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Adjoint linear ODEs

In the context of ODEs, given the linear equation

X (t) = p(t)x(t) + F(t), (LE)
the adjoint linear equation is defined as

X(8) = —p(Hx(t) + £(1) (ALE)



Adjoint linear ODEs

In the context of ODEs, given the linear equation

xX'(t) = p(t)x(t) + £(t), (LE)
the adjoint linear equation is defined as

X(t) = —p(t)x(t) + F(1) (ALE)
This is because their linear operators,

Lu(t)= u/(t) - p(t)u(t),
L*v(t)= V'(t) + p(t)v(t)

are adjoint operators.
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Adjoint linear ODEs

These equations satisfy a series of interesting properties:

- The adjoint equation of (ALE) is (LE).

- Lagrange's identity: (x - y)'(t) = y(t)Lx(t) + x(t)L*y(t).
- If Lx =0 and L*y = 0, then x - y is constant.

- f x(t)y(t) = a # 0 and Lx =0, then L*y = 0.

- If x(t)y(t) = a #0and L*y =0, then Lx = 0.
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are called adjoint linear equations, with

o(t)=inf{seT:s>t}.
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@ M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An
Introduction with Applications, Birkhauser, Boston, 2001.
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Adjoint dynamic linear equations

@ M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An
Introduction with Applications, Birkhauser, Boston, 2001.

Theorem (Lagrange's identity)

(x - ¥)2(t) = y(a(£))Lx(t) + x(t)L*y(t).

- If Lx =0 and L*y =0, then x - y is constant.
- 1f x(t)y(t) = a # 0 and Lx =0, then L*y = 0.
- If x(t)y(t) =a #0and L*y =0, then Lx = 0.
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@ M. Frigon, R. Lépez Pouso, Theory and applications of first-order
systems of Stieltjes differential equations, Adv. Nonlinear Anal.
6(2017), No. 1, 13-36.
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Adjoint linear in a more general context

@ M. Frigon, R. Lépez Pouso, Theory and applications of first-order
systems of Stieltjes differential equations, Adv. Nonlinear Anal.
6(2017), No. 1, 13-36.

They studied the linear equation with Stieltjes derivatives

xg(t) = p(t)x(t) + £(t),

and showed ODEs and dynamic equations are particular cases of
differential equations with Stieltjes derivatives.



Adjoint linear in a more general context

@ M. Frigon, R. Lépez Pouso, Theory and applications of first-order
systems of Stieltjes differential equations, Adv. Nonlinear Anal.
6(2017), No. 1, 13-36.

They studied the linear equation with Stieltjes derivatives

xg(t) = p(t)x(t) + £(t),

and showed ODEs and dynamic equations are particular cases of
differential equations with Stieltjes derivatives.

Can we obtain Lagrange's identity in this context?
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The Stieltjes derivative

What are Stieltjes derivatives?

Essentially, the Stieltjes derivative of a function is the derivative of
a function with respect to another one.

Specifically, given a nondecreasing and left-continuous function
g R — R, we "define” the Stieltjes derivative of f at ty as
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The Stieltjes derivative

@ R. Lépez Pouso, A. Rodriguez, A new unification of continuous,
discrete, and impulsive calculus through Stieltjes derivatives, Real
Anal. Exchange 40(2014/15), No. 2, 319-353.

Cy :={t € R: gis constant in (t — ¢, t +¢) for some ¢ > 0}
Dy :={t e R: Ag(t) :=g(t") — g(t) > 0}
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The Stieltjes derivative

@ R. Lépez Pouso, A. Rodriguez, A new unification of continuous,
discrete, and impulsive calculus through Stieltjes derivatives, Real
Anal. Exchange 40(2014/15), No. 2, 319-353.

