Adjoint first order linear equations with Stieltjes derivatives and Lagrange's identity

Ignacio Márquez Albés ignacio.marquez@usc.es

USC
 UNIVERSIDADE

 DE SANTIAGO DE COMPOSTELADepartamento de Estatística, Análise Matemática e Optimización
Facultade de Matemáticas, Universidade de Santiago de Compostela.

1 June 2022

Adjoint linear ODEs

In the context of ODEs, given the linear equation

$$
\begin{equation*}
x^{\prime}(t)=p(t) x(t)+f(t) \tag{LE}
\end{equation*}
$$

the adjoint linear equation is defined as

$$
\begin{equation*}
x^{\prime}(t)=-p(t) x(t)+f(t) \tag{ALE}
\end{equation*}
$$

Adjoint linear ODEs

In the context of ODEs, given the linear equation

$$
\begin{equation*}
x^{\prime}(t)=p(t) x(t)+f(t) \tag{LE}
\end{equation*}
$$

the adjoint linear equation is defined as

$$
\begin{equation*}
x^{\prime}(t)=-p(t) x(t)+f(t) \tag{ALE}
\end{equation*}
$$

This is because their linear operators,

$$
\begin{aligned}
L u(t) & =u^{\prime}(t)-p(t) u(t), \\
L^{*} v(t) & =v^{\prime}(t)+p(t) v(t)
\end{aligned}
$$

are adjoint operators.

Adjoint linear ODEs

These equations satisfy a series of interesting properties:

- The adjoint equation of (ALE) is (LE).

Adjoint linear ODEs

These equations satisfy a series of interesting properties:

- The adjoint equation of (ALE) is (LE).
- Lagrange's identity: $(x \cdot y)^{\prime}(t)=y(t) L x(t)+x(t) L^{*} y(t)$.

Adjoint linear ODEs

These equations satisfy a series of interesting properties:

- The adjoint equation of (ALE) is (LE).
- Lagrange's identity: $(x \cdot y)^{\prime}(t)=y(t) L x(t)+x(t) L^{*} y(t)$.
- If $L x=0$ and $L^{*} y=0$, then $x \cdot y$ is constant.

Adjoint linear ODEs

These equations satisfy a series of interesting properties:

- The adjoint equation of (ALE) is (LE).
- Lagrange's identity: $(x \cdot y)^{\prime}(t)=y(t) L x(t)+x(t) L^{*} y(t)$.
- If $L x=0$ and $L^{*} y=0$, then $x \cdot y$ is constant.
- If $x(t) y(t)=\alpha \neq 0$ and $L x=0$, then $L^{*} y=0$.
- If $x(t) y(t)=\alpha \neq 0$ and $L^{*} y=0$, then $L x=0$.

Adjoint dynamic linear equations

Similarly, for a time scale, \mathbb{T}, the equations

$$
\begin{align*}
& x^{\Delta}(t)=p(t) x(t)+f(t) \tag{DLE}\\
& x^{\Delta}(t)=-p(t) x(\sigma(t))+f(t)
\end{align*}
$$

(ADLE)
are called adjoint linear equations, with

$$
\sigma(t)=\inf \{s \in \mathbb{T}: s>t\}
$$

Adjoint dynamic linear equations

Similarly, for a time scale, \mathbb{T}, the equations

$$
\begin{align*}
& x^{\Delta}(t)=p(t) x(t)+f(t) \tag{DLE}\\
& x^{\Delta}(t)=-p(t) x(\sigma(t))+f(t) \tag{ADLE}
\end{align*}
$$

are called adjoint linear equations, with

$$
\sigma(t)=\inf \{s \in \mathbb{T}: s>t\}
$$

Their linear operators are

$$
\begin{aligned}
L u(t) & =u^{\Delta}(t)-p(t) u(t) \\
L^{*} v(t) & =v^{\Delta}(t)+p(t) v(\sigma(t))
\end{aligned}
$$

Adjoint dynamic linear equations

显
M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.

Theorem (Lagrange's identity)

$$
(x \cdot y)^{\Delta}(t)=y(\sigma(t)) L x(t)+x(t) L^{*} y(t)
$$

Adjoint dynamic linear equations

荀
M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.

Theorem (Lagrange's identity)

$$
(x \cdot y)^{\Delta}(t)=y(\sigma(t)) L x(t)+x(t) L^{*} y(t)
$$

- If $L x=0$ and $L^{*} y=0$, then $x \cdot y$ is constant.

Adjoint dynamic linear equations

(M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.

Theorem (Lagrange's identity)

$$
(x \cdot y)^{\Delta}(t)=y(\sigma(t)) L x(t)+x(t) L^{*} y(t)
$$

- If $L x=0$ and $L^{*} y=0$, then $x \cdot y$ is constant.
- If $x(t) y(t)=\alpha \neq 0$ and $L x=0$, then $L^{*} y=0$.
- If $x(t) y(t)=\alpha \neq 0$ and $L^{*} y=0$, then $L x=0$.

Adjoint linear in a more general context

圊
M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, Adv. Nonlinear Anal. 6(2017), No. 1, 13-36.

They studied the linear equation with Stieltjes derivatives

$$
x_{g}^{\prime}(t)=p(t) x(t)+f(t)
$$

Adjoint linear in a more general context

嘈
M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, Adv. Nonlinear Anal. 6(2017), No. 1, 13-36.

They studied the linear equation with Stieltjes derivatives

$$
x_{g}^{\prime}(t)=p(t) x(t)+f(t)
$$

and showed ODEs and dynamic equations are particular cases of differential equations with Stieltjes derivatives.

Adjoint linear in a more general context

目
M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, Adv. Nonlinear Anal. 6(2017), No. 1, 13-36.

They studied the linear equation with Stieltjes derivatives

$$
x_{g}^{\prime}(t)=p(t) x(t)+f(t)
$$

and showed ODEs and dynamic equations are particular cases of differential equations with Stieltjes derivatives.

Can we obtain Lagrange's identity in this context?
(1) The Stieltjes derivative
(2) Linear equation with Stieltjes derivatives

3 Adjoint linear equation with Stieltjes derivatives

The Stieltjes derivative

What are Stieltjes derivatives?

The Stieltjes derivative

What are Stieltjes derivatives?

Essentially, the Stieltjes derivative of a function is the derivative of a function with respect to another one.

The Stieltjes derivative

What are Stieltjes derivatives?

Essentially, the Stieltjes derivative of a function is the derivative of a function with respect to another one.

