceptible S ,

infective I and recovered R. Let us denote

λ = the force of infection; that is, the rate at which

susceptibles become infected,

µ = the death rate,

ν = the recovery rate,

γ = the rate of immunity loss,

B(N) = the total birth rate of the population.
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Figure: Compartments in the SIRS model with demography
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On the basis of the above diagram, we build the following system

of equations

S ′ = B(N)− λS + γR − µS ,

I ′ = λS − νI − µI ,

R ′ = νI − γR − µR. (1)

S , I and R typically denote the number densities of, respectively,

susceptibles, infectives and recovered, B is a function describing

vital dynamics of the healthy population in a realistic way (here we

tacitly assumed that there is no vertical transmission of the disease

or permanent immunity).
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Conservation laws in epidemiological modelling

If correctly written, (1) is a conservation law: adding up the

equations, we see that the total population N = S + I + R satisfies

N ′ = B(N)− µN,

the conservation of the population law. This is a reflection of the

fact that any epidemiological model describes migrations between

classes of a given population and thus the latter must satisfy the

equations governing its evolution.
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In contrast, recently popular fractional epidemiological models

DαS = B(N)− λS + γR − µS ,

DαI = λS − νI − µI ,

DαR = νI − γR − µR.

obtained simply by replacing the time derivative by its fractional

counterpart, e.g., by the Caputo derivative

CDα
t f =

1

Γ(1− α)

∫ t

0

f ′(τ)

(t − τ)α
dτ, 0 < α < 1,

do not make sense.
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What is the meaning of

DαN = B(N)− µN?

There is a lack of physical consistency of the terms – on the RHS

we have rates of change (per unit time), but the fractional

derivative is not the rate of change.

This is not a conservation law.

So, what does the model describe?
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How to model demographic processes

How not to model?

From D.J.D. Earn. A Light Introduction to Modelling Recurrent

Epidemics, in: F. Brauer, P. van den Driessche & J. Wu (Eds.)

Mathematical Epidemiology, Springer, 2008,

The timescale for substantial changes in birth rates

(decades) is generally much longer than a measles

epidemic (a few months), so well assume that the

population size is constant (thus B = µN, so there is

really only one new parameter in the above equations and

we can take it to be B)
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Malthusian model. If births and death rates are constant then,

denoting the net growth rate by r we obtain

N ′ = rN, N(t0) = N0. (2)

which has a general solution given by

N(t) = N0e
r(t−t0), (3)

With the estimated Earth population in 1965 of 3.34 billion and

the net growth rate of 2% per annum

N(t) = 3.34× 109 × e0.02(t−1965). (4)
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Figure: Comparison of actual population figures (points) with those

obtained from equation (4).

There is a good agreement up to early 2000s. However, if we try

to extrapolate this model to 2515, the population would reach

approximately 200000 billion giving each of us area of

86.3 cm× 86.3 cm to live on.
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Nevertheless, the Malthusian model has its uses for short term

prediction. It also provides a useful link about the death rate µ and

the expected life span L of an individual.

L =
1

µ
.

In the same way

• 1/ν is the average duration of the disease,

• 1/γ is the average period of the acquired immunity.
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Simplified logistic model and dangers of curve fitting. Consider

N ′ = B − µN. (5)

Figure: World population alongside the solution to (5) with

N(1950) = 2556.5× 106 people. The least square error is 703 483.

However, the parameters are B = 68.5× 106 while µ = 5.54× 10−12.