Cy :={t € R: gis constant in (t — ¢, t +¢) for some ¢ > 0}
Dy :={t e R: Ag(t) :=g(t") — g(t) > 0}

Define the Stieltjes derivative of f : R — C at tg € R\ C; as
lim f(t) - f(to), to & Dg,
, % g(0) — g(to)
fe(to) =
. f(t)—f(t)
lim , to € Dg
et 8(t) — g(to)
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The Stieltjes derivative at discontinuity points

Why that definition at D,?

e If ty € Dg, then (tg, +00) C Dom(Fy,), which means that we
can always consider the limit from the right.

o If Dom(Fy) =R\ {to} and lim;_¢, F,(t) exists, so does
lim,_, F¢(t) and they are equal.

@ This definition allows us to establish a version of the
Fundamental Theorem of Calculus.

For t € Dy, f;(t) exists if and only if f(t*) exists and, in that case,
F(th) — £(¢)
Ag(t)

gl
—~
N—r
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The Stieltjes derivative

@ I. Mdrquez Albés, Notes on the linear equation with Stieltjes
derivatives, Electron. J. Qual. Theory Differ. Equ. 42 (2021) 1-18

Since G, is open, we can write Cg = |J7=(an, bn). Hence, we can
define Ny = {a,}52, \ Dg and N} = {b,}5%, \ D,.

Define the g-derivative of f : R — C at tp € R\ (; as
) f(t) = f(to) _
| to € Dg UN; U N
Mg —g(w)  OF PV Ne Ul
. f(t) = f(to) _
/ _ lim , to € N,
fe(to) = ¢y 8(t) — g(to) ° £
F(£) — F(4
jim () “% to € Dg UN.
-t 8(t) — g(to)
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The Stieltjes derivative: basic properties

If f and h are g-differentiable at ty € R\ Cg, then
e af + Bh is g-differentiable at ty for any o, 5 € R and

(af + Bh), (to) = afl(t0) + BHj(to).
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The Stieltjes derivative: basic properties

If f and h are g-differentiable at ty € R\ Cg, then
e af + Bh is g-differentiable at ty for any o, 5 € R and

(af + Bh)g (to) = afy(to) + Bhy(to)-
e f - his g-differentiable at ty and
(f - h)g (to) = f(to) h(to) + hg(to)f (to) + f;(to) iy (to) Ag(to)-

Proposition
Let f be g-differentiable at ty € R\ (Cg U Dg) and let h be
differentiable at f(ty). Then ho f is g-differentiable at ty and

(hof)g(to) = H (f(to))fz(to).
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A A
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The Lebesgue-Stieltjes integral is defined as

/f(s)dg(s) ::/f(s)d,ug(s), ferk=rl,
A A

by considering the outer measure

o

NZ(A) = inf {Z(g(bn) —g(an)) 1 AC U[am bn)} ;

n=1
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The Lebesgue-Stieltjes integral

The Lebesgue-Stieltjes integral is defined as

/f(s)dg(s) ::/f(s)d,ug(s), ferk=rl,
A A

by considering the outer measure

NZ(A) = inf {Z(g(bn) —g(an)) 1 AC U[am bn)} ;

and its restriction, ug = pig|cs,, to the set

LSg = {ACR: iL(E) = it(ENA) + pi(E N A%), E € P(R)}
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The Lebesgue-Stieltjes integral

A few remarks on the Lebesgue-Stieltjes measure:
- By construction, pg([a, b)) = g(b) — g(a), a < b.
- We have that jz(C,) = 0.
- Forany t € R, pg({t}) = Ag(t). In particular,

ue({t)) >0, te D

- For t e R,
/{ | Fs)d8(s) = F(00(0)

In particular, for t € D,

F(t) = £(1)

Ag(D) Ag(t) = f(tT) — f(t).

| /{ 94506 = f(98(0 =
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The Fundamental Theorem of Calculus

@ R. Lépez Pouso, A. Rodriguez, A new unification of continuous,
discrete, and impulsive calculus through Stieltjes derivatives, Real
Anal. Exchange 40(2014/15), No. 2, 319-353.