Specifically, given a nondecreasing and left-continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$, we "define" the Stieltjes derivative of f at t_{0} as

$$
f_{g}^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{g(t)-g\left(t_{0}\right)}
$$

The Stieltjes derivative

$$
f_{g}^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} F_{t_{0}}(t), \quad F_{t_{0}}(\cdot)=\frac{f(\cdot)-f\left(t_{0}\right)}{g(\cdot)-g\left(t_{0}\right)}, \quad \operatorname{Dom}\left(F_{t_{0}}\right) ?
$$

The Stieltjes derivative

$$
f_{g}^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} F_{t_{0}}(t), \quad F_{t_{0}}(\cdot)=\frac{f(\cdot)-f\left(t_{0}\right)}{g(\cdot)-g\left(t_{0}\right)}, \quad \operatorname{Dom}\left(F_{t_{0}}\right) ?
$$

The Stieltjes derivative

$$
f_{g}^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} F_{t_{0}}(t), \quad F_{t_{0}}(\cdot)=\frac{f(\cdot)-f\left(t_{0}\right)}{g(\cdot)-g\left(t_{0}\right)}, \quad \operatorname{Dom}\left(F_{t_{0}}\right) ?
$$

The Stieltjes derivative

$$
f_{g}^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} F_{t_{0}}(t), \quad F_{t_{0}}(\cdot)=\frac{f(\cdot)-f\left(t_{0}\right)}{g(\cdot)-g\left(t_{0}\right)}, \quad \operatorname{Dom}\left(F_{t_{0}}\right) ?
$$

The Stieltjes derivative

$$
f_{g}^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} F_{t_{0}}(t), \quad F_{t_{0}}(\cdot)=\frac{f(\cdot)-f\left(t_{0}\right)}{g(\cdot)-g\left(t_{0}\right)}, \quad \operatorname{Dom}\left(F_{t_{0}}\right) ?
$$

The Stieltjes derivative

嗇 R. López Pouso, A. Rodríguez, A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives, Real Anal. Exchange 40(2014/15), No. 2, 319-353.

$$
\begin{aligned}
& C_{g}:=\{t \in \mathbb{R}: g \text { is constant in }(t-\varepsilon, t+\varepsilon) \text { for some } \varepsilon>0\} \\
& D_{g}:=\left\{t \in \mathbb{R}: \Delta g(t):=g\left(t^{+}\right)-g(t)>0\right\}
\end{aligned}
$$

The Stieltjes derivative

R. López Pouso, A. Rodríguez, A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives, Real Anal. Exchange 40(2014/15), No. 2, 319-353.
$C_{g}:=\{t \in \mathbb{R}: g$ is constant in $(t-\varepsilon, t+\varepsilon)$ for some $\varepsilon>0\}$ $D_{g}:=\left\{t \in \mathbb{R}: \Delta g(t):=g\left(t^{+}\right)-g(t)>0\right\}$

Definition

Define the Stieltjes derivative of $f: \mathbb{R} \rightarrow \mathbb{C}$ at $t_{0} \in \mathbb{R} \backslash C_{g}$ as

$$
f_{g}^{\prime}\left(t_{0}\right)= \begin{cases}\lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{g(t)-g\left(t_{0}\right)}, & t_{0} \notin D_{g} \\ \lim _{t \rightarrow t_{0}^{+}} \frac{f(t)-f\left(t_{0}\right)}{g(t)-g\left(t_{0}\right)}, & t_{0} \in D_{g}\end{cases}
$$

The Stieltjes derivative at discontinuity points

Why that definition at D_{g} ?

The Stieltjes derivative at discontinuity points

Why that definition at D_{g} ?

- If $t_{0} \in D_{g}$, then $\left(t_{0},+\infty\right) \subset \operatorname{Dom}\left(F_{t_{0}}\right)$, which means that we can always consider the limit from the right.

The Stieltjes derivative at discontinuity points

Why that definition at D_{g} ?

- If $t_{0} \in D_{g}$, then $\left(t_{0},+\infty\right) \subset \operatorname{Dom}\left(F_{t_{0}}\right)$, which means that we can always consider the limit from the right.
- If $\operatorname{Dom}\left(F_{t_{0}}\right)=\mathbb{R} \backslash\left\{t_{0}\right\}$ and $\lim _{t \rightarrow t_{0}} F_{t_{0}}(t)$ exists, so does $\lim _{t \rightarrow t_{0}^{+}} F_{t_{0}}(t)$ and they are equal.

The Stieltjes derivative at discontinuity points

Why that definition at D_{g} ?

- If $t_{0} \in D_{g}$, then $\left(t_{0},+\infty\right) \subset \operatorname{Dom}\left(F_{t_{0}}\right)$, which means that we can always consider the limit from the right.
- If $\operatorname{Dom}\left(F_{t_{0}}\right)=\mathbb{R} \backslash\left\{t_{0}\right\}$ and $\lim _{t \rightarrow t_{0}} F_{t_{0}}(t)$ exists, so does $\lim _{t \rightarrow t_{0}^{+}} F_{t_{0}}(t)$ and they are equal.
- This definition allows us to establish a version of the Fundamental Theorem of Calculus.

The Stieltjes derivative at discontinuity points

Why that definition at D_{g} ?

- If $t_{0} \in D_{g}$, then $\left(t_{0},+\infty\right) \subset \operatorname{Dom}\left(F_{t_{0}}\right)$, which means that we can always consider the limit from the right.
- If $\operatorname{Dom}\left(F_{t_{0}}\right)=\mathbb{R} \backslash\left\{t_{0}\right\}$ and $\lim _{t \rightarrow t_{0}} F_{t_{0}}(t)$ exists, so does $\lim _{t \rightarrow t_{0}^{+}} F_{t_{0}}(t)$ and they are equal.
- This definition allows us to establish a version of the Fundamental Theorem of Calculus.

Remark

For $t \in D_{g}, f_{g}^{\prime}(t)$ exists if and only if $f\left(t^{+}\right)$exists and, in that case,

$$
f_{g}^{\prime}(t)=\frac{f\left(t^{+}\right)-f(t)}{\Delta g(t)}
$$

Properly understanding the Stieltjes derivative

$$
f_{g}^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} F_{t_{0}}(t), \quad F_{t_{0}}(\cdot)=\frac{f(\cdot)-f\left(t_{0}\right)}{g(\cdot)-g\left(t_{0}\right)}, \quad \operatorname{Dom}\left(F_{t_{0}}\right) ?
$$

Properly understanding the Stieltjes derivative

$$
f_{g}^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} F_{t_{0}}(t), \quad F_{t_{0}}(\cdot)=\frac{f(\cdot)-f\left(t_{0}\right)}{g(\cdot)-g\left(t_{0}\right)}, \quad \operatorname{Dom}\left(F_{t_{0}}\right) ?
$$

The Stieltjes derivative

國 I. Márquez Albés, Notes on the linear equation with Stieltjes derivatives, Electron. J. Qual. Theory Differ. Equ. 42 (2021) 1-18

Since C_{g} is open, we can write $C_{g}=\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right)$. Hence, we can define $N_{g}^{-}=\left\{a_{n}\right\}_{n=1}^{\infty} \backslash D_{g}$ and $N_{g}^{+}=\left\{b_{n}\right\}_{n=1}^{\infty} \backslash D_{g}$.

Definition

Define the g-derivative of $f: \mathbb{R} \rightarrow \mathbb{C}$ at $t_{0} \in \mathbb{R} \backslash C_{g}$ as

$$
f_{g}^{\prime}\left(t_{0}\right)= \begin{cases}\lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{g(t)-g\left(t_{0}\right)}, & t_{0} \notin D_{g} \cup N_{g}^{-} \cup N_{g}^{+}, \\ \lim _{t \rightarrow t_{0}^{-}} \frac{f(t)-f\left(t_{0}\right)}{g(t)-g\left(t_{0}\right)}, & t_{0} \in N_{g}^{-}, \\ \lim _{t \rightarrow t_{0}^{+}} \frac{f(t)-f\left(t_{0}\right)}{g(t)-g\left(t_{0}\right)}, & t_{0} \in D_{g} \cup N_{g}^{+} .\end{cases}
$$

The Stieltjes derivative: basic properties

Proposition

If f and h are g-differentiable at $t_{0} \in \mathbb{R} \backslash C_{g}$, then

- $\alpha f+\beta h$ is g-differentiable at t_{0} for any $\alpha, \beta \in \mathbb{R}$ and

$$
(\alpha f+\beta h)_{g}^{\prime}\left(t_{0}\right)=\alpha f_{g}^{\prime}\left(t_{0}\right)+\beta h_{g}^{\prime}\left(t_{0}\right)
$$