This give the average lifespan of 1.8× 1011 years – completely unrealistic.
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Note, however, that the constant demographic terms can appear

via the normalization. Consider (1) with a Malthusian growth rate

S ′ = αN − βS I

N
+ γR − µS ,

I ′ = βS
I

N
− νI − µI ,

R ′ = νI − γR − µR. (6)

and introduce s = S/N, i = I/N, r = R/N. Here we have

N ′ = (α− µ)N

s ′ =
S ′

N
− S

N2
N ′ =

S ′

N
− s(α− µ), i ′ =

I ′

N
− i(α− µ),

r ′ =
R ′

N
− r(α− µ).
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So

s ′ = α− βsi + γr − αs,

i ′ = βsi − νi − αi ,

r ′ = νi − γr − αr , (7)

and formally we have a system with constant total birth rate but

the interpretation of terms is different. In particular

(s + i + r)′ = α− α(s + i + r)

but s + i + r = S
N + I

N + R
N = 1, so both sides of the equation

equal 0.
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Logistic equation.

N ′ = rN

(
1− N

K

)
, (8)

which proved to be one of the most successful models for

describing a single species population. The non-equilibrium

solution can be obtained by separation of variables:

N(t) =
P(0)K

N0 + (K − N0)e−rt
. (9)
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This results in the famous logistic or S-shaped curve that describes

saturation process.

0 5 10 15 20
t

2

4
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10

P(t) in billions

Figure: Logistic curves with N0 < K (blue line) and N0 > K (orange line)

for K = 10 and r = 0.02.
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Figure: Human population on Earth with K = 10.76 billion and r = 0.029

and N(1965) = 3.34 billion. Observational data (points), exponential

growth (solid line) and logistic growth (dashed line).
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Real Predicted Error %

1790 3929000 3929000 0 0.0

1800 5308000 5336000 28000 0.5

1810 7240000 7228000 -12000 -0.2

1820 9638000 9757000 119000 1.2

1830 12866000 13109000 243000 1.9

1840 17069000 17506000 437000 2.6

1850 23192000 23192000 0 0.0

1860 31443000 30412000 -1031000 -3.3

1870 38558000 39372000 814000 2.1

1880 50156000 50177000 21000 0.0

1890 62948000 62769000 -179000 -0.3

1900 75995000 76870000 875000 1.2

1910 91972000 91972000 0 0.0

1920 105711000 107559000 1848000 1.7

1930 122775000 123124000 3498000 0.3

1940 131669000 136653000 4984000 3.8

1950 150697000 149053000 -1644000 -1.1

Table: Comparison of the actual and predicted by the logistic model

population of the US.
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Note, however, that the logistic model (8) can be interpreted in

many ways that are relevant in epidemiological modelling. We can

look at it as

N ′ = R(N)N, (10)

which describes a population with the density dependent birth rate

R(N) = r
(
1− N

K

)
, or as

N ′ = rN − D(N)N, (11)

where the population has a Malthusian birth rate but a density

dependent death rate D(N) = rN
K .

Certainly, a combination of both is possible.
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Malaria model with transmission blocking drugs

Variables Description

Sh susceptible humans

Ih infectious humans

Rh recovered humans

Ph

 protected, i.e., successfully treated

and noninfective humans

Sv susceptible mosquitoes

Iv infectious mosquitoes

Table: State variables and their description.
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Ih Ph

Sv Iv

bh(Nh) Λh

γ
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h

+
σ
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d(Nh)

d(Nh)
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d(Nv ) d(Nv )

Figure: Flow diagram showing the malaria transmission dynamics.
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

S ′h = bh(Nh) + γhRh + ϑhPh −
(
aβvh

Iv
Nh

+ dh(Nh)

)
Sh,

I ′h = aβvh
Iv
Nh

Sh − (ωh + σ + dh(Nh) + δh)Ih,

R ′h = ((1− c)ωh + σ)Ih − (γh + dh(Nh))Rh,

P ′h = cωhIh − (ϑh + dh(Nh))Ph,

S ′v = bv (Nv )−
(
aβhv

(Ih + ζrRh)

Nh
+ dv (Nv )

)
Sv ,

I ′v = aβhv
(Ih + ζrRh)

Nh
Sv − dv (Nv )Iv .