Let F : [a,b] — C. Then, the following are equivalent:

(a) F € ACq([a, b],C), i.e., for every € > 0, there exists 6 > 0 st for

every open pairwise disjoint family of subintervals {(an, bp)}m_4,
m

> (g(bs) —g(an)) <& = D |F(ba) — F(an)] <.

n=1 n=1
(b) Fj(t) exists for g-a.a. t € [a, b), F; € L;([a, b),C), and

F(t) = F(a) +/[ ) Fy(s)dg(s), t¢€]a,b]
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The Fundamental Theorem of Calculus

@ R. Lépez Pouso, A. Rodriguez, A new unification of continuous,
discrete, and impulsive calculus through Stieltjes derivatives, Real
Anal. Exchange 40(2014/15), No. 2, 319-353.

Let f € Li([a, b),C). Consider F : [a, b] — C given by

F(r) = /[ NOLED!

Then F € ACq([a, b],C) and Fy(t) = f(t) for g-a.a. t € [a, b).
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© Linear equation with Stieltjes derivatives
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Linear equation

We consider the following scalar linear problem
xg(t) = p(t)x(t) + f(t). (SLE)

If f =0, it is homogeneous; otherwise, it is nonhomogeneous.

Definition
A solution of (SLE) in [a, b] is a function x € ACg([a, b],C) st

xg(t) = p(t)x(t) + f(t), g-a.a. t € [a,b).

Why exclude the point b from the definition of solution?

- If b € Dg, x not defined to the right of b, so 7 x(t).
- f b Dg, pg({b}) =0, so g-a.e. [a,b) <= g-a.e. [a,b].
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x(t) = exp (/[ ) p(s) dg(s)), t € [a, b].
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Homogeneous linear equation

A reasonable solution of the homogeneous equation in [a, b] would be

x(t) = exp (/[ ) p(s) dg(s)), t € [a, b].

For t ¢ Dy U g,

li

x4(t) = exp ( /[) p(s) dg(s)> ~ ( /[ RO dg(s)> = x(t)p(2).

g
For t € Dy,
/ x(t%) — x(t oJin P()dals) _ 4
Xg(t) = ( A) () = x(t)
g(t) Ag(t)
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Homogeneous linear equation

A reasonable solution of the homogeneous equation in [a, b] would be

x(t) = exp (/[ ) p(s) dg(s)), t € [a, b].

For t ¢ Dy U g,

li

x4(t) = exp ( /[) p(s) dg(s)> ~ ( /[ RO dg(s)> = x(t)p(2).

g
For t € Dy,

/ (+F) — x(t el P(s)dels) _ 4 eP()Ag(t) _ 1

xg(t) = () (t) = x(t) =x(t)————

Ag(t) Ag(t) Ag(t)
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Homogeneous linear equation: explicit solution

@ M. Frigon, R. Lépez Pouso, Theory and applications of first-order
systems of Stieltjes differential equations, Adv. Nonlinear Anal.

@ I. Marquez Albés, Notes on the linear equation with Stieltjes
derivatives, Electron. J. Qual. Theory Differ. Equ.

@ F. J. Fernandez, I. Marquez Albés, F. A. F. Tojo, On first and
second order linear Stieltjes differential equations, J. Math. Anal
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Homogeneous linear equation: explicit solution

@ M. Frigon, R. Lépez Pouso, Theory and applications of first-order
systems of Stieltjes differential equations, Adv. Nonlinear Anal.

@ I. Marquez Albés, Notes on the linear equation with Stieltjes
derivatives, Electron. J. Qual. Theory Differ. Equ.

@ F. J. Fernandez, I. Marquez Albés, F. A. F. Tojo, On first and
second order linear Stieltjes differential equations, J. Math. Anal

Let p € Eé([a, b], C) be such that
1+ p(t)Ag(t) #0, tea b)ND,. (©)
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Homogeneous linear equation: explicit solution

@ M. Frigon, R. Lépez Pouso, Theory and applications of first-order
systems of Stieltjes differential equations, Adv. Nonlinear Anal.

