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Derivative Linear equation Adjoint equation

Adjoint linear ODEs

In the context of ODEs, given the linear equation

x ′(t) = p(t)x(t) + f (t), (LE)

the adjoint linear equation is defined as

x ′(t) = −p(t)x(t) + f (t) (ALE)

This is because their linear operators,

Lu(t)= u′(t)− p(t)u(t),

L∗v(t)= v ′(t) + p(t)v(t)

are adjoint operators.
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Adjoint linear ODEs

These equations satisfy a series of interesting properties:

· The adjoint equation of (ALE) is (LE).

· Lagrange’s identity: (x · y)′(t) = y(t)Lx(t) + x(t)L∗y(t).

· If Lx = 0 and L∗y = 0, then x · y is constant.

· If x(t)y(t) = α 6= 0 and Lx = 0, then L∗y = 0.

· If x(t)y(t) = α 6= 0 and L∗y = 0, then Lx = 0.
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Adjoint dynamic linear equations

Similarly, for a time scale, T, the equations

x∆(t)= p(t)x(t) + f (t), (DLE)

x∆(t)= −p(t)x(σ(t)) + f (t) (ADLE)

are called adjoint linear equations, with

σ(t) = inf{s ∈ T : s > t}.

Their linear operators are

Lu(t)= u∆(t)− p(t)u(t),

L∗v(t)= v∆(t) + p(t)v(σ(t))
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Adjoint dynamic linear equations

M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An
Introduction with Applications, Birkhäuser, Boston, 2001.

Theorem (Lagrange’s identity)

(x · y)∆(t) = y(σ(t))Lx(t) + x(t)L∗y(t).

· If Lx = 0 and L∗y = 0, then x · y is constant.

· If x(t)y(t) = α 6= 0 and Lx = 0, then L∗y = 0.

· If x(t)y(t) = α 6= 0 and L∗y = 0, then Lx = 0.
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Adjoint linear in a more general context

M. Frigon, R. López Pouso, Theory and applications of first-order
systems of Stieltjes differential equations, Adv. Nonlinear Anal.
6(2017), No. 1, 13–36.

They studied the linear equation with Stieltjes derivatives

x ′g (t) = p(t)x(t) + f (t),

and showed ODEs and dynamic equations are particular cases of
differential equations with Stieltjes derivatives.

Can we obtain Lagrange’s identity in this context?
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The Stieltjes derivative

What are Stieltjes derivatives?

Essentially, the Stieltjes derivative of a function is the derivative of
a function with respect to another one.

Specifically, given a nondecreasing and left-continuous function
g : R→ R, we “define” the Stieltjes derivative of f at t0 as

f ′g (t0) = lim
t→t0

f (t)− f (t0)

g(t)− g(t0)
.
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The Stieltjes derivative

f ′g (t0) = lim
t→t0

Ft0(t), Ft0(·) =
f (·)− f (t0)

g(·)− g(t0)
, Dom(Ft0)?
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The Stieltjes derivative

R. López Pouso, A. Rodŕıguez, A new unification of continuous,
discrete, and impulsive calculus through Stieltjes derivatives, Real
Anal. Exchange 40(2014/15), No. 2, 319–353.

Cg :={t ∈ R : g is constant in (t − ε, t + ε) for some ε > 0}
Dg :={t ∈ R : ∆g(t) := g(t+)− g(t) > 0}

Definition

Define the Stieltjes derivative of f : R→ C at t0 ∈ R \ Cg as

f ′g (t0) =


lim
t→t0

f (t)− f (t0)

g(t)− g(t0)
, t0 6∈ Dg ,

lim
t→t+

0

f (t)− f (t0)

g(t)− g(t0)
, t0 ∈ Dg .
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The Stieltjes derivative at discontinuity points

Why that definition at Dg?

If t0 ∈ Dg , then (t0,+∞) ⊂ Dom(Ft0), which means that we
can always consider the limit from the right.

If Dom(Ft0) = R \ {t0} and limt→t0 Ft0(t) exists, so does
limt→t+

0
Ft0(t) and they are equal.

This definition allows us to establish a version of the
Fundamental Theorem of Calculus.

Remark

For t ∈ Dg , f ′g (t) exists if and only if f (t+) exists and, in that case,

f ′g (t) =
f (t+)− f (t)

∆g(t)
.
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g(·)− g(t0)
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The Stieltjes derivative

I. Márquez Albés, Notes on the linear equation with Stieltjes
derivatives, Electron. J. Qual. Theory Differ. Equ. 42 (2021) 1–18

Since Cg is open, we can write Cg =
⋃∞

n=1(an, bn). Hence, we can
define N−g = {an}∞n=1 \ Dg and N+

g = {bn}∞n=1 \ Dg .