The Stieltjes derivative: basic properties

Proposition

If f and h are g-differentiable at $t_{0} \in \mathbb{R} \backslash C_{g}$, then

- $\alpha f+\beta h$ is g-differentiable at t_{0} for any $\alpha, \beta \in \mathbb{R}$ and

$$
(\alpha f+\beta h)_{g}^{\prime}\left(t_{0}\right)=\alpha f_{g}^{\prime}\left(t_{0}\right)+\beta h_{g}^{\prime}\left(t_{0}\right)
$$

- $f \cdot h$ is g-differentiable at t_{0} and

$$
(f \cdot h)_{g}^{\prime}\left(t_{0}\right)=f_{g}^{\prime}\left(t_{0}\right) h\left(t_{0}\right)+h_{g}^{\prime}\left(t_{0}\right) f\left(t_{0}\right)+f_{g}^{\prime}\left(t_{0}\right) h_{g}^{\prime}\left(t_{0}\right) \Delta g\left(t_{0}\right)
$$

The Stieltjes derivative: basic properties

Proposition

If f and h are g-differentiable at $t_{0} \in \mathbb{R} \backslash C_{g}$, then

- $\alpha f+\beta h$ is g-differentiable at t_{0} for any $\alpha, \beta \in \mathbb{R}$ and

$$
(\alpha f+\beta h)_{g}^{\prime}\left(t_{0}\right)=\alpha f_{g}^{\prime}\left(t_{0}\right)+\beta h_{g}^{\prime}\left(t_{0}\right)
$$

- $f \cdot h$ is g-differentiable at t_{0} and

$$
(f \cdot h)_{g}^{\prime}\left(t_{0}\right)=f_{g}^{\prime}\left(t_{0}\right) h\left(t_{0}\right)+h_{g}^{\prime}\left(t_{0}\right) f\left(t_{0}\right)+f_{g}^{\prime}\left(t_{0}\right) h_{g}^{\prime}\left(t_{0}\right) \Delta g\left(t_{0}\right)
$$

Proposition

Let f be g-differentiable at $t_{0} \in \mathbb{R} \backslash\left(C_{g} \cup D_{g}\right)$ and let h be differentiable at $f\left(t_{0}\right)$. Then $h \circ f$ is g-differentiable at t_{0} and

$$
(h \circ f)_{g}^{\prime}\left(t_{0}\right)=h^{\prime}\left(f\left(t_{0}\right)\right) f_{g}^{\prime}\left(t_{0}\right)
$$

The Lebesgue-Stieltjes integral

The Lebesgue-Stieltjes integral is defined as

$$
\int_{A} f(s) \mathrm{d} g(s):=\int_{A} f(s) \mathrm{d} \mu_{g}(s), \quad f \in \mathcal{L}_{g}^{1}:=\mathcal{L}_{\mu_{g}}^{1}
$$

The Lebesgue-Stieltjes integral

The Lebesgue-Stieltjes integral is defined as

$$
\int_{A} f(s) \mathrm{d} g(s):=\int_{A} f(s) \mathrm{d} \mu_{g}(s), \quad f \in \mathcal{L}_{g}^{1}:=\mathcal{L}_{\mu_{g}}^{1}
$$

by considering the outer measure

$$
\mu_{g}^{*}(A)=\inf \left\{\sum_{n=1}^{\infty}\left(g\left(b_{n}\right)-g\left(a_{n}\right)\right): A \subset \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right)\right\}
$$

The Lebesgue-Stieltjes integral

The Lebesgue-Stieltjes integral is defined as

$$
\int_{A} f(s) \mathrm{d} g(s):=\int_{A} f(s) \mathrm{d} \mu_{g}(s), \quad f \in \mathcal{L}_{g}^{1}:=\mathcal{L}_{\mu_{g}}^{1}
$$

by considering the outer measure

$$
\mu_{g}^{*}(A)=\inf \left\{\sum_{n=1}^{\infty}\left(g\left(b_{n}\right)-g\left(a_{n}\right)\right): A \subset \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right)\right\}
$$

and its restriction, $\mu_{g}:=\mu_{g}^{*} \mid \mathcal{L S}_{g}$, to the set

$$
\mathcal{L} \mathcal{S}_{g}=\left\{A \subset \mathbb{R}: \mu_{g}^{*}(E)=\mu_{g}^{*}(E \cap A)+\mu_{g}^{*}\left(E \cap A^{c}\right), E \in \mathcal{P}(\mathbb{R})\right\}
$$

The Lebesgue-Stieltjes integral

A few remarks on the Lebesgue-Stieltjes measure:

- By construction, $\mu_{g}([a, b))=g(b)-g(a), a<b$.

The Lebesgue-Stieltjes integral

A few remarks on the Lebesgue-Stieltjes measure:

- By construction, $\mu_{g}([a, b))=g(b)-g(a), a<b$.
- We have that $\mu_{g}\left(C_{g}\right)=0$.

The Lebesgue-Stieltjes integral

A few remarks on the Lebesgue-Stieltjes measure:

- By construction, $\mu_{g}([a, b))=g(b)-g(a), a<b$.
- We have that $\mu_{g}\left(C_{g}\right)=0$.
- For any $t \in \mathbb{R}, \mu_{g}(\{t\})=\Delta g(t)$.

The Lebesgue-Stieltjes integral

A few remarks on the Lebesgue-Stieltjes measure:

- By construction, $\mu_{g}([a, b))=g(b)-g(a), a<b$.
- We have that $\mu_{g}\left(C_{g}\right)=0$.
- For any $t \in \mathbb{R}, \mu_{g}(\{t\})=\Delta g(t)$. In particular,

$$
\mu_{g}(\{t\})>0, \quad t \in D_{g} .
$$

The Lebesgue-Stieltjes integral

A few remarks on the Lebesgue-Stieltjes measure:

- By construction, $\mu_{g}([a, b))=g(b)-g(a), a<b$.
- We have that $\mu_{g}\left(C_{g}\right)=0$.
- For any $t \in \mathbb{R}, \mu_{g}(\{t\})=\Delta g(t)$. In particular,

$$
\mu_{g}(\{t\})>0, \quad t \in D_{g} .
$$

- For $t \in \mathbb{R}$,

$$
\int_{\{t\}} f(s) \mathrm{d} g(s)=f(t) \Delta g(t)
$$

The Lebesgue-Stieltjes integral

A few remarks on the Lebesgue-Stieltjes measure:

- By construction, $\mu_{g}([a, b))=g(b)-g(a), a<b$.
- We have that $\mu_{g}\left(C_{g}\right)=0$.
- For any $t \in \mathbb{R}, \mu_{g}(\{t\})=\Delta g(t)$. In particular,

$$
\mu_{g}(\{t\})>0, \quad t \in D_{g} .
$$

- For $t \in \mathbb{R}$,

$$
\int_{\{t\}} f(s) d g(s)=f(t) \Delta g(t)
$$

In particular, for $t \in D_{g}$,

$$
\int_{\{t\}} f_{g}^{\prime}(s) \mathrm{d} g(s)=f_{g}^{\prime}(t) \Delta g(t)=\frac{f\left(t^{+}\right)-f(t)}{\Delta g(t)} \Delta g(t)=f\left(t^{+}\right)-f(t) .
$$

The Fundamental Theorem of Calculus

國 R. López Pouso, A. Rodríguez, A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives, Real Anal. Exchange 40(2014/15), No. 2, 319-353.