@ I. Marquez Albés, Notes on the linear equation with Stieltjes
derivatives, Electron. J. Qual. Theory Differ. Equ.

@ F. J. Fernandez, I. Marquez Albés, F. A. F. Tojo, On first and
second order linear Stieltjes differential equations, J. Math. Anal

Let p € Eé([a, b], C) be such that

1+ p(t)Ag(t) #0, tea b)ND,. (©)
Define p € L;([a, b),C) as
p(2), t € [a, b]\ D,
P(t) =9 log (1 + p(t)Ag(t)) e [a.6ND,

Ag(t) ’
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Homogeneous linear equation: explicit solution

Let p € L;([a, b],C) be st (C) holds. Then, the map

expg(p, t) := exp (/[ ) E(S)dg(5)> t € [a, b,

is a solution of the homogeneous problem in [a, b].
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Homogeneous linear equation: explicit solution

Let p € L;([a, b],C) be st (C) holds. Then, the map

expg(p, t) := exp (/[ )E(S)dg(5)> t € [a, b],
Ja,t
is a solution of the homogeneous problem in [a, b].

Let p,f € L}([a, b],C) be such that (C) holds. Then, the map

. f(s)
X8 = expe(p, 1) (1 + o SroreN £ FOTRRT g(5)>

is a solution of the (SLE) in [a, b].
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Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives
X4() = ple)x(t) + (2). (SLE)

we define the adjoint linear equation with Stieltjes derivatives as

e P )
%)= T mae™ D T T pagy M)
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Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives
X4() = ple)x(t) + (2). (SLE)

we define the adjoint linear equation with Stieltjes derivatives as

e P )
=1 0ae0 VT T p0yng) P

An equivalent formulation is

xg(t)(1 + p(t)Ag(t)) = —p(t)x(t) + £(t).
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Given the equation linear equation with Stieltjes derivatives
X4() = ple)x(t) + (2). (SLE)

we define the adjoint linear equation with Stieltjes derivatives as

e P )
=1 0ae0 VT T p0yng) P

An equivalent formulation is
()L + p(£)Ag(t)) = —p(t)x(t) + F(1).

Observe that (ASLE):

- requires condition (C) to be well-defined.
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Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives
X4() = ple)x(t) + (2). (SLE)

we define the adjoint linear equation with Stieltjes derivatives as

e P )
=1 0ae0 VT T p0yng) P

An equivalent formulation is
()L + p(£)Ag(t)) = —p(t)x(t) + F(1).

Observe that (ASLE):
- requires condition (C) to be well-defined.

- can be regarded as a particular case of (SLE).
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Why that definition of adjoint equation?

The adjoint equation of (ASLE) is

xg(t) = P(t)x(t) + F(t)

where
~ DA
P(t) = P
1+ 1+p(f)(A)g(t) Ag(t)
f(t)
F(t) = 1+p(t)Ag(t)

- —p(t
1+ 1+p(f)(A)g(t) Ag(t)
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Why that definition of adjoint equation?

The adjoint equation of (ASLE) is
xg(t) = P(t)x(t) + F(t)

where

__—p(t)
P(t) _ 1+P(t)Ag(t) — p(t)

- —p(t
L+ tpthasn A8 (1)

f(t)
F(t) _ 1+p(t)Ag(t) _ f(t)

- —p(t
L+ Traae 28 (1)
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Why that definition of adjoint equation?

The adjoint equation of (ASLE) is
xg(t) = P(t)x(t) + F(t)

where

__—p(t)
P(t) _ 1+P(t)Ag(t) — p(t)

- —p(t
L+ tpthasn A8 (1)

f(t)
F(t) _ 1+p(t)Ag(t) _ f(t)

- —p(t
L+ Traae 28 (1)

Naturally, this is not enough to justify calling (ASLE) the adjoint
equation as other equations satify that (e.g. x; = —px + h).
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Linear operators

The equation (SLE) can be rewritten in the form Lx = f for the
linear operator L : ACg([a, b],C) — L([a, b], C) defined as

Lu(t) = uy(t) — p(t)u(t), g-a.a. te]a,b).
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Linear operators

The equation (SLE) can be rewritten in the form Lx = f for the
linear operator L : ACg([a, b],C) — L([a, b], C) defined as

Lu(t) = uy(t) — p(t)u(t), g-a.a. te]a,b).