Definition

Define the g -derivative of f : R→ C at t0 ∈ R \ Cg as

f ′g (t0) =



lim
t→t0

f (t)− f (t0)

g(t)− g(t0)
, t0 6∈ Dg ∪ N−g ∪ N+

g ,

lim
t→t−0

f (t)− f (t0)

g(t)− g(t0)
, t0 ∈ N−g ,

lim
t→t+

0

f (t)− f (t0)

g(t)− g(t0)
, t0 ∈ Dg ∪ N+

g .
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The Stieltjes derivative: basic properties

Proposition

If f and h are g-differentiable at t0 ∈ R \ Cg , then

αf + βh is g-differentiable at t0 for any α, β ∈ R and

(αf + βh)′g (t0) = αf ′g (t0) + βh′g (t0).

f · h is g-differentiable at t0 and

(f · h)′g (t0) = f ′g (t0)h(t0) + h′g (t0)f (t0) + f ′g (t0)h′g (t0)∆g(t0).

Proposition

Let f be g-differentiable at t0 ∈ R \ (Cg ∪ Dg ) and let h be
differentiable at f (t0). Then h ◦ f is g-differentiable at t0 and

(h ◦ f )′g (t0) = h′(f (t0))f ′g (t0).
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The Lebesgue-Stieltjes integral

The Lebesgue-Stieltjes integral is defined as∫
A
f (s) d g(s) :=

∫
A
f (s) dµg (s), f ∈ L1

g := L1
µg ,

by considering the outer measure

µ∗g (A) = inf

{ ∞∑
n=1

(g(bn)− g(an)) : A ⊂
∞⋃
n=1

[an, bn)

}
;

and its restriction, µg := µ∗g |LSg , to the set

LSg = {A ⊂ R : µ∗g (E ) = µ∗g (E ∩ A) + µ∗g (E ∩ Ac), E ∈ P(R)}
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The Lebesgue-Stieltjes integral

A few remarks on the Lebesgue-Stieltjes measure:

· By construction, µg ([a, b)) = g(b)− g(a), a < b.

· We have that µg (Cg ) = 0.

· For any t ∈ R, µg ({t}) = ∆g(t). In particular,

µg ({t}) > 0, t ∈ Dg .

· For t ∈ R, ∫
{t}

f (s) d g(s) = f (t)∆g(t).

In particular, for t ∈ Dg ,∫
{t}

f ′g (s) d g(s) = f ′g (t)∆g(t) =
f (t+)− f (t)

∆g(t)
∆g(t) = f (t+)− f (t).
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{t}

f (s) d g(s) = f (t)∆g(t).

In particular, for t ∈ Dg ,∫
{t}

f ′g (s) d g(s) = f ′g (t)∆g(t) =
f (t+)− f (t)

∆g(t)
∆g(t) = f (t+)− f (t).
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The Fundamental Theorem of Calculus

R. López Pouso, A. Rodŕıguez, A new unification of continuous,
discrete, and impulsive calculus through Stieltjes derivatives, Real
Anal. Exchange 40(2014/15), No. 2, 319–353.

Theorem

Let F : [a, b]→ C. Then, the following are equivalent:

(a) F ∈ ACg ([a, b],C), i.e., for every ε > 0, there exists δ > 0 st for
every open pairwise disjoint family of subintervals {(an, bn)}mn=1,

m∑
n=1

(g(bn)− g(an)) < δ =⇒
m∑

n=1

|F (bn)− F (an)| < ε.

(b) F ′
g (t) exists for g-a.a. t ∈ [a, b), F ′

g ∈ L1
g ([a, b),C), and

F (t) = F (a) +

∫
[a,t)

F ′
g (s) d g(s), t ∈ [a, b].
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The Fundamental Theorem of Calculus

R. López Pouso, A. Rodŕıguez, A new unification of continuous,
discrete, and impulsive calculus through Stieltjes derivatives, Real
Anal. Exchange 40(2014/15), No. 2, 319–353.

Theorem

Let f ∈ L1
g ([a, b),C). Consider F : [a, b]→ C given by

F (t) =

∫
[a,t)

f (s) d g(s).

Then F ∈ ACg ([a, b],C) and F ′g (t) = f (t) for g-a.a. t ∈ [a, b).
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1 The Stieltjes derivative

2 Linear equation with Stieltjes derivatives

3 Adjoint linear equation with Stieltjes derivatives
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Linear equation

We consider the following scalar linear problem

x ′g (t) = p(t)x(t) + f (t). (SLE)

If f = 0, it is homogeneous; otherwise, it is nonhomogeneous.

Definition

A solution of (SLE) in [a, b] is a function x ∈ ACg ([a, b],C) st

x ′g (t) = p(t)x(t) + f (t), g -a.a. t ∈ [a, b).

Why exclude the point b from the definition of solution?

· If b ∈ Dg , x not defined to the right of b, so 6 ∃ x ′g (t).