Theorem

Let $F:[a, b] \rightarrow \mathbb{C}$. Then, the following are equivalent:
(a) $F \in \mathcal{A C}_{g}([a, b], \mathbb{C})$, i.e., for every $\varepsilon>0$, there exists $\delta>0$ st for every open pairwise disjoint family of subintervals $\left\{\left(a_{n}, b_{n}\right)\right\}_{n=1}^{m}$,

$$
\sum_{n=1}^{m}\left(g\left(b_{n}\right)-g\left(a_{n}\right)\right)<\delta \Longrightarrow \sum_{n=1}^{m}\left|F\left(b_{n}\right)-F\left(a_{n}\right)\right|<\varepsilon
$$

(b) $F_{g}^{\prime}(t)$ exists for g-a.a. $t \in[a, b), F_{g}^{\prime} \in \mathcal{L}_{g}^{1}([a, b), \mathbb{C})$, and

$$
F(t)=F(a)+\int_{[a, t)} F_{g}^{\prime}(s) \mathrm{d} g(s), \quad t \in[a, b] .
$$

The Fundamental Theorem of Calculus

國 R. López Pouso, A. Rodríguez, A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives, Real Anal. Exchange 40(2014/15), No. 2, 319-353.

Theorem

Let $f \in \mathcal{L}_{g}^{1}([a, b), \mathbb{C})$. Consider $F:[a, b] \rightarrow \mathbb{C}$ given by

$$
F(t)=\int_{[a, t)} f(s) d g(s)
$$

Then $F \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ and $F_{g}^{\prime}(t)=f(t)$ for $g-a . a . t \in[a, b)$.

(1) The Stieltjes derivative

(2) Linear equation with Stieltjes derivatives

3 Adjoint linear equation with Stieltjes derivatives

Linear equation

We consider the following scalar linear problem

$$
\begin{equation*}
x_{g}^{\prime}(t)=p(t) x(t)+f(t) \tag{SLE}
\end{equation*}
$$

Linear equation

We consider the following scalar linear problem

$$
\begin{equation*}
x_{g}^{\prime}(t)=p(t) x(t)+f(t) \tag{SLE}
\end{equation*}
$$

If $f=0$, it is homogeneous; otherwise, it is nonhomogeneous.

Linear equation

We consider the following scalar linear problem

$$
\begin{equation*}
x_{g}^{\prime}(t)=p(t) x(t)+f(t) \tag{SLE}
\end{equation*}
$$

If $f=0$, it is homogeneous; otherwise, it is nonhomogeneous.

Definition

A solution of (SLE) in $[a, b]$ is a function $x \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ st

$$
x_{g}^{\prime}(t)=p(t) x(t)+f(t), \quad g \text {-a.a. } t \in[a, b)
$$

Linear equation

We consider the following scalar linear problem

$$
\begin{equation*}
x_{g}^{\prime}(t)=p(t) x(t)+f(t) \tag{SLE}
\end{equation*}
$$

If $f=0$, it is homogeneous; otherwise, it is nonhomogeneous.

Definition

A solution of (SLE) in $[a, b]$ is a function $x \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ st

$$
x_{g}^{\prime}(t)=p(t) x(t)+f(t), \quad g \text {-a.a. } t \in[a, b)
$$

Why exclude the point b from the definition of solution?

Linear equation

We consider the following scalar linear problem

$$
\begin{equation*}
x_{g}^{\prime}(t)=p(t) x(t)+f(t) \tag{SLE}
\end{equation*}
$$

If $f=0$, it is homogeneous; otherwise, it is nonhomogeneous.

Definition

A solution of (SLE) in $[a, b]$ is a function $x \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ st

$$
x_{g}^{\prime}(t)=p(t) x(t)+f(t), \quad g \text {-a.a. } t \in[a, b)
$$

Why exclude the point b from the definition of solution?

- If $b \in D_{g}, x$ not defined to the right of b, so $\nexists x_{g}^{\prime}(t)$.

Linear equation

We consider the following scalar linear problem

$$
\begin{equation*}
x_{g}^{\prime}(t)=p(t) x(t)+f(t) \tag{SLE}
\end{equation*}
$$

If $f=0$, it is homogeneous; otherwise, it is nonhomogeneous.

Definition

A solution of (SLE) in $[a, b]$ is a function $x \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ st

$$
x_{g}^{\prime}(t)=p(t) x(t)+f(t), \quad g \text {-a.a. } t \in[a, b)
$$

Why exclude the point b from the definition of solution?

- If $b \in D_{g}, x$ not defined to the right of b, so $\nexists x_{g}^{\prime}(t)$.
. If $b \notin D_{g}, \mu_{g}(\{b\})=0$, so g-a.e. $[a, b) \Longleftrightarrow g$-a.e. $[a, b]$.

Homogeneous linear equation

A reasonable solution of the homogeneous equation in $[a, b]$ would be

$$
x(t)=\exp \left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right), \quad t \in[a, b] .
$$

Homogeneous linear equation

A reasonable solution of the homogeneous equation in $[a, b]$ would be

$$
x(t)=\exp \left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right), \quad t \in[a, b] .
$$

For $t \notin D_{g} \cup C_{g}$,

$$
x_{g}^{\prime}(t)=\exp \left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right) \cdot\left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right)_{g}^{\prime}=x(t) p(t) .
$$

Homogeneous linear equation

A reasonable solution of the homogeneous equation in $[a, b]$ would be

$$
x(t)=\exp \left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right), \quad t \in[a, b] .
$$

For $t \notin D_{g} \cup C_{g}$,

$$
x_{g}^{\prime}(t)=\exp \left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right) \cdot\left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right)_{g}^{\prime}=x(t) p(t)
$$

For $t \in D_{g}$,

$$
x_{g}^{\prime}(t)=\frac{x\left(t^{+}\right)-x(t)}{\Delta g(t)}
$$

Homogeneous linear equation

A reasonable solution of the homogeneous equation in $[a, b]$ would be

$$
x(t)=\exp \left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right), \quad t \in[a, b] .
$$

For $t \notin D_{g} \cup C_{g}$,

$$
x_{g}^{\prime}(t)=\exp \left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right) \cdot\left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right)_{g}^{\prime}=x(t) p(t)
$$

For $t \in D_{g}$,

$$
x_{g}^{\prime}(t)=\frac{x\left(t^{+}\right)-x(t)}{\Delta g(t)}=x(t) \frac{e^{\int_{\{t\}} p(s) \mathrm{d} g(s)}-1}{\Delta g(t)}
$$

Homogeneous linear equation

A reasonable solution of the homogeneous equation in $[a, b]$ would be

$$
x(t)=\exp \left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right), \quad t \in[a, b] .
$$

For $t \notin D_{g} \cup C_{g}$,

$$
x_{g}^{\prime}(t)=\exp \left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right) \cdot\left(\int_{[a, t)} p(s) \mathrm{d} g(s)\right)_{g}^{\prime}=x(t) p(t)
$$

For $t \in D_{g}$,

$$
x_{g}^{\prime}(t)=\frac{x\left(t^{+}\right)-x(t)}{\Delta g(t)}=x(t) \frac{e^{\int_{\{t\}} p(s) \mathrm{d} g(s)}-1}{\Delta g(t)}=x(t) \frac{e^{p(t) \Delta g(t)}-1}{\Delta g(t)}
$$

Homogeneous linear equation: explicit solution

國 M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, Adv. Nonlinear Anal.