For (ASLE) we have two options.
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Linear operators

The equation (SLE) can be rewritten in the form Lx = f for the
linear operator L : ACg([a, b],C) — L([a, b], C) defined as

Lu(t) = uy(t) — p(t)u(t), g-a.a. te]a,b).

f

For (ASLE) we have two options. If we rewrite it as Lx = 17 x~

If we want to rewrite it as L*x = f
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Linear operators

The equation (SLE) can be rewritten in the form Lx = f for the
linear operator L : ACg([a, b],C) — L([a, b], C) defined as
Lu(t) = uy(t) — p(t)u(t), g-a.a. te]a,b).

. . . To f
For (ASLE) we have two options. If we rewrite it as Lx = 1774,

we consider L : ACg([a, b],C) — £é([a, b], C) given by

Lv(t) = vg(t) + ZH—pZS)t)mg(t)v(t)’ g-a.a. t € [a,b).

If we want to rewrite it as L*x = f
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Linear operators

The equation (SLE) can be rewritten in the form Lx = f for the
linear operator L : ACg([a, b],C) — L1([a, b], C) defined as
Lu(t) = uy(t) — p(t)u(t), g-a.a. te][a,b).

f

For (ASLE) we have two options. If we rewrite it as Lx = 1774,

we consider L : ACg([a, b],C) — L;([a, b],C) given by

Lv(t) = V(1) + l—i-/:;[(JS)N{(t)V(t)’ g-a.a. t € [a,b).

If we want to rewrite it as L*x = f, we must consider the map
L* : ACgx([a, b],C) — Lé([a, b], C) defined as

Lov(t) = vg(t)(1 + p(t)Ag(t)) + p(t)v(t), g-a.a. t € [a,b).
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Lagrange's identity

@ Marquez Albés, A. Slavik, M. Tvrdy, Duality for Stieltjes
differential and integral equations, submitted for publication.

Theorem (Lagrange's identity)
Given x,y € ACgx([a, b],C), we have that for g-a.a. t € [a, b)

(- )g(t) = (v(t) + yg(t) Ag(t)) Lx(t) + x()L7y(t).
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Lagrange's identity

@ Marquez Albés, A. Slavik, M. Tvrdy, Duality for Stieltjes
differential and integral equations, submitted for publication.

Theorem (Lagrange's identity)
Given x,y € ACgx([a, b],C), we have that for g-a.a. t € [a, b)

(- )g(t) = (v(t) + yg(t) Ag(t)) Lx(t) + x()L7y(t).

Since L* = (1 + pAg)L, we also have that for g-a.a. t € [a, b)
(x - ¥)e(0) = (y(£) + () Ag(£))Lx(t) + (1+p(t) Ag (D) x(£) Ly ().
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Lagrange's identity: proof

Let x,y € ACg([a, b],C). There exists N C [a, b) st pg(N) =0
and xg(t), yg(t) exist for t € [a, b) \ N.
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Lagrange's identity: proof

Let x,y € ACg([a, b],C). There exists N C [a, b) st pg(N) =0
and xg(t), yg(t) exist for t € [a,b) \ N. For t € [a,b) \ N,

(O )g(t)

xg(£)y () + yg (£)x(t) + x5 (t)yg (1) Dg(t)
xg(t) (y(t) + vg (1) Ag(t)) + yg(t)x(t)
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Lagrange's identity: proof

Let x,y € ACg([a, b],C). There exists N C [a, b) st pg(N) =0
and xg(t), yg(t) exist for t € [a,b) \ N. For t € [a,b) \ N,