(12)

with initial conditions (Sh(0), Ih(0),Rh(0),Ph(0),Sv (0), Iv (0)) 	 0.
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The time derivatives of the total human population Nh(t) and

mosquitoes Nv (t) can be obtained by adding the first fourth,

(respectively, the last two), equations, of system (12): N ′h = bh(Nh)− dh(Nh)Nh − δhIh,

N ′v = bv (Nv )− dv (Nv )Nv .
(13)
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Therefore often we will find it advantageous to work with the

following version of (12)

N ′h = bh(Nh)− dh(Nh)Nh − δhIh,

I ′h = Ah
Iv
Nh

(Nh − Ih − Rh − Ph)− gi (Nh)Ih,

R ′h = fr Ih − gr (Nh)Rh,

P ′h = cωhIh − gp(Nh)Ph,

N ′v = bv (Nv )− dv (Nv )Nv ,

I ′v = Av
(Ih + ζrRh)

Nh
(Nv − Iv )− dv (Nv )Iv .

(14)
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We consider four demographic models for the human population

a) Malthusian growth,

bh(Nh) = πhNh, dh(Nh) = µ1h.

b) Simplified logistic growth,

bh(Nh) = λh, dh(Nh) = µ1h.

c) Logistic growth — density dependent birth rate,

bh(Nh) = rNh

(
1− Nh

K

)
, dh(Nh) = µ1h.

d) Logistic growth — density dependent death rate,

bh(Nh) = πhNh, dh(Nh) = µ1h + µ2hNh.
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Disease free equilibrium points

Disease free equilibria (DFE) are positive equilibria of the form

E0 =
(
N0
h , 0, 0, 0,N

0
v , 0
)

where
(
N0
h ,N

0
v

)
are positive equilibria of (13) with Ih = 0, that is,

bh(Nh)− dh(Nh)Nh = 0

bv (Nv )− dv (Nv )Nv = 0.

(15)

Under certain assumptions there is a unique DFE. However, this is

not a rule.
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Endemic equilibrium points

We solve for EEP = (N∗h , I
∗
h ,R

∗
h ,P

∗
h ,N

∗
v , I
∗
v ) the following system:

bh(Nh)− dh(Nh)Nh − δhIh = 0,

Ah
Iv
Nh

Sh − gi (Nh)Ih = 0,

fr Ih − gr (Nh)Rh = 0,

cωhIh − gp(Nh)Ph = 0,

Av
(Ih + ζrRh)

Nh
Sv − d0

v Iv = 0.

where Sh = Nh − Ih − Rh − Ph and Sv = Nv − Iv = N0
v − Iv , N0

v

being the only nontrivial solution to bv (N0
v )− dv (N0

v )N0
v = 0.
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Denoting b∗h = bh(N∗h), d∗h = dh(N∗h), g∗i = gi (N
∗
h), g∗r = gr (N∗h)

and g∗p = gp(N∗h). We obtain

R∗h =
fr
g∗r

I ∗h ,

P∗h =
cωh

g∗p
I ∗h ,

I ∗v =
Av

(
1 + ξr fr

g∗
r

)
I ∗hN

0
v

Av

(
1 + ξr fr

g∗
r

)
I ∗h + d0

vN
∗
h

.
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Returning to the equation for I ∗h and introducing the notation

Gr = 1 +
ξr fr
gr

Fr = 1 +
fr
gr

+
cωh

gp
,

(16)

with G ∗r and F ∗r obtained from (16) with gr = g∗r and gp = g∗p , we

obtain

I ∗h =
g∗i d

0
vN
∗
h

(
AhAvG

∗
r N

0
v − g∗i d

0
vN
∗
h

)
AvG ∗r

(
AhF ∗r N

0
v + g∗i N

∗
h

) . (17)

Finally, we must find positive N∗h satisfying

bh(N∗h)− dh(N∗h)N∗h − δh
g∗i d

0
vN
∗
h

(
AhAvG

∗
r N

0
v − g∗i d

0
vN
∗
h

)
AvG ∗r

(
AhF ∗r N

0
v + g∗i N

∗
h

) = 0.