I. Márquez Albés, Notes on the linear equation with Stieltjes derivatives, Electron. J. Qual. Theory Differ. Equ.
a
F. J. Fernández, I. Márquez Albés, F. A. F. Tojo, On first and second order linear Stieltjes differential equations, J. Math. Anal

Homogeneous linear equation: explicit solution

國 M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, Adv. Nonlinear Anal.

嗇 I. Márquez Albés, Notes on the linear equation with Stieltjes derivatives, Electron. J. Qual. Theory Differ. Equ.
: F. J. Fernández, I. Márquez Albés, F. A. F. Tojo, On first and second order linear Stieltjes differential equations, J. Math. Anal

Let $p \in \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ be such that

$$
\begin{equation*}
1+p(t) \Delta g(t) \neq 0, \quad t \in[a, b) \cap D_{g} \tag{C}
\end{equation*}
$$

Homogeneous linear equation：explicit solution

國 M．Frigon，R．López Pouso，Theory and applications of first－order systems of Stieltjes differential equations，Adv．Nonlinear Anal．

囯 I．Márquez Albés，Notes on the linear equation with Stieltjes derivatives，Electron．J．Qual．Theory Differ．Equ．

國 F．J．Fernández，I．Márquez Albés，F．A．F．Tojo，On first and second order linear Stieltjes differential equations，J．Math．Anal
Let $p \in \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ be such that

$$
\begin{equation*}
1+p(t) \Delta g(t) \neq 0, \quad t \in[a, b) \cap D_{g} \tag{C}
\end{equation*}
$$

Define $\widetilde{p} \in \mathcal{L}_{g}^{1}([a, b), \mathbb{C})$ as

$$
\tilde{p}(t)= \begin{cases}p(t), & t \in[a, b] \backslash D_{g} \\ \frac{\log (1+p(t) \Delta g(t))}{\Delta g(t)}, & t \in[a, b] \cap D_{g}\end{cases}
$$

Homogeneous linear equation: explicit solution

Theorem

Let $p \in \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ be st (C) holds. Then, the map

$$
\exp _{g}(p, t):=\exp \left(\int_{[a, t)} \widetilde{p}(s) \mathrm{d} g(s)\right) \quad t \in[a, b]
$$

is a solution of the homogeneous problem in $[a, b]$.

Homogeneous linear equation: explicit solution

Theorem

Let $p \in \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ be st (C) holds. Then, the map

$$
\exp _{g}(p, t):=\exp \left(\int_{[a, t)} \widetilde{p}(s) \mathrm{d} g(s)\right) \quad t \in[a, b]
$$

is a solution of the homogeneous problem in $[a, b]$.

Theorem

Let $p, f \in \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ be such that (C) holds. Then, the map

$$
x(t)=\exp _{g}(p, t)\left(1+\int_{[a, t)} \frac{f(s)}{\exp _{g}(p, s)(1+p(s) \Delta g(s))} \mathrm{d} g(s)\right)
$$

is a solution of the (SLE) in $[a, b]$.

(1) The Stieltjes derivative

(2) Linear equation with Stieltjes derivatives
(3) Adjoint linear equation with Stieltjes derivatives

Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

$$
\begin{equation*}
x_{g}^{\prime}(t)=p(t) x(t)+f(t) \tag{SLE}
\end{equation*}
$$

we define the adjoint linear equation with Stieltjes derivatives as

$$
\begin{equation*}
x_{g}^{\prime}(t)=\frac{-p(t)}{1+p(t) \Delta g(t)} x(t)+\frac{f(t)}{1+p(t) \Delta g(t)} \tag{ASLE}
\end{equation*}
$$

Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

$$
\begin{equation*}
x_{g}^{\prime}(t)=p(t) x(t)+f(t) \tag{SLE}
\end{equation*}
$$

we define the adjoint linear equation with Stieltjes derivatives as

$$
\begin{equation*}
x_{g}^{\prime}(t)=\frac{-p(t)}{1+p(t) \Delta g(t)} x(t)+\frac{f(t)}{1+p(t) \Delta g(t)} \tag{ASLE}
\end{equation*}
$$

An equivalent formulation is

$$
x_{g}^{\prime}(t)(1+p(t) \Delta g(t))=-p(t) x(t)+f(t)
$$

Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

$$
\begin{equation*}
x_{g}^{\prime}(t)=p(t) x(t)+f(t) \tag{SLE}
\end{equation*}
$$

we define the adjoint linear equation with Stieltjes derivatives as

$$
\begin{equation*}
x_{g}^{\prime}(t)=\frac{-p(t)}{1+p(t) \Delta g(t)} x(t)+\frac{f(t)}{1+p(t) \Delta g(t)} \tag{ASLE}
\end{equation*}
$$

An equivalent formulation is

$$
x_{g}^{\prime}(t)(1+p(t) \Delta g(t))=-p(t) x(t)+f(t)
$$

Observe that (ASLE):

- requires condition (C) to be well-defined.

Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

$$
\begin{equation*}
x_{g}^{\prime}(t)=p(t) x(t)+f(t) \tag{SLE}
\end{equation*}
$$

we define the adjoint linear equation with Stieltjes derivatives as

$$
\begin{equation*}
x_{g}^{\prime}(t)=\frac{-p(t)}{1+p(t) \Delta g(t)} x(t)+\frac{f(t)}{1+p(t) \Delta g(t)} \tag{ASLE}
\end{equation*}
$$

An equivalent formulation is

$$
x_{g}^{\prime}(t)(1+p(t) \Delta g(t))=-p(t) x(t)+f(t)
$$

Observe that (ASLE):

- requires condition (C) to be well-defined.
- can be regarded as a particular case of (SLE).

Why that definition of adjoint equation?

The adjoint equation of (ASLE) is

$$
x_{g}^{\prime}(t)=P(t) x(t)+F(t)
$$

where

$$
\begin{aligned}
P(t) & =\frac{-\frac{-p(t)}{1+p(t) \Delta g(t)}}{1+\frac{-p(t)}{1+p(t) \Delta g(t)} \Delta g(t)} \\
F(t) & =\frac{\frac{f(t)}{1+p(t) \Delta g(t)}}{1+\frac{-p(t)}{1+p(t) \Delta g(t)} \Delta g(t)}
\end{aligned}
$$

Why that definition of adjoint equation?

The adjoint equation of (ASLE) is

$$
x_{g}^{\prime}(t)=P(t) x(t)+F(t)
$$

where

$$
\begin{aligned}
& P(t)=\frac{-\frac{-p(t)}{1+p(t) \Delta g(t)}}{1+\frac{-p(t)}{1+p(t) \Delta g(t)} \Delta g(t)}=p(t) \\
& F(t)=\frac{\frac{f(t)}{1+p(t) \Delta g(t)}}{1+\frac{-p(t)}{1+p(t) \Delta g(t)} \Delta g(t)}=f(t)
\end{aligned}
$$

Why that definition of adjoint equation?

The adjoint equation of (ASLE) is

$$
x_{g}^{\prime}(t)=P(t) x(t)+F(t)
$$

where

$$
\begin{aligned}
& P(t)=\frac{-\frac{-p(t)}{1+p(t) \Delta g(t)}}{1+\frac{-p(t)}{1+p(t) \Delta g(t)} \Delta g(t)}=p(t) \\
& F(t)=\frac{\frac{f(t)}{1+p(t) \Delta g(t)}}{1+\frac{-p(t)}{1+p(t) \Delta g(t)} \Delta g(t)}=f(t)
\end{aligned}
$$

Naturally, this is not enough to justify calling (ASLE) the adjoint equation as other equations satify that (e.g. $x_{g}^{\prime}=-p x+h$).

