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Flow Structure Interactions- Applications

Aerodynamics. Control of flutter.
Flutter -sustained oscillations.

Subsonic, supersonic and transonic regimes;

Large space structures. Large and thin. Highly oscillatory.

Medical Sciences

Treatment of apnea

Engineering

Oscillating Bridges and Buildings
Harvesting of energy-Windmills. Post flutter analysis.
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flow-structure interaction, supersonic
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flow-structure interaction, subsonic
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Outline

PDE Models- Nonlinear Dynamics Hyperbolic /Hyperbolic-like
with an interface.

Role of the Modeling aligned with Experiments and Numerics.

Main Results

Representation as a wellposed Dynamical System (St ,X ).
Stability and long time behavior

Global attractors for the structure only.
Control of the flutter -strong stability to an equilibria for the full
interaction.

Ideas about the Proofs - dynamical system theory.
Conclusions and Open Problems
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The Model.

Thin, flexible plate, moving with a velocity U.
M = velocity

local speed of sound (U = 1 normalised speed of sound).

Ω is a closed, two-dimensional domain (smooth) in the x-y plane.

The unperturbed flow is in the negative x-direction.

U

z

xΩ

Γ

φ(x , y , z ; t) - velocity potential at a point, u(x , y , t) vertical
displacement- it can be large
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Goals and Challenges

Eliminate the flutter, if possible.

or control the flutter speed? Where? On the structure.

post-flutter harvesting

Flutter - sustained oscillations. Can lead to a damage, breakage of the
structure.
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PDE Model. E.Dowell

Flow of gas in D = R3
+

ρt + div(ρv) = 0, in,D = R3
+ Mass Eq.

ρ[vt + (v ,∇)v ] +∇p = 0 in D - Momentum Eq.

Structure on Ω ∈ R2

utt − γ∆utt + ∆2u − [F (u), u] = p|Ω in Ω. Large Oscillations.

Here u represents the vertical displacement of the structure, γ ≥ 0
represents possible rotational inertia , F (u) = [F(u) + F0, u] where F(u)
is Airy’s stress function , [u,w ] v-Karman bracket. It models large
displacements .
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Linearizing the flow around unstable profile [U, 0, 0], un-viscous,
irrotational [v = ∇φ] , barotropic flow [p = αρ]
Flow of gas in D = R3

+

(1) [∂t + U∂x ]ρ+ div(v) = 0,

(2) (∂t + U∂x )[vt + U ∂v
∂x +∇p] = 0 in D

irrotational [v = ∇φ] , barotropic flow [p = αρ]

(2)→ (3) ≡ (∂t + U∂x )[φt + U
∂φ

∂x
+ αρ] = 0 in D

(1) + (3) = (∂t + U∂x )[φt + U
∂φ

∂x
]− α∆φ = 0 in D
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Aeroelastic potential Ψ.

Ψ ≡ (∂t + U∂x )φ, v = ∇φ

Flow in D ∈ R3 Hyperbolic system.

(∂t + U∂x )φ = Ψ

(∂t + U∂x )Ψ−∆φ = 0

taking α = 1.
Structure on Ω ∈ R2 Hyperbolic like scalar eq.

utt − γ∆utt + ∆2u − [F (u), u] = Ψ|Ω in Ω.
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BOUNDARY CONDITIONS
For the Flow: R2

[ Flow-tangency-Neumann:] ∂φ
∂~n = (

(∂t + U∂x )u Ω
0 outside

)

[Kutta Joukovsky:] ∂φ
∂~n = (

(∂t + U∂x )u Ω
Ψ = 0 outside

)

For the Structure: ∂Ω

[Clamped:] u = ∇u = 0, on ∂Ω

[Free:]
Dn∆u + (1− ν)DτDnDτu = ∆u + (1− ν)[D2

τ − div~nDn]u = 0 on ∂Ω

[Hinged:] u = ∆u + kD2
τu = 0, on ∂Ω.