(18)
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Malthusian growth rate

1. Problems

1. Is there a DFE?

a) If rh = πh − µ1h < 0, then Nh, even without the disease,

converges to zero, so DFE is (human) extinction equilibrium.

b) If rh = 0, then the population equation is

N ′h = −δhIh

and thus DFE is given by

(Nh(0), 0, 0, 0,N0
v , 0)

but this is a family of non-isolated equilibria – no linearization

theorem available.
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c) If rh > 0, then there is no DFE – the disease free population

grows exponentially.

What is R0 here?
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What can be done?

Lemma 1

The number of infectives Ih and hence the numbers of recovered Rh

and protected Ph remain bounded independently of rh and Nh(0).

Proof. The second equation in (14) yields

I ′h ≤ AhIv ,max − gi Ih,

where we used the assumption on the vector’s demography to

claim that maxt≥0 Iv (t) =: Iv ,max ≤ maxt≥0 Nv (t) =: Nv ,max <∞,

independent of rh and Nh(0), and the fact that gi (Nh) =: gi is

independent of Nh.
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Hence

Ih(t) ≤ e−gi t Ih(0)+
AhIv ,max

g i
(1−e−gi t) ≤ max

{
Ih(0),

AhNv ,max

g i

}
.

(19)

Thus

max
t≥0

Ih(t) =: Ih,max <∞

for a constant Ih,max independent of rh and Nh(0) and the

statement for Ih is proved.

The statement for Rh and Ph follows from (14), as the relevant

equations are linear in the respective variables. �
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Proposition 1

If rh = 0, then Ih(t)→ 0 as t →∞ and, moreover,∫ ∞
0

Ih(s)ds ≤ Nh(0)

δh
.

Proof. If we take N = Sh + Ih + Rh + Ph as a Lyapunov function

for (12), we obtain

N ′ = −δhIh.

Since, by Lemma 1, the trajectories are bounded, LaSalle’s

principle shows that all positive trajectories converge to the largest

invariant set contained in {(Sh, Ih,Rh,Ph,Sv , Iv ) ∈ R6
+ : Ih = 0}

and hence Ih(t)→ 0 as t →∞. �
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Corollary 2

There is no globally stable equilibrium for (14) if rh > 0.

Proof. Since Ih(t) ≤ Ih,max, t ≥ 0, we have

N ′h = rhNh − δhIh ≥ rhNh − δhIh,max

and

Nh(t) ≥ erht
(
Nh(0)−

δhIh,max

rh

)
+
δhIh,max

rh
.

Hence, the population will tend to infinity if we take sufficiently

large initial population Nh(0). �
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Proposition 2

If δh < rh, then Iv (t)→ 0 as t →∞.

Proof. Denoting η = rh − δh, we have

Nh ≥ Nh(0)eηt .

Consider the last equation in (14), written as

I ′v = Av
(Ih + ζrRh)

Nh
Nv −

(
Av

(Ih + ζrRh)

Nh
+ µv

)
Iv

Hence, using Lemma 1 and the boundedness of Nv , we have

I ′v ≤ Ke−ηt − µv Iv

for some constant K .
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Hence, integrating as before,

Iv (t) ≤ e−µv t Iv (0) +
K

µv − η
(
e−ηt − e−µv t

)
with an obvious modification if η = µv . �

Corollary 3

Under assumptions of Proposition 2, Ih(t)→ 0 as t →∞.

Proof. Writing the second equation of (14) as

I ′h ≤ AhIv − gi Ih,

we obtain

Ih(t) ≤ e−gi t Ih(0) +
e−gi t

Ah

∫ t

0
egi s Iv (s)ds.