Linear operators

The equation (SLE) can be rewritten in the form $L x=f$ for the linear operator $L: \mathcal{A C}_{g}([a, b], \mathbb{C}) \rightarrow \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ defined as

$$
L u(t)=u_{g}^{\prime}(t)-p(t) u(t), \quad \text { g-a.a. } t \in[a, b)
$$

Linear operators

The equation (SLE) can be rewritten in the form $L x=f$ for the linear operator $L: \mathcal{A C}_{g}([a, b], \mathbb{C}) \rightarrow \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ defined as

$$
L u(t)=u_{g}^{\prime}(t)-p(t) u(t), \quad \text { g-a.a. } t \in[a, b)
$$

For (ASLE) we have two options.

Linear operators

The equation (SLE) can be rewritten in the form $L x=f$ for the linear operator $L: \mathcal{A C}_{g}([a, b], \mathbb{C}) \rightarrow \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ defined as

$$
L u(t)=u_{g}^{\prime}(t)-p(t) u(t), \quad g \text {-a.a. } t \in[a, b)
$$

For (ASLE) we have two options. If we rewrite it as $\widehat{L} x=\frac{f}{1+p \Delta g}$

If we want to rewrite it as $L^{*} x=f$

Linear operators

The equation (SLE) can be rewritten in the form $L x=f$ for the linear operator $L: \mathcal{A C}_{g}([a, b], \mathbb{C}) \rightarrow \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ defined as

$$
L u(t)=u_{g}^{\prime}(t)-p(t) u(t), \quad g \text {-a.a. } t \in[a, b)
$$

For (ASLE) we have two options. If we rewrite it as $\widehat{L} x=\frac{f}{1+p \Delta g}$, we consider $\widehat{L}: \mathcal{A C}_{g}([a, b], \mathbb{C}) \rightarrow \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ given by

$$
\widehat{L} v(t)=v_{g}^{\prime}(t)+\frac{p(t)}{1+p(t) \Delta g(t)} v(t), \quad g \text {-a.a. } t \in[a, b) .
$$

If we want to rewrite it as $L^{*} X=f$

Linear operators

The equation (SLE) can be rewritten in the form $L x=f$ for the linear operator $L: \mathcal{A C}_{g}([a, b], \mathbb{C}) \rightarrow \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ defined as

$$
L u(t)=u_{g}^{\prime}(t)-p(t) u(t), \quad g \text {-a.a. } t \in[a, b)
$$

For (ASLE) we have two options. If we rewrite it as $\widehat{L} x=\frac{f}{1+p \Delta g}$, we consider $\widehat{L}: \mathcal{A C}_{g}([a, b], \mathbb{C}) \rightarrow \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ given by

$$
\widehat{L} v(t)=v_{g}^{\prime}(t)+\frac{p(t)}{1+p(t) \Delta g(t)} v(t), \quad g \text {-a.a. } t \in[a, b)
$$

If we want to rewrite it as $L^{*} x=f$, we must consider the map $L^{*}: \mathcal{A C}_{g}([a, b], \mathbb{C}) \rightarrow \mathcal{L}_{g}^{1}([a, b], \mathbb{C})$ defined as

$$
L^{*} v(t)=v_{g}^{\prime}(t)(1+p(t) \Delta g(t))+p(t) v(t), \quad g \text {-a.a. } t \in[a, b)
$$

Lagrange's identity

\square I. Márquez Albés, A. Slavík, M. Tvrdý, Duality for Stieltjes differential and integral equations, submitted for publication.

Theorem (Lagrange's identity)

Given $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$, we have that for $g-a . a . t \in[a, b)$

$$
(x \cdot y)_{g}^{\prime}(t)=\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)+x(t) L^{*} y(t)
$$

Lagrange's identity

围 I. Márquez Albés, A. Slavík, M. Tvrdý, Duality for Stieltjes differential and integral equations, submitted for publication.

Theorem (Lagrange's identity)

Given $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$, we have that for $g-a . a . t \in[a, b)$

$$
(x \cdot y)_{g}^{\prime}(t)=\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)+x(t) L^{*} y(t)
$$

Remark

Since $L^{*}=(1+p \Delta g) \widehat{L}$, we also have that for g-a.a. $t \in[a, b)$
$(x \cdot y)_{g}^{\prime}(t)=\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)+(1+p(t) \Delta g(t)) x(t) \widehat{L} y(t)$.

Lagrange's identity: proof

Proof.

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$. There exists $N \subset[a, b)$ st $\mu_{g}(N)=0$ and $x_{g}^{\prime}(t), y_{g}^{\prime}(t)$ exist for $t \in[a, b) \backslash N$.

Lagrange's identity: proof

Proof.

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$. There exists $N \subset[a, b)$ st $\mu_{g}(N)=0$ and $x_{g}^{\prime}(t), y_{g}^{\prime}(t)$ exist for $t \in[a, b) \backslash N$. For $t \in[a, b) \backslash N$,

$$
\begin{aligned}
(x y)_{g}^{\prime}(t) & =x_{g}^{\prime}(t) y(t)+y_{g}^{\prime}(t) x(t)+x_{g}^{\prime}(t) y_{g}^{\prime}(t) \Delta g(t) \\
& =x_{g}^{\prime}(t)\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right)+y_{g}^{\prime}(t) x(t)
\end{aligned}
$$

Lagrange's identity: proof

Proof.

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$. There exists $N \subset[a, b)$ st $\mu_{g}(N)=0$ and $x_{g}^{\prime}(t), y_{g}^{\prime}(t)$ exist for $t \in[a, b) \backslash N$. For $t \in[a, b) \backslash N$,

$$
\begin{aligned}
(x y)_{g}^{\prime}(t) & =x_{g}^{\prime}(t) y(t)+y_{g}^{\prime}(t) x(t)+x_{g}^{\prime}(t) y_{g}^{\prime}(t) \Delta g(t) \\
& =x_{g}^{\prime}(t)\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right)+y_{g}^{\prime}(t) x(t)
\end{aligned}
$$

Adding and subtracting $p(t) x(t)\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right)$,

Lagrange's identity: proof

Proof.

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$. There exists $N \subset[a, b)$ st $\mu_{g}(N)=0$ and $x_{g}^{\prime}(t), y_{g}^{\prime}(t)$ exist for $t \in[a, b) \backslash N$. For $t \in[a, b) \backslash N$,

$$
\begin{aligned}
(x y)_{g}^{\prime}(t) & =x_{g}^{\prime}(t) y(t)+y_{g}^{\prime}(t) x(t)+x_{g}^{\prime}(t) y_{g}^{\prime}(t) \Delta g(t) \\
& =x_{g}^{\prime}(t)\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right)+y_{g}^{\prime}(t) x(t)
\end{aligned}
$$

Adding and subtracting $p(t) x(t)\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right)$,

$$
\begin{aligned}
(x y)_{g}^{\prime}(t)= & \left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right)\left(x_{g}^{\prime}(t)-p(t) x(t)\right) \\
& \left.+x(t)\left(y_{g}^{\prime}(t)(1+p(t) \Delta g(t))\right)+p(t) y(t)\right) \\
= & \left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)+x(t) L^{*} y(t)
\end{aligned}
$$

Lagrange's identity: consequences I

Theorem

If $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ are st $L x=L^{*} y=0 g$-a.e. in $[a, b)$, then

$$
x(t) y(t)=x(a) y(a), \quad t \in[a, b] .
$$

Lagrange's identity: consequences I

Theorem

If $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ are st $L x=L^{*} y=0 g$-a.e. in $[a, b)$, then

$$
x(t) y(t)=x(a) y(a), \quad t \in[a, b] .
$$

Proof.