Bridge : Flow Neumann + Structure Free/hinged
Flag: Flow Neumann + Structure Free/Clamped
Oscillating Panel: Flow Neumann + Structure Clamped
Wing : Flow KJ + structure free/hinged
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Question: formulate pde question pertinent to this flutter problem?

Experiments [NASA, AFOSR Lab at UCLA. and Duke] show
”stabilizing ”effect of the flow on the structure.

The model has no active dissipation.

Answer: Guided by the experiment: Study the following:

Generation of a nonlinear evolution. Existence of dynamical system
in the ”finite energy space”.

Uniform attraction of structural evolution to a finite dimensional
set.

Strong stability to equilibria. U < 1

Control of the resulting finite dimensional dynamical system.
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Wellposedness

What has been known:

Global wellposedness of weak solutions for γ > 0 only.

utt − γ∆utt + ∆2u − [F (u), u] = Ψ|Ω, in Ω

Flow
(∂t + U∂x )Ψ−∆φ = 0, in D

with Neumann data for the flow and the structure clamped.
Global unique weak solutions in

(φ,Ψ, u, ut) ∈ H1(D)× L2(D)× H2
0 (Ω)× H1

0 (Ω)

Boutet de Monvel, Chueshov [Doklady 1997, CRAS 1996, MMAS
1999] .I. Chueshov, A. Rezounenko (CRAS 1995, CMPDE 1997,
CPAA 2015. ) I. Ryzhykova ( Comm. Math.Physics 2007, JMAA
2004)[ strongly damped plates] .

No stabilizing effect shown by the flow. Why?

. Is this a wrong model? A formal argument when γ > 0.
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Rotational model: γ > 0 Initial data for the flow are compactly
supported.

utt − γ∆utt + ∆2u − [F (u), u] = ΨU becomes after a long time

utt−γ∆utt + ∆2u − [F (u), u] = −(∂t + U∂x)u + q(u, t.x.y)

q(u, t, x , y) ≡
∫ t∗

0

ds

∫ 2π

0

dθD2(u(x−(U+sinθ)s, y−scosθ, t−s),DELAY

utt−γ∆utt + ut︸︷︷︸
does not stabilize

+∆2u− [F (u), u] = −Uux + q(u, t, x , y)︸ ︷︷ ︸
destabilizes

utt − γ∆utt + ut − γ∆ut︸ ︷︷ ︸
stabilizes

+∆2u − [F (u), u] = −Uux + q(u, t, x , y)︸ ︷︷ ︸
destabilizes

Conclusion: To stabilize the structure : needs to add ∆ut . Flow
does not harvest such term. Flow does not stabilize the rotational
model.
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Hidden stabilizing effect of the flow.

utt + ∆2u − [F (u), u] = ΨU

becomes after some time a nonlinear PDE with delay

utt + ∆2u − [F (u), u] = −(∂t + U∂x)u + q(u, t, x, y)

q(u, t, x , y) =

∫ t∗

0

ds

∫ 2π

0

dθD2(u(x−(U+sinθ)s, y−scosθ, t−s),DELAY

utt + ut︸︷︷︸
stabilizes

+∆2u − [F (u), u] = −Uux + q(u, t, x , y)︸ ︷︷ ︸
destabilizes

We will work with irrotational model

(φ, ψ, u, ut) ∈ H1(D)× L2(D)× H2
0 (Ω)× L2(Ω)

Loss of one derivative in structural velocity.
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Structure-Final model

Structural equation-u(t, x , y)

utt + ∆2u − [F(u),u] = p0 + (∂t + U∂x )φ
∣∣
Ω

in Ω

Boundary conditions : u = ∇u = 0 on ∂Ω

Initial conditions: u(0) = u0 ∈ H2
0 (Ω), ut(0) = u1 ∈ L2(Ω)

p0 ∈ L2(Ω) is the static aerodynamic pressure on the plate surface.

aeroelastic potential = ΨU = (∂t + U∂x )φ|Ω,
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Flow

Flow equation -φ(t, x , y , z)

(∂t + U∂x )2φ = ∆φ

BC : on Ω : ∂νφ
∣∣
z=0

= −(∂t + U∂x )u(x , y)) on Ω

Outside Ω : ∂νφ
∣∣
z=0

= 0

Initial conditions : φ(t = 0) = φ0, φt(t = 0) = φ1

aeroelastic potential = ΨU = (∂t + U∂x )φ|Ω,

downwash = (∂t + U∂x )u
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Von Karman -Airy Stress function nonlinearity

[F (u), u] = [u,F(u)− F0]. F0 is in-plane loading .