The thesis follows either by direct substitution or L’Hôspital’s rule.
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Potential endemic equilibria. If δh > rh, then the disease can

result in a stabilization of the population as (18) yields

rhN
∗
h − δh

gid
0
vN
∗
h

(
AhAvG

∗
r N

0
v − gid

0
vN
∗
h

)
AvG ∗r

(
AhF ∗r N

0
v + giN∗h

) = 0, (20)

which, if N∗h > 0, gives

N∗h =
AhAvG

∗
r N

0
v (δh − rhF

∗
r )

gi (AhG ∗r rh + δhd0
v )

.

We see that N∗h > 0 provided δh > rh

(
1 + fr

g∗
r

+ cωh
g∗
p

)
so, in

particular, δh must be bigger than rh, which is consistent with

Corollary 3.
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if rh = πh − µ1h > δh, then there is no asymptotically stable

equilibrium for the whole system (14) as the population is

growing unboundedly, however, the numbers of infective hosts

and vectors (and hence of recovered and protected humans)

tend to zero;

if rh = 0 and δh > 0, then the disease goes extinct but we do

not know whether also the population vanishes or there are

survivors;

if 0 < rh � δh, then there exists finite population in balance

with the disease. It is not GAS, but is it at least locally stable?
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A simplified example. Consider the following SIS model with

balanced malthusian growth
S ′ = µN + γI − βSI

N
− µS = (µ+ γ)I − βSI

N
,

I ′ = β
SI

N
− (γ + µ+ δ)I ,

(21)

where N = S + I . Here, we have

N ′ = −δI .

As in Proposition 1, limt→∞ I (t) = 0. But, does the disease end

because the population gets wiped out, or there are survivors?
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The isoclines are

S ′ = 0 if and only if I = 0 or

I (µ+ γ)− (β − µ− γ)S = 0 ⇒ I =

(
β

µ+ γ
− 1

)
S ,

and

I ′ = 0 if and only if I = 0 or

I (µ+γ+δ)−(β−µ−γ−δ)S = 0 ⇒ I =

(
β

µ+ γ + δ
− 1

)
S .

Jacek Banasiak Demography and Dynamics of Epidemiological Models



S

I
I =

(
β

µ+γ
− 1

)
S

I =
(

β
µ+γ+δ

− 1
)
S

S ′ > 0, I ′ < 0 S ′ < 0, I ′ < 0

S ′ < 0, I ′ > 0

Figure: Isoclines of (21) with β
µ+γ >

β
µ+γ+δ > 1.

Jacek Banasiak Demography and Dynamics of Epidemiological Models



S

I

I =
(

β
µ+γ+δ

− 1
)
S

I =
(

β
µ+γ

− 1
)
S

S ′ > 0, I ′ < 0

S∞

Figure: Isoclines of (21) with β
µ+γ+δ <

β
µ+γ < 1.
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Demography with single isolated steady state. In cases b)–d),

system (12) has a unique nontrivial DFE given by

E0 =
(
N0
h , 0, 0, 0,N

0
v , 0
)
, where N0

h and N0
v are the equilibria of the

host’s and vector’s populations without the disease. Then, in each

case, the basic reproduction number, R0, evaluated at E0 is given

by

R0 =

√
AhAvN

0
v

(
g0
r + frξr

)
N0
hd

0
v g

0
i g

0
r

=

√
AhAvN

0
vG

0
r

N0
hd

0
v g

0
i

, (22)

where, as before,

g0
i = gi (N

0
h), g0

r = gr (N0
h), g0

p = gp(N0
h), d0

v = dv (N0
v ) and,

similarly to (16), G 0
r = 1 + ξr fr

g0
r

.
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Cases b) i c) — dh(Nh) = µ1h. Here g∗i = g0
i =: gi , g