(O )g(t)

xg(£)y () + yg (£)x(t) + x5 (t)yg (1) Dg(t)
xg(t) (y(t) + vg (1) Ag(t)) + yg(t)x(t)

Adding and subtracting p(t)x(t)(y(t) + y;(t)Ag(t)),




Lagrange's identity: proof

Let x,y € ACg([a, b],C). There exists N C [a, b) st pg(N) =0
and xg(t), yg(t) exist for t € [a,b) \ N. For t € [a,b) \ N,

Co)g(t) = xg (£)y(t) + yg()x(t) + xg(t)yg (£) Ag(t)
xg(t) (y(t) + vg (1) Ag(t)) + yg(t)x(t)

Adding and subtracting p(t)x(t)(y(t) + y;(t)Ag(t)),

(xy)g(t) = (y(t) + ya(t)Ag(t)) (xg(t) — p(t)x(t))
+ x(t) (v (£)(1 + p(1)Ag(1))) + p(t)y(t))
= (y(t) + yz(t)Ag(t)) Lx(t) + x(t)L* y(t) O
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Lagrange's identity: consequences |

If x,y € ACg([a, b],C) are st Lx = L*y =0 g-a.e. in [a, b), then

x(t)y(t) = x(a)y(a), t€[a,b].
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Lagrange's identity: consequences |

If x,y € ACg([a, b],C) are st Lx = L*y =0 g-a.e. in [a, b), then

x(t)y(t) = x(a)y(a), t€[a,b].

v

We can find N C [a, b) st ug(N) =0 and, for t € [a, b) \ N,

Lx(t) = L*y(t) = 0,
(- y)g(t) = (y(t) + yg(t)Ag(t)) Lx(t) + x(t)L7y(t).
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Lagrange's identity: consequences |

If x,y € ACg([a, b],C) are st Lx = L*y =0 g-a.e. in [a, b), then

x(t)y(t) = x(a)y(a), t€[a,b].

We can find N C [a, b) st ug(N) =0 and, for t € [a, b) \ N,
Lx(t) = L'y(t) =,
(- )g(t) = (y(t) + yg(t)Ag(t)) Lx(t) + x(t)L7y(t).

Thus, (x - y),(t) =0 g-a.e. in [a, b).




Lagrange's identity: consequences |

If x,y € ACg([a, b],C) are st Lx = L*y =0 g-a.e. in [a, b), then

x(t)y(t) = x(a)y(a), t€[a,b].

We can find N C [a, b) st ug(N) =0 and, for t € [a, b) \ N,

Lx(t) = L*y(t) = 0,
(- y)g(t) = (y(t) + yg(t)Ag(t)) Lx(t) + x(t)L7y(t).

Thus, (x - y),(t) =0 g-a.e. in [a, b). Since x - y € ACg([a, b], C),

X(t)y(t)ZX(a)y(a)+/[ t)(x-y)’g(t)dg(S)=X(a)y(a)- -
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Lagrange's identity: consequences I

Let x,y € ACq4([a, b],C) be st xy = o € C\ {0} in [a, b].
- If Lx(t) = 0 for g-a.a. t € [a, b), then

L*y(t) =0 g-a.a. te€[ab).
- If L*y(t) =0 for g-a.a. t € [a, b), then
Lx(t)=0 g-a.a. te€|ab).
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Lagrange's identity: consequences I

Let x,y € ACq([a, b],C) be st xy = o € C\ {0} in [a, b].
- If Lx(t) = 0 for g-a.a. t € [a, b), then

L*y(t) =0 g-a.a. t € |[a,b).
- If L*y(t) =0 for g-a.a. t € [a, b), then
Lx(t)=0 g-a.a. te€[ab).

ot

/

Since x(t)y(t) = a, (x - y)g(t) = 0. Hence, by Lagrange's identity,
) = (y(t) + yg(t)Ag(t)) Lx(t) + x(t) Ly (1),
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Lagrange's identity: consequences I

Let x,y € ACq([a, b],C) be st xy = o € C\ {0} in [a, b].
- If Lx(t) = 0 for g-a.a. t € [a, b), then

L*y(t) =0 g-a.a. t € |[a,b).
- If L*y(t) =0 for g-a.a. t € [a, b), then
Lx(t)=0 g-a.a. te€[ab).