[g , h] = gxx hyy + gyy hxx − 2gxy hxy is the von Karman bracket.

F(u) is the Airy Stress function, solves{
∆2F(u) = −[u, u] in Ω

F(u) = ∂F(u)
∂ν = 0 on Γ

[F (u), u] cubic and nonlocal . F(u) : H2(Ω)→ H3−ε(Ω) implies
[F (u), u] : H2(Ω)→ H−ε1 (Ω), ε1 > 0, P.Ciarlet, J.L.Lions 2ε
missing. However

F(u) : H2(Ω)→W 2,∞(Ω). D2F(u) becomes a multiplier.
IL, D. Tataru 1997 .
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Goals:

Wellposedness of finite energy solutions.

Long time asymptotic behavior

Expectations: based on experimental studies:

Elimination of the flutter at the subsonic level U < 1

Asymptotic reduction of structural dynamics to a finite
dimensional attracting sets (chaotic). Dispersion provides a
stabilizing effect. Quantitize.

Mathematical challenges: Due to the loss of one derivative in ut .

lack of active dissipation on the flow and the structure;

lack of compactness/regularity;

potential degeneracy of the energy function.
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Model: Energies

Plate Epl (t) =
1

2

(
||ut ||2Ω + ||∆u||2Ω + 1/2||∆F(u)||2Ω − ([u,F0], u)Ω

)

Flow: Efl (t) =
1

2

(
||φt ||2D + ||∇φ||2D−U2||∂xφ||2D

)

Interactive: Eint(t) = 2U < ux , φ >Ω

Epl (t) + Efl (t) + Eint(t) = Constant
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Total Energy -why it is interesting?

Balance of Energy: E(t) = E(s). Two issues:
1. no dissipation, 2. loss of ellipticity for U ≥ 1.

Hidden dissipation - dispersive effects to account for.

U < 1 , Efl =
1

2

(
||φt ||2 + ||∇φ||2−U2||∂xφ||2

)
∼ ||φt ||2 + ||∇φ||2

U = 1, Efl ∼ ||φt ||2 + ||∂zφ||2 + ||∂yφ||2 + 0 · ||∂xφ||2

U > 1, Efl ∼ ||φt ||2 + ||∂zφ||2 + ||∂yφ||2−(U − 1)||∂xφ||2
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Conclusions

1 flow does not stabilize the rotational model -confirming the
experiment.

2 Rotational model yields smoother solutions by adding ONE space
DERIVATIVE to ut -making f (u) compact on the energy space.
Simplifies wellposedness analysis however not physical.

3 The original model brings aboard new mathematics:

[F(u), u] becomes critical
non dissipative, lack of gradient structure : Uux

PDE dynamics with the delay: q(u) and its destabilizing effects.
Lack of compactness, regularity.

Gives rise to NEW Techniques

PDE, harmonic and microlocal analysis,

Dynamical systems theory for non-dissipative systems.

Irena Lasiecka



Main Results- Overview

Existence and Hadamard wellposedness of finite energy solutions .

Solutions are bounded for ALL TIMES. - CRITICAL role of
nonlinearity. (False for the linearization)

Subsonic case: with the feedback control damping implemented
on the structure all solutions stabilize to the stationary states.

Conclusion: Flutter can be eliminated

U 6= 1 : With the flow data compactly supported all weak solutions
of the structure without any dissipation
converge uniformly to a finite dimensional and smooth set .