∗
r = g0

r =:

gr , g
∗
p = g0

p =: gp,G
∗
r = G 0

r =: Gr ,F
∗
r = F 0

r =: Fr are independent

of the population. Then (17) can be written as

I ∗h =
N∗h
(
AhN

0
v c1 − g0

i d
0
vN
∗
h

)
c0 + c1g0

i N
∗
h

. (23)

where

c0 = AhAvN
0
vGrFr = R2

0N
0
hd

0
v giFr

c1 = AvFr = R2
0

N0
hd

0
v gi

AhN0
v

.
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Case b) — bh(N) = λh. In this case, recognizing that

λh = N0
hµ1h, (18) can be written as

µ1hN
0
h − µ1hN

∗
h − δh

N∗h
(
AhN

0
v c1 − g0

i d
0
vN
∗
h

)
c0 + c1g0

i N
∗
h

= 0. (24)

Since we are interested in solutions N∗h satisfying 0 < N∗h ≤ N0
h , it

is convenient to make the substitution

N∗h =
N0
h

x + 1
⇔ x =

N0
h

N∗h
− 1,

as then the solution x = 0 will correspond to DFE and positive

solutions will correspond to N∗h < N0
h .
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Then (24) can be written as

Φ(R0, x) := x2 + α(κ− 1)x + α(R−2
0 − 1) = 0,

where

κ =
µ1h

δh

(
Fr +

N0
hgi

AhN0
v

)
,

α =
δh
µhFr

.

Importantly, we can see that there are free parameters in R2
0 ,

namely Av , d
0
v and ξr , which do not appear in the coefficients of

the equation and thus we can change R2
0 without altering the other

coefficients.
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Interlude—a simple version of Castillo-Chavez–Song

theorem. As we have seen, in many cases the bifurcation question

reduces to finding positive solution to the equation

Φ(R0, x) = 0

for R0 in some neighbourhood of R0 = 1, given that

Φ(1, 0) = 0.

If such solutions occur for R0 > 1, then we have a forward

bifurcation, if for R0 < 1, then we talk about a backward

bifurcation.
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We assume Φ is a differentiable function. The crucial assumption

is that
∂Φ

∂x

∣∣∣∣
R0=1,x=0

6= 0.

In particular, it ensures that the solution is isolated. Implicit

Function Theorem gives the existence of a unique differentiable

function R0 7→ x(R0) in some neighbourhood of R0 = 1 such that

x(1) = 0 and

Φ(R0, x(R0)) ≡ 0.
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We differentiate this equation implicitly with respect to R0,

∂Φ

∂R0
+
∂Φ

∂x

dx

dR0
≡ 0,

hence

dx

dR0
= −

∂Φ

∂R0

∂Φ

∂x

.

Since all functions above are continuous, their signs in some

neighbourhood of R0 = 1 and x = 0 are determined by that at

R0 = 1, x = 0. Therefore
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There is a backward bifurcation at R0 = 1 if dx
dR0

∣∣∣
R0=1

< 0,

that is,
∂Φ

∂R0

∣∣∣∣
R0=1,x=0

∂Φ

∂x

∣∣∣∣
R0=1,x=0

> 0.

There is a forward bifurcation at R0 if dx
dR0

∣∣∣
R0=1

> 0, that is,

∂Φ

∂R0

∣∣∣∣
R0=1,x=0

∂Φ

∂x

∣∣∣∣
R0=1,x=0

< 0.

See R.Ouifki, J.B., Epidemiological models with quadratic equation

for endemic equilibriaa bifurcation atlas. Math. Methods Appl.

Sci. 43 (2020), no. 18, 1041310429.
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Returning to the model, we see that

Φ(1, 0) = 0,

∂Φ(R0,x)
∂x

∣∣∣
R0=1,x=0

= α(κ− 1).

Φ(1, x)

Φ(0.95, x)

0.5

1.0

1.5

2.0
Φ(1, x)

Φ(0.95, x)

0.5

1.0

1.5

2.0

Figure: Graphs of Φ(1, x) with κ < 1 (left) and κ > 1 (right).
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We see that a small decrease in R0 from R0 = 1 results in an

emergence of another endemic equilibrium, and hence a backward

bifurcation, if

κ =
µ1h

δh

(
1 +

fr
gr

+
cωh

gp
+

N0
hgi

AhN0
v

)
< 1.