Since x(t)y(t) = @, (x - y),(t) = 0. Hence, by Lagrange's identity,
0= (x-y)g(t) = (y(t) + yz(t)Ag(t)) Lx(t) + x(t)L"y(t),
so if Lx(t) =0 and x(t) # 0, we must have that L*y(t) =0. [
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Lagrange's identity: consequences I

Theorem
Let x,y € ACq([a, b],C) be st xy = a € C\ {0} in [a, b].
- If Lx(t) =0 for g-a.a. t € [a, b), then
L*y(t) =0 g-a.a. t € [a,b).
- If L*y(t) =0 for g-a.a. t € [a, b), then
Lx(t) =0 g-a.a. t€ |ab).

If L*y(t) = 0, we get (y(t) + yg(t)Ag(t))Lx(t) = 0.

\
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Lagrange's identity: consequences I

Theorem
Let x,y € ACq([a, b],C) be st xy = a € C\ {0} in [a, b].
- If Lx(t) =0 for g-a.a. t € [a, b), then
L*y(t) =0 g-a.a. t € [a,b).
- If L*y(t) =0 for g-a.a. t € [a, b), then
Lx(t) =0 g-a.a. t€ |ab).

Proof
If L*y(t) =0, we get (y(t) + y;(t)Ag(t))Lx(t) = 0. Since
L*y(t ) = 0, we have that yé(t) %y(t) which implies

\
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Lagrange's identity: consequences I

Theorem
Let x,y € ACq([a, b],C) be st xy = a € C\ {0} in [a, b].
- If Lx(t) =0 for g-a.a. t € [a, b), then
L*y(t) =0 g-a.a. t € [a,b).
- If L*y(t) =0 for g-a.a. t € [a, b), then
Lx(t) =0 g-a.a. t€ |ab).

Proof.

If L*y(t) =0, we get (y(t) + yg(t)Ag(t))Lx(t) = 0. Since

L*y(t) = 0, we have that y,(t) = —%y(t) which implies
that %Lx(t) = 0. Thus, if y(t) # 0, Lx(t) = 0. O

.




Adjoint equation

0000000e00

Lagrange’s identity: consequences |lI

Given that L* = (1 + pAg)Z, we can obtain the following result.

Let x,y € ACq([a, b],C). Then, the following hold:
- IfLx =Ly =0 g-a.e. in [a, b), then
*(Oy(t) = x(a)y(2), g-aa. t€ [a,b).
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Lagrange’s identity: consequences |lI

Given that L* = (1 + pAg)Z, we can obtain the following result.

Let x,y € ACq([a, b],C). Then, the following hold:
- IfLx =Ly =0 g-a.e. in [a, b), then
x(t)y(t) = x(a)y(a), g-a.a. t€ [a,b).
- If Lx(t) =0 for g-a.a. t € [a, b), then

Ly(t) =0, g-aa. te]lab].
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Lagrange’s identity: consequences |lI

Given that L* = (1 + pAg)Z, we can obtain the following result.

Let x,y € ACq([a, b],C). Then, the following hold:
- IfLx =Ly =0 g-a.e. in [a, b), then
x(t)y(t) = x(a)y(a), g-a.a. t€ [a,b).
- If Lx(t) =0 for g-a.a. t € [a, b), then

Ly(t) =0, g-aa. te]lab].
: ley(t) =0 for g-a.a. t € [a, b), then

Lx(t) =0, g-a.a.te€ [a,b).
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Lagrange's identity: consequences |V

From Lipschitz's uniqueness criterion for VP, we obtain:

Let x5, y, € C. The unique solution of Lx =0, x(a) = x,, Is

x(t) = xaexpg(p,t), t € [a,b].
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Lagrange's identity: consequences |V

From Lipschitz's uniqueness criterion for VP, we obtain:

Let x5, y, € C. The unique solution of Lx =0, x(a) = x,, Is

x(t) = xaexpg(p,t), t € [a,b].