We can find $N \subset[a, b)$ st $\mu_{g}(N)=0$ and, for $t \in[a, b) \backslash N$,

$$
\begin{aligned}
L x(t) & =L^{*} y(t)=0 \\
(x \cdot y)_{g}^{\prime}(t) & =\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)+x(t) L^{*} y(t)
\end{aligned}
$$

Lagrange's identity: consequences I

Theorem

If $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ are st $L x=L^{*} y=0 g$-a.e. in $[a, b)$, then

$$
x(t) y(t)=x(a) y(a), \quad t \in[a, b] .
$$

Proof.

We can find $N \subset[a, b)$ st $\mu_{g}(N)=0$ and, for $t \in[a, b) \backslash N$,

$$
\begin{aligned}
L x(t) & =L^{*} y(t)=0 \\
(x \cdot y)_{g}^{\prime}(t) & =\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)+x(t) L^{*} y(t)
\end{aligned}
$$

Thus, $(x \cdot y)_{g}^{\prime}(t)=0 g$-a.e. in $[a, b)$.

Lagrange's identity: consequences I

Theorem

If $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ are st $L x=L^{*} y=0 g$-a.e. in $[a, b)$, then

$$
x(t) y(t)=x(a) y(a), \quad t \in[a, b] .
$$

Proof.

We can find $N \subset[a, b)$ st $\mu_{g}(N)=0$ and, for $t \in[a, b) \backslash N$,

$$
\begin{aligned}
L x(t) & =L^{*} y(t)=0 \\
(x \cdot y)_{g}^{\prime}(t) & =\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)+x(t) L^{*} y(t)
\end{aligned}
$$

Thus, $(x \cdot y)_{g}^{\prime}(t)=0 g$-a.e. in $[a, b)$. Since $x \cdot y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$,

$$
x(t) y(t)=x(a) y(a)+\int_{[a, t)}(x \cdot y)_{g}^{\prime}(t) d g(s)=x(a) y(a)
$$

Lagrange's identity: consequences II

Theorem

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ be st $x y=\alpha \in \mathbb{C} \backslash\{0\}$ in $[a, b]$.

- If $L x(t)=0$ for $g-a . a . ~ t \in[a, b)$, then

$$
L^{*} y(t)=0 \quad \text { g-a.a. } t \in[a, b) .
$$

- If $L^{*} y(t)=0$ for $g-a . a . ~ t \in[a, b)$, then

$$
L x(t)=0 \quad \text { g-a.a. } t \in[a, b) .
$$

Lagrange's identity: consequences II

Theorem

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ be st $x y=\alpha \in \mathbb{C} \backslash\{0\}$ in $[a, b]$.

- If $L x(t)=0$ for $g-a . a . t \in[a, b)$, then

$$
L^{*} y(t)=0 \quad \text { g-a.a. } t \in[a, b) .
$$

- If $L^{*} y(t)=0$ for $g-a . a . ~ t \in[a, b)$, then

$$
L x(t)=0 \quad \text { g-a.a. } t \in[a, b) .
$$

Proof.

Since $x(t) y(t)=\alpha,(x \cdot y)_{g}^{\prime}(t)=0$. Hence, by Lagrange's identity,

$$
0=(x \cdot y)_{g}^{\prime}(t)=\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)+x(t) L^{*} y(t)
$$

Lagrange's identity: consequences II

Theorem

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ be st $x y=\alpha \in \mathbb{C} \backslash\{0\}$ in $[a, b]$.

- If $L x(t)=0$ for $g-a . a . ~ t \in[a, b)$, then

$$
L^{*} y(t)=0 \quad \text { g-a.a. } t \in[a, b)
$$

- If $L^{*} y(t)=0$ for g-a.a. $t \in[a, b)$, then

$$
L x(t)=0 \quad \text { g-a.a. } t \in[a, b) .
$$

Proof.

Since $x(t) y(t)=\alpha,(x \cdot y)_{g}^{\prime}(t)=0$. Hence, by Lagrange's identity,

$$
0=(x \cdot y)_{g}^{\prime}(t)=\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)+x(t) L^{*} y(t)
$$

so if $L x(t)=0$ and $x(t) \neq 0$, we must have that $L^{*} y(t)=0$.

Lagrange's identity: consequences II

Theorem

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ be st $x y=\alpha \in \mathbb{C} \backslash\{0\}$ in $[a, b]$.
. If $L x(t)=0$ for $g-a . a . ~ t \in[a, b)$, then

$$
L^{*} y(t)=0 \quad \text { g-a.a. } t \in[a, b)
$$

- If $L^{*} y(t)=0$ for $g-a . a . ~ t \in[a, b)$, then

$$
L x(t)=0 \quad \text { g-a.a. } t \in[a, b)
$$

Proof.

If $L^{*} y(t)=0$, we get $\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)=0$.

Lagrange's identity: consequences II

Theorem

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ be st $x y=\alpha \in \mathbb{C} \backslash\{0\}$ in $[a, b]$.
. If $L x(t)=0$ for $g-a . a . ~ t \in[a, b)$, then

$$
L^{*} y(t)=0 \quad \text { g-a.a. } t \in[a, b)
$$

- If $L^{*} y(t)=0$ for $g-a . a . t \in[a, b)$, then

$$
L x(t)=0 \quad \text { g-a.a. } t \in[a, b)
$$

Proof.

If $L^{*} y(t)=0$, we get $\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)=0$. Since $L^{*} y(t)=0$, we have that $y_{g}^{\prime}(t)=-\frac{p(t)}{1+p(t) \Delta g(t)} y(t)$ which implies that $\frac{y(t)}{1+p(t) \Delta g(t)} L x(t)=0$.

Lagrange's identity: consequences II

Theorem

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$ be st $x y=\alpha \in \mathbb{C} \backslash\{0\}$ in $[a, b]$.
. If $L x(t)=0$ for $g-a . a . ~ t \in[a, b)$, then

$$
L^{*} y(t)=0 \quad \text { g-a.a. } t \in[a, b)
$$

- If $L^{*} y(t)=0$ for $g-a . a . t \in[a, b)$, then

$$
L x(t)=0 \quad \text { g-a.a. } t \in[a, b)
$$

Proof.

If $L^{*} y(t)=0$, we get $\left(y(t)+y_{g}^{\prime}(t) \Delta g(t)\right) L x(t)=0$. Since $L^{*} y(t)=0$, we have that $y_{g}^{\prime}(t)=-\frac{p(t)}{1+p(t) \Delta g(t)} y(t)$ which implies that $\frac{y(t)}{1+p(t) \Delta g(t)} L x(t)=0$. Thus, if $y(t) \neq 0, L x(t)=0$.

Lagrange's identity: consequences III

Given that $L^{*}=(1+p \Delta g) \widehat{L}$, we can obtain the following result.