Conclusion: Structural dynamics becomes finite dimensional
asymptotically.
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Nonlinear Semigroup -Generation

Theorem (Nonlinear semigroup)

Flow-structure interaction generates a continuous nonlinear
semigroup

St : H → H = H2
0 (Ω)× L2(Ω)× H1(D)× L2(D)

Semigroup St is bounded for all t > 0 (U < 1 ).

For compatible and suitably smooth initial data the corresponding
solutions are smooth and global.

Chueshov, I.L, Webster 2013 JDE
Remark: Solutions for smooth data with U < 1 in Boutet de Monvel,
I.Chueshov, CRAS 1996, MMAS 1999.
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Main Result - Subsonic and Supersonic

Theorem (Finite dimensional attracting set)

Let U 6= 1. Consider plate solutions in Hpl = H2
0 (Ω)× L2(Ω). Then,

there exists a compact set A ∈ H3 × H2 ⊂ Hpl of finite fractal
dimension such that

limt→∞dist{(u(t), ut(t)),A} =

limt→∞infu0,u1∈A[||u(t)− u0||22,Ω + ||ut(t)− u1||20,Ω] = 0

for all compactly supported initial conditions corresponding to
the flow.

Chueshov, I.L, J. Webster, CMPDE 2016, Oberwolfach Seminars 2018.

Remark A can be chaotic :limit cycles and periodic orbits. , E. Dowell
[Duke] , J.Howell [CMU]
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Strong Stability- Subsonic case

N denotes stationary solutions. Assume it is finite. (generically true.
Can be eliminated :Haraux, Lojasiewicz lemma:)
Structural equation with a feedback control:
utt + k(ut) + ∆2u − [F (u), u] = (∂t + U∂x )φ|Ω

Theorem (Stability, U < 1 and k > k0 > 0, I.L, Webster, SIMA )

Let U < 1. Then any weak solution with compactly supported flow
initial data stabilizes to a stationary set.
There exist (u0, u1,Φ0,Φ1) ∈ N such that for all R > 0.

limt→∞||u(t)− u0||22,Ω + ||ut(t)− u1||20,Ω = 0

limt→∞||Φ(t)− Φ0||21,B(R) + ||Φt(t)− Φ1||20,B(R) = 0

where B(R) denotes a ball of radius R.

CONSEQUENCE: Flutter can be eliminated by applying damping
to the structure only. Nonlinear effects are critical
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Buckling and Convergence to two different
non-trivial steady states
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Convergence to a limit cycle
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Convergence to a limit cycle. Flutter
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Welllposedness (St ,Y ).

New ”Supersonic” and K-J energy

E (t) = Eu(t) + EΦ(t)

Eu = 1/2

∫
Ω

(|ut |2 + |∆u|2 + 1/2|∆F(u)|2dΩ−[u,F0]udΩ

EΦ = 1/2

∫
D

[|Ψ(t)|2 + |∇Φ(t)|2]dD

Energy balance : E (t) = E (s)−U

∫ t

s

∫
Ω

Ψ|Ωux

Control of low frequencies. For all u ∈ H2(Ω) ∩ H1
0 (Ω) and all ε > 0

||u||L2(Ω) ≤ ε[||u||H2(Ω) + ||∆F(u)||L2(Ω)] + Cε,Ω. This implies
||u||2H2 ≤ CEu + M. Potential energy bounded from below.

Good Energy, Bad Energy Balance . Microlocal Analysis arguments to

handle bdry integral.
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Long Time behavior

”Attractor” for the structure [ plate] U 6= 1

Theorem (Existence of the structural attracting set. )

Let U 6= 1. Consider plate solutions in Hpl = H2
0 (Ω)× L2(Ω). Then,

there exists a compact set A ∈ Hpl of finite fractal dimension such
that

limt→∞dist{(u(t), ut(t)),U} =

lit→∞infu0,u1∈A[||u(t)− u0||22,Ω + ||ut(t)− u1||20,Ω] = 0

for all compactly supported initial conditions corresponding to
the flow.