In particular, there is no backward bifurcation if µ1h > δh, that is,

for small disease induced death rates.
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Case c) — bh(Nh) = rNh

(
1 − Nh

K

)
. In this case, taking into

account N∗h > 0, we can write (18) as

(r − µ1h)−
rN∗h
K
− δh

(
AhN

0
v c1 − g0

i d
0
vN
∗
h

)
c0 + c1g0

i N
∗
h

= 0, (25)

which we transform to

(N∗h)2 + N∗h

(
β − N0

h −
α

R2
0

)
+ N0

h(α− β) = 0,

where, using η := r − µ1h =
rN0

h
K ,

α =
δhAhN

0
v

ηgi

β =
FrAhN

0
v

gi
.
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As before, we make the substitution

N∗h =
N0
h

x + 1
⇔ x =

N0
h

N∗h
− 1

to obtain

Ψ(R0, x) := x2 + x
β + N0

h + α
(

1
R2

0
− 2
)

β − α
+

α

β − α

(
1

R2
0

− 1

)
= 0.

As before, the parameters Av , dv and ξr do not appear in R2
0 and

Ψ(1, 0) = 0,

∂Ψ(R0,x)
∂x

∣∣∣
R0=1,x=0

= 1 +
N0
h

β−α .
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Now,

β − α =
AhN

0
v

gi

(
r − µ1h − δh

r − µ1h
+

fr
gr

+
cωh

gp

)
and we have three cases (we ignore β − α = 0 or 1 +

N0
h

β−α = 0):

i) β − α > 0 (and hence 1 +
N0
h

β−α > 0),

ii) β − α < 0 but 1 +
N0
h

β−α > 0,

iii) 1 +
N0

h
β−α < 0 (and hence β − α < 0).
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Let us write

Ψ(R0, x) = x2 + b(R0)x + c(R0) = 0,

where

b(R0) :=
β + N0

h + α
(

1
R2

0
− 2
)

β − α

c(R0) :=
α

β − α

(
1

R2
0

− 1

)
.

In some neighbourhood of R0 = 1, both b and c are decreasing

functions of R0 in case i) and increasing in case iii), whereas b is

decreasing and c is increasing in case ii).
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Ψ(1, x)

Ψ(1.05, x)

Ψ(0.95, x)

-0.5

0.5

1.0

1.5

2.0 Ψ(1, x)

Ψ(0.95, x)

Ψ(1.05, x)

-0.5

0.5

1.0

1.5

2.0

Ψ(1, x)

Ψ(0.95, x)

Ψ(1.05, x)

-0.5

0.5

1.0

1.5

2.0

Figure: Graphs of case i) (upper left), ii) (upper right) and iii) (bottom)

We see that at R0 = 1 there is a forward bifurcation in case i), a

single backward bifurcation in case ii) and double forward/single

backward bifurcation in case iii).
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We observe that, assuming a logistic growth of the disease free

population, that is, r − µ1h > 0, cases ii) and iii) would require a

large δh to make β − α < 0. Hence, typically, for small δh, we do

not have backward bifurcation in this scenario, as in the previous

one.
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Bifurcation atlas

R0R0 = 1

No.of EE

R0

No.of EE

R0 = 1

Figure: Structure of endemic equilibria in the case of simplified logistic

growth. Forward bifurcation (κ > 1, left) and backward bifurcation

(κ < 1, right).
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R0R0 = 1

No.of EE

R0R0 = 1

No.of EE

R0

No.of EE

R0 = 1

Figure: Structure of endemic equilibria in the case of logistic growth.

Single forward bifurcation (case i), top left), single backward (case ii),

top right), double forward (case iii), bottom).
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