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Cell persistence

Bacterial Persistence as a
Phenotypic Switch

Nathalie Q. Balaban,’2* Jack Merrin,’ Remy Chait,’
Lukasz Kowalik," Stanislas Leibler’

A fraction of a genetically homogeneous microbial population may survive
exposure to stress such as antibiotic treatment. Unlike resistant mutants, cells
regrown from such persistent bacteria remain sensitive to the antibiotic. We
investigated the persistence of single cells of Escherichia coli with the use
of microfluidic devices. Persistence was linked to preexisting heterogeneity
in bacterial populations because phenotypic switching occurred between
normally growing cells and persister cells having reduced growth rates.
Quantitative measurements led to a simple mathematical description of the
persistence switch. Inherent heterogeneity of bacterial populations may be
important in adaptation to fluctuating environments and in the persistence
of bacterial infections.
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Mathematical and statistical modelling

Mathematical modelling
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Fig. 1. Mathematical biology workflow; adapted from (Portet, 2015).



Simple ODE model: homogeneous population
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Models of persistence
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2-phenotype ODE system

* Assume we have two phenotypes N; and N, with division rates u; and p,.

* Probability p that any newly born cell belongs to phenotype 1 and (1-p) to
phenotype 2.

* Antibiotic stress reduces cell viability from new births.

dN,

ke Bp(pn1 N1 + paNa) — pi Ny,

dN
d_t2 = B(1 — p)(u1 N1 + p2N32) — paNa,

B=2(1-0)and 0 <o <1

Gomes MGM, King JG, Nunes A, Colegrave N, Hoffmann AA (2019) The effects of individual
nonheritable variation on fitness estimation and coexistence. Ecol Evol 9, 8995-9004.



2-phenotype model

10 =] i e | B |

N(t) = Cle’\+tv+ - 026'\—t'v_,

{ Growth rate determined by A% }




Equivalent homogeneous model

Equivalent one phenotype (homogeneous) system

p=pp + (1 —p)p2.

\l’
o =BAN — N, N(0)=1,

N(t) = exp((8 — 1)nt)



Solution behaviour in zero and high stress
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Theoretical growth rate bounds

B-m <At <@B=-Di,| 1<8<2
AT =0, B=1 and

(B —1)u >{»\+ > (ﬂ—l)ﬁ,] 0< 8 <.




Growth rates over stress gradient
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n-phenotype ODE model
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(2p2 — 1)p2

2pn k2

Miv1 > i, fori =1,...

2P iy
2P fiy,

(2pn o l)ﬂn

If the eigenvalues of A are ordered such that Ay > Ay > ... > A, then

{-pn<An<—Fn—l<An-l<"'<-#2<A2<-#|<0 }

[ 0 < max(py, 2t — ptn) < A1 < ji. ]




Example of n-phenotype system
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Continuous phenotype model

ON
= 2p(p 'N(',t) du’ — uN(p,t),
o1 P(I)/vﬂ (' t) dp’ — pN(p,t),
N(p,t) =T(t)S(n)
¢ _ [ 20(8) sapn .
T(t) = Ae® S(u)—/chruuS(u)du.

_ _ p(p)
S(p) = 2¢1b(p), where b(u) = ctu



Growth rate of continuous model

Growth rate equation

/
1
//—l', p(ﬂ ), d/.t, - _

Y, C+[L 2

{There exists a unique growth rate 0 < ¢ < fu. J




Example continuous phenotype

V = [0,1] and a uniform distribution g ~ Ujp,;) and hence p(u) = 1

C

1\ 1
cln(1+—)=§ ¢=0.3980 < p=0.5

N(p,0) =p(p), peV,

dNNy
dt

d )
= Z&/N("’O) du=/nN(u,0) du=/up(u) dp = i,
() v v v



Numerical simulations
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Time to subdivision data

Noise-driven growth rate gain in clonal
cellular populations

Mikihiro Hashimoto®, Takashi Nozoe?, Hidenori Nakaoka?®, Reiko Okura?, Sayo Akiyoshi?, Kunihiko Kaneko®®,
Edo Kussell“?, and Yuichi Wakamoto®®"
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E.O Powell 1958

Powery, E, O, (1958). J. gen. Microbiol. 18, 382-417

An Outline of the Pattern of Bacterial Generation Times

By E. 0. POWELL
Moicrobiological Research Establishment (Ministry of Supply) Porton, Wiltshire
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Hashimoto et al: Probabilistic model
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Age-structured PDE model (homogeneous)

Age-structured population N (¢,7). Assume d7/dt = 1.

ON ON
- 2= = —b(r)N
ot ot b(7)

Birth process
N(t,0) = 2 / b(r)N dr
0

Initial condition
N(0,7) = No(T)



Connection to ODE model

If g(7) = pe H* then b(1) = p.
Age-structured PDE:

ON ON
o o - MY

Integrate wrt 7 and use boundary condition for birth. Denote population

N (t) = /OOO N(t,7)dr

d
ENtOt (t) — QIMNtOt (t) L /_LNtOt (t)

Ntot (t) — Ntot(o)e,ut



Age-structured model results
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Age-structured PDE model (homogeneous with stress)

Antibiotic (stress) negatively impacts cells at birth:

ON ON
| = — N
ot ot b(r)

Birth process
N(t,0) =2(1 — Ja)/ b(T)N dr
0

Initial condition
N(0,7) = No(1)



Selection in age as a function of stress
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Age-structured (heterogeneous)

Two sub-populations Ny (t,7) and Na(t,7)

N,  ON,
B o - N
ONy ONy
Bt o - e

Birth process

N1 (t, O) = 21 /Oo(bl (T)N1 + bQ(T)NQ)dT

Ng(t, O) — 2]?2 /Oo(bl (T)Nl + bQ(T)NQ)dT



2 phenotype age-structured results
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Microfluidics (Rozan, Michele, Paul

Tube input

Tube output




Data analysis
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Simulation of dynamic cytometer
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Homogeneous distribution
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2-Phenotypes
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Inference of heterogeneity

Assume cell time to subdivision z is generated from mixture of K models

p(z;n) =Y wp(w;6)
=1

01,...,0g pdf parameters

K
wi,...,Wg, non-negative weights with E w; =1
=1

Model parameters

T = (elawlw"aeKawK)



Snob: finite mixture model (Matlab)

Assume two sub-populations:

Class 1: 85.8% (90%), k=6.6 (6), 8=7.2 (9)
Class 2: 14.2% (10%), k=4.1 (6), =18.0 (20)

Assume one population: k=5.1, 6=10



AIC and BIC (model selection)

A

AIC = 2n,, — 2In(L)

A

BIC = n, In(N) — 2In(L)

AIC; = 28164 AIC, = 28092

BIC; = 28171 BIC, = 28108

Strong evidence data generated from of 2-phenotype model



Conclusions

* Range of modeling frameworks for heterogeneous population growth.
* Simple ODE model suggest mechanism for cell persistence.

* Homogeneous age-structured PDE model agrees well with
Hashimoto.

* Included stress at birth. Selection effect depending on age.

* Extended to 2-phenotype age-structured. Reduced growth v
homogeneous.

e Simple probabilistic model of dynamic cytometer.
e Synthetic data generated fitted by ML and finite mixture models
* Promising ability to do model selection AIC and BIC