The said ”attractor ” is smooth A ⊂ H3(Ω)× H2(Ω).

Chueshov, I.L. Webster : CMPDE, Oberwolfach Seminars, 2018.

The analysis reduced to a finite dimensional invariant set
Determination of fluttter speed. Outline of the proof-below.
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Hidden stabilizing effect of the flow

utt + ∆2u = [F (u), u] + p(u, t, x , y)

p(u, t, x , y) ≡ −(ut + Uux) + q(u, t, x , y)

For t >> T0,

utt + ut + ∆2u = [F (u), u]− Uux + q(u, t, x , y)

q(u, t, x , y) =

∫ t∗

0

ds

∫ 2π

0

D2(u(x − (U + sinθ)s, y − scosθ, t − s)dθ

D1 = e−iθ · ∇⊥x,y = sinθ
∂

∂x
+ cosθ

∂

∂y

t∗ = inf {t, ~x(U, θ, s) /∈ Γ, ~x ∈ Γ}, ~x ≡ (x − s(U + sinθ), y − scosθ)
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Difficulties:

1 Nondissipative system, Uux . Low frequencies.

2 Lack of compactness , [F (u), u], q(u, t, x , y). High frequencies.

Strategy: I. Chueshov, I.L. Memoires AMS, 2008.

Absorbing invariant set B(R). Lyapunov function accounting for
the delay term and good control of low frequencies. [maximum
principle for nonlinear elliptic problems]

|u|Hs ≤ ε

U
[|u|H2 + |∆F(u)|L2 ] + Cε, s < 2

[ nonlinearity cooperates [talks to ] with the blow up-controlling
low frequencies]

Sharp regularity of Airy;s stress: [IL. D.Tataru, 1998]

||F(u)||W 2,∞ ≤ C |u|2H2

Previous results [J.L.Lions,Dautray] not good

||F(u)||H3−∞ ≤ C |u|2H2

Note H3−ε does not embed in W 2,∞ which is a right space of
multipliers for von Karman brackets.
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Asymptotic smoothness -compensated compactness criterion
for a dynamical system (St ,Y ) . For all ε > 0, for any bounded
positively invariant B there exists T (ε,B)

dY (ST (y1)− ST (y2)) ≤ ε+ Rε,B,T (y1, y2), yi ∈ B

where Rε,B,T is a functional defined on B × B:

lim
m

inf lim
n

inf Rε,B,T (yn, ym) = 0,∀yn ∈ B(R)

Then, (St ,Y ) is an asymptotically smooth dynamical system.
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With z = u1 − u2 with y i = (ui , ui
t , u

t,i ) and y i (t) ∈ B(R). For any
ε > 0 there exists T = Tε(R) such that.

Ez (T ) +

∫ T

T−t∗
||z(s)||2H2 ds ≤ ε+ Rε,T ,R (y 1, y 2)

lim
m

inf lim
n

inf Rε,T ,R (yn, ym) = 0,∀yn ∈ B(R)

Critical role of the structure [symmetry] of Karman bracket, sharp
regularity of Airy’s function and compensated compactness in
delay term.

Existence of compact attractor A.

Quasistabilty estimate obtained on the attractor A implies finite
dimensionality and smoothness.
I.L. Chueshov, V.K Evolutions,Springer, 2010.

||St(y1)− St(y2)||2Y ≤ Ce−ωt ||y1 − y2||2Y + LOT (St(y1)− St(y2))

LOT lower order with at least quadratic order of homogenity.
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Back to the equation: The key contribution of the nonlinear critical
term. Exploiting the symmetry and structure of vK bracket

([F(u1), u1]− [F(u2), u2], zt)Ω =
d

dt
Q(z) + P(z)

. where Q(z) is of lower order [compact] so the term can be integrated in
time. Instead, P(z) remains critical but it has nice structure:

P(z) ≤ CR |z |2H2 [|u1
t |L2 + |u2

t |L2 ]

Relying on the obtained compactness of the attractor, sharp Airy’s
estimates one develops local estimates around points ej ∈ H2(Ω) close to
u1

t , u
2
t ∈ L2(Ω).