Theorem

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$. Then, the following hold:

- If $L x=\widehat{L} y=0$ g-a.e. in $[a, b)$, then

$$
x(t) y(t)=x(a) y(a), \quad g \text {-a.a. } t \in[a, b) .
$$

Lagrange's identity: consequences III

Given that $L^{*}=(1+p \Delta g) \widehat{L}$, we can obtain the following result.

Theorem

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$. Then, the following hold:

- If $L x=\widehat{L} y=0$ g-a.e. in $[a, b)$, then

$$
x(t) y(t)=x(a) y(a), \quad \text { g-a.a. } t \in[a, b) .
$$

- If $L x(t)=0$ for g-a.a. $t \in[a, b)$, then

$$
\widehat{L} y(t)=0, \quad \text { g-a.a. } t \in[a, b] .
$$

Lagrange's identity: consequences III

Given that $L^{*}=(1+p \Delta g) \widehat{L}$, we can obtain the following result.

Theorem

Let $x, y \in \mathcal{A C}_{g}([a, b], \mathbb{C})$. Then, the following hold:

- If $L x=\widehat{L} y=0$ g-a.e. in $[a, b)$, then

$$
x(t) y(t)=x(a) y(a), \quad g-a . a . \quad t \in[a, b) .
$$

- If $L x(t)=0$ for g-a.a. $t \in[a, b)$, then

$$
\widehat{L} y(t)=0, \quad \text { g-a.a. } t \in[a, b] .
$$

- If $\widehat{L} y(t)=0$ for $g-a . a . ~ t \in[a, b)$, then

$$
L x(t)=0, \quad \text { g-a.a. } t \in[a, b)
$$

Lagrange's identity: consequences IV

From Lipschitz's uniqueness criterion for IVP, we obtain:

Proposition

Let $x_{a}, y_{a} \in \mathbb{C}$. The unique solution of $L x=0, x(a)=x_{a}$, is

$$
x(t)=x_{a} \exp _{g}(p, t), \quad t \in[a, b] .
$$

Lagrange's identity: consequences IV

From Lipschitz's uniqueness criterion for IVP, we obtain:

Proposition

Let $x_{a}, y_{a} \in \mathbb{C}$. The unique solution of $L x=0, x(a)=x_{a}$, is

$$
x(t)=x_{a} \exp _{g}(p, t), \quad t \in[a, b]
$$

The unique solution of $\widehat{L} y=0, y(a)=y_{a}$, is

$$
y(t)=y_{a} \exp _{g}(p, t)^{-1}, \quad t \in[a, b] .
$$

Lagrange's identity: consequences IV

From Lipschitz's uniqueness criterion for IVP, we obtain:

Proposition

Let $x_{a}, y_{a} \in \mathbb{C}$. The unique solution of $L x=0, x(a)=x_{a}$, is

$$
x(t)=x_{a} \exp _{g}(p, t), \quad t \in[a, b]
$$

The unique solution of $\widehat{L} y=0, y(a)=y_{a}$, is

$$
y(t)=y_{a} \exp _{g}(p, t)^{-1}, \quad t \in[a, b] .
$$

Corollary

For g-a.a. $t \in[a, b]$,

$$
\exp _{g}(p, t)^{-1}=\exp _{g}\left(-\frac{p}{1+p \Delta g}, t\right)
$$

Relations with other adjoint problems I

The pair of equations

$$
\begin{align*}
x_{g}^{\prime}(t) & =p(t) x(t)+f(t) \tag{SLE}\\
x_{g}^{\prime}(t) & =\frac{-p(t)}{1+p(t) \Delta g(t)} x(t)+\frac{f(t)}{1+p(t) \Delta g(t)} \tag{ASLE}
\end{align*}
$$

is a generalization of the usual pair of adjoint linear ODEs.

Relations with other adjoint problems I

The pair of equations

$$
\begin{align*}
x_{g}^{\prime}(t) & =p(t) x(t)+f(t) \tag{SLE}\\
x_{g}^{\prime}(t) & =\frac{-p(t)}{1+p(t) \Delta g(t)} x(t)+\frac{f(t)}{1+p(t) \Delta g(t)} \tag{ASLE}
\end{align*}
$$

is a generalization of the usual pair of adjoint linear ODEs. Indeed, for $g(t)=t$, we have that $\Delta g(t)=0, t \in \mathbb{R}$, so we get

$$
\begin{aligned}
x^{\prime}(t) & =p(t) x(t)+f(t) \\
x^{\prime}(t) & =-p(t) x(t)+f(t)
\end{aligned}
$$

Relations with other adjoint problems II

The next natural question is: are (SLE)-(ASLE) a generalization of the corresponding dynamic equations?

$$
\begin{align*}
& x^{\Delta}(t)=p(t) x(t)+f(t) \tag{DLE}\\
& y^{\Delta}(t)=-p(t) y(\sigma(t))+f(t)
\end{align*}
$$

(ADLE)
with $\sigma(t)=\inf \{s \in \mathbb{T}: s>t\}$.

Relations with other adjoint problems II

The next natural question is: are (SLE)-(ASLE) a generalization of the corresponding dynamic equations?

$$
\begin{align*}
& x^{\Delta}(t)=p(t) x(t)+f(t) \tag{DLE}\\
& y^{\Delta}(t)=-p(t) y(\sigma(t))+f(t) \tag{ADLE}
\end{align*}
$$

with $\sigma(t)=\inf \{s \in \mathbb{T}: s>t\}$. This is partially covered in
R M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, Adv. Nonlinear Anal. 6(2017), No. 1, 13-36.

围 I. Márquez Albés, Differential problems with Stieltjes derivatives and applications, Ph.D. thesis, Universidade de Santiago de Compostela, 2021.

Relations with other adjoint problems III

Time scales and Stieltjes calculus are equivalent for

$$
g(t)=\inf \{s \in \mathbb{T}: s \geq t\}
$$

in which case, the two derivatives are equal. Thus, (SLE) and
(DLE) are equivalent.

Relations with other adjoint problems III

Time scales and Stieltjes calculus are equivalent for

$$
g(t)=\inf \{s \in \mathbb{T}: s \geq t\}
$$

in which case, the two derivatives are equal. Thus, (SLE) and
(DLE) are equivalent. Noting that, for $x \in \mathcal{A C}_{g}([a, b], \mathbb{C})$,

$$
x_{g}^{\prime}(t)(1+p(t) \Delta g(t))=x_{g}^{\prime}(t)+p(t)\left(x\left(t^{+}\right)-x(t)\right)
$$

Relations with other adjoint problems III

Time scales and Stieltjes calculus are equivalent for

$$
g(t)=\inf \{s \in \mathbb{T}: s \geq t\}
$$

in which case, the two derivatives are equal. Thus, (SLE) and
(DLE) are equivalent. Noting that, for $x \in \mathcal{A C}_{g}([a, b], \mathbb{C})$,

$$
x_{g}^{\prime}(t)(1+p(t) \Delta g(t))=x_{g}^{\prime}(t)+p(t)\left(x\left(t^{+}\right)-x(t)\right)
$$

we see that (ASLE) can be rewritten as

$$
x_{g}^{\prime}(t)=-p(t) x\left(t^{+}\right)+f(t)
$$

from which it is easy to check that it is equivalent to (ADLE).

Adjoint first order linear equations with Stieltjes derivatives and Lagrange's identity

Ignacio Márquez Albés ignacio.marquez@usc.es

USC
 UNIVERSIDADE

 DE SANTIAGODE COMPOSTELA

Departamento de Estatística, Análise Matemática e Optimización
Facultade de Matemáticas, Universidade de Santiago de Compostela.

1 June 2022