The unique solution of Zy =0, y(a)=ya, is
.y(t) :yaexpg(p7 t)ilv t e [a, b]
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Lagrange's identity: consequences |V

From Lipschitz's uniqueness criterion for VP, we obtain:

Let x5, y, € C. The unique solution of Lx =0, x(a) = x,, Is

x(t) = xaexpg(p,t), t € [a,b].

The unique solution of Zy =0, y(a)=ya, is
.y(t) :yaexpg(p7 t)ilv t e [a, b]

Corollary
For g-a.a. t € [a, b],

_ p
expg(p; t) = eXpg <_1+pAg’ t>'
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Relations with other adjoint problems |

The pair of equations

xg(t) = p(t)x(t) + £(t), (SLE)
xg(t) = L(t)x(t) + _fy (ASLE)

1+ p(t)Ag(t) 14 p(t)Ag(t)

is a generalization of the usual pair of adjoint linear ODEs.
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Relations with other adjoint problems |

The pair of equations

xg(t) = p(t)x(t) + f(t), (SLE)
xg(t) = L(t)x(t) + _fy (ASLE)

1+ p(t)Ag(t) 14 p(t)Ag(t)

is a generalization of the usual pair of adjoint linear ODEs. Indeed,
for g(t) = t, we have that Ag(t) =0, t € R, so we get

xX'(t) = p(t)x(t) + £(t),
x'(t) = —p(t)x(t) + f(t)
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Relations with other adjoint problems Il

The next natural question is: are (SLE)-(ASLE) a generalization of
the corresponding dynamic equations?

xB(t) = p(t)x(t) + f(t) (DLE)
) = —p(t)y(a(t)) + £(t) (ADLE)

with o(t) = inf{s € T : s > t}.

<
>
S
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Relations with other adjoint problems Il

The next natural question is: are (SLE)-(ASLE) a generalization of
the corresponding dynamic equations?

xB(t) = p(t)x(t) + f(t) (DLE)
) = —p(t)y(a(t)) + £(t) (ADLE)

<
>
S

with o(t) = inf{s € T : s > t}. This is partially covered in

[d M. Frigon, R. Lépez Pouso, Theory and applications of
first-order systems of Stieltjes differential equations, Adv.
Nonlinear Anal. 6(2017), No. 1, 13-36.

[§ I. Marquez Albés, Differential problems with Stieltjes
derivatives and applications, Ph.D. thesis, Universidade de
Santiago de Compostela, 2021.
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Relations with other adjoint problems Il

Time scales and Stieltjes calculus are equivalent for
g(t)y=inf{s € T:s >t}

in which case, the two derivatives are equal. Thus, (SLE) and
(DLE) are equivalent.
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Relations with other adjoint problems Il

Time scales and Stieltjes calculus are equivalent for
g(t)y=inf{s € T:s >t}

in which case, the two derivatives are equal. Thus, (SLE) and
(DLE) are equivalent. Noting that, for x € AC.([a, b], C),

xg(t)(1+ p(t)Ag(t)) = xg(t) + p(t)(x(t7) — x(1)),
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Relations with other adjoint problems Il

Time scales and Stieltjes calculus are equivalent for
g(t)y=inf{s € T:s >t}

in which case, the two derivatives are equal. Thus, (SLE) and
(DLE) are equivalent. Noting that, for x € AC.([a, b], C),

xg(t)(1+ p(t)Ag(t)) = xg(t) + p(t)(x(t7) — x(1)),

we see that (ASLE) can be rewritten as

xg(t) = —p(t)x(t") + (1),

from which it is easy to check that it is equivalent to (ADLE).
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