Conclusion taking the projection of the delayed dynamics on the
plate dynamics gives the attracting set for the structure which is
finite dimensional and smooth in H3(Ω)× H1(Ω) .
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Next: STRONG stability of the full system:flow and structure:
U < 1 -subsonic
Elimination of the flutter with a feedback control k(ut) on the structure.
STRATEGY .

1 STEP 1: Strong convergence to the set N of orbits driven by
smooth structural data

Use dispersion estimates for the flow driven by the initial conditions
Analysis of the coupling via Neumann map: ”tour de force ” loosing
derivatives . Strong stability for smooth initial
data.Y = (Φ,Φt , u, ut) .

St(Yr ) → N ,Yr ∈ D(A)

2 STEP 2: k > 0 Uniform Hadamard sensitivity uniformly in t > 0
when ||Yr − Y || ≤ ε.

||St(Yr )− St(Y )|| ≤ εc(

∫ t

0

||ut ||)

Controlling the rate of attraction ||ut || ∈ L1?. We only know
||ut || ∈ L2.

|Y (t)− Ym(t)2|Y ≤ Ce|d(t)|L1 |Y (0)− Ym(0)|2Y
d(t) = |ut(t)|Ypl

+ |um,t(t)|Ypl
∈ L2(0,∞)

We know only that |ut |L2(0,∞) + |um,t |L2(0,t∞ <∞

We need d ∈ L1(0,∞) rather than d ∈ L2(0,∞).
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STEP 3 : k ≥ 0 Back to the structure. Construct attractor A for
the structure only.
Big Gun. No dissipation, no compactness. But ”hidden”
dissipation harvested from the flow and ”hidden” smoothness.
Smooth attracting set in H3 × H2 was obtained in the previous
theorem.

STEP 4:

either U(t) enters A -OK since smooth -go to Step 1.
or approaches A . Question: at which rate?
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STEP 5, k ≥ 0 : Prove an existence of exponential attractor
Ae ⊃ A.

dist(U(t)B,Ae) ≤ ce−ωt

The rate is OK, but smoothness???. Difficulty: Ae is only
positively invariant.

STEP 6, k ≥ 0 ; Prove smoothness of the exponential attractor Ae .
Using quasi stability estimate for a suitable decomposition of the
flow which filters out initial data (Zelik, Vishik). Attraction at the
L1 rate to a smooth set. Go back to Step 1.
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A
smooth

Ae

smooth? YES

dist(U(t),Ae) ≤ Ce−ωt

U = (u, ut)

e−ωt
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Back to the flow

Flow provides ”hidden” dissipation

Structure - ”plate” provides ”hidden” asymptotic regularity on
the attracting set.

Propagating these properties through the entire system -main
challenge of the problem.
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SUBSONIC CASE:

Flutter can be eliminated by applying damping to the structure.

SUPERSONIC CASE:

Flow has stabilizing effect.With no damping on the structure
solutions are driven to a finite dimensional set. PDE dynamics
reduced to ODE dynamics. Structure of the set : chaotic, periodic
orbits, limit cycles

Irena Lasiecka



Conclusion

Stabilizing effect of the flow exhibited only for a correct model
-unregularized and without rotational inertia .
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Work in Progress and Open Problems

TRANSONIC CASE. [ U = 1]. Numerical evidence of shocks .
Analysis must account for nonlinearity of the flow.

Kutta Jukovsky boundary conditions.

Ψ = φt + Uφx = 0 off the wing .

Mathematical interest: ”invertibility” of finite Hilbert
transforms. Lp theory for p 6= 2.

Free -clamped boundary conditions on the plate. Tacoma bridge.
Joint work with Filippo Gazzola and Denis Bonheur.

Structure represented by shell model.

Nonlinear Flow equation: NS or Euler
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