· If b 6∈ Dg , µg ({b}) = 0, so g -a.e. [a, b) ⇐⇒ g -a.e. [a, b].
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Homogeneous linear equation

A reasonable solution of the homogeneous equation in [a, b] would be

x(t) = exp

(∫
[a,t)

p(s) d g(s)

)
, t ∈ [a, b].

For t 6∈ Dg ∪ Cg ,

x ′g (t) = exp

(∫
[a,t)

p(s) d g(s)

)
·

(∫
[a,t)

p(s) d g(s)

)′

g

= x(t)p(t).

For t ∈ Dg ,

x ′g (t) =
x(t+)− x(t)

∆g(t)
= x(t)

e
∫
{t} p(s) d g(s) − 1

∆g(t)
= x(t)

ep(t)∆g(t) − 1

∆g(t)
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Homogeneous linear equation: explicit solution

M. Frigon, R. López Pouso, Theory and applications of first-order
systems of Stieltjes differential equations, Adv. Nonlinear Anal.

I. Márquez Albés, Notes on the linear equation with Stieltjes
derivatives, Electron. J. Qual. Theory Differ. Equ.

F. J. Fernández, I. Márquez Albés, F. A. F. Tojo, On first and
second order linear Stieltjes differential equations, J. Math. Anal

Let p ∈ L1
g ([a, b],C) be such that

1 + p(t)∆g(t) 6= 0, t ∈ [a, b) ∩ Dg . (C)

Define p̃ ∈ L1
g ([a, b),C) as

p̃(t) =


p(t), t ∈ [a, b]\Dg ,

log
(
1 + p(t)∆g(t)

)
∆g(t)

, t ∈ [a, b] ∩ Dg .
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Homogeneous linear equation: explicit solution

Theorem

Let p ∈ L1
g ([a, b],C) be st (C) holds. Then, the map

expg (p, t) := exp

(∫
[a,t)

p̃(s) d g(s)

)
t ∈ [a, b],

is a solution of the homogeneous problem in [a, b].

Theorem

Let p, f ∈ L1
g ([a, b],C) be such that (C) holds. Then, the map

x(t) = expg (p, t)

(
1 +

∫
[a,t)

f (s)

expg (p, s)(1 + p(s)∆g(s))
d g(s)

)

is a solution of the (SLE) in [a, b].
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Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

x ′g (t) = p(t)x(t) + f (t), (SLE)

we define the adjoint linear equation with Stieltjes derivatives as

x ′g (t) =
−p(t)

1 + p(t)∆g(t)
x(t) +

f (t)

1 + p(t)∆g(t)
(ASLE)

An equivalent formulation is

x ′g (t)(1 + p(t)∆g(t)) = −p(t)x(t) + f (t).

Observe that (ASLE):

· requires condition (C) to be well-defined.

· can be regarded as a particular case of (SLE).



Derivative Linear equation Adjoint equation

Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

x ′g (t) = p(t)x(t) + f (t), (SLE)

we define the adjoint linear equation with Stieltjes derivatives as

x ′g (t) =
−p(t)

1 + p(t)∆g(t)
x(t) +

f (t)

1 + p(t)∆g(t)
(ASLE)

An equivalent formulation is

x ′g (t)(1 + p(t)∆g(t)) = −p(t)x(t) + f (t).

Observe that (ASLE):

· requires condition (C) to be well-defined.

· can be regarded as a particular case of (SLE).



Derivative Linear equation Adjoint equation

Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

x ′g (t) = p(t)x(t) + f (t), (SLE)

we define the adjoint linear equation with Stieltjes derivatives as

x ′g (t) =
−p(t)

1 + p(t)∆g(t)
x(t) +

f (t)

1 + p(t)∆g(t)
(ASLE)

An equivalent formulation is

x ′g (t)(1 + p(t)∆g(t)) = −p(t)x(t) + f (t).

Observe that (ASLE):

· requires condition (C) to be well-defined.

· can be regarded as a particular case of (SLE).



Derivative Linear equation Adjoint equation

Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

x ′g (t) = p(t)x(t) + f (t), (SLE)

we define the adjoint linear equation with Stieltjes derivatives as

x ′g (t) =
−p(t)

1 + p(t)∆g(t)
x(t) +

f (t)

1 + p(t)∆g(t)
(ASLE)

An equivalent formulation is

x ′g (t)(1 + p(t)∆g(t)) = −p(t)x(t) + f (t).

Observe that (ASLE):

· requires condition (C) to be well-defined.

· can be regarded as a particular case of (SLE).



Derivative Linear equation Adjoint equation

Why that definition of adjoint equation?

The adjoint equation of (ASLE) is

x ′g (t) = P(t)x(t) + F (t)

where

P(t) =
− −p(t)

1+p(t)∆g(t)

1 + −p(t)
1+p(t)∆g(t) ∆g(t)

= p(t)

F (t) =

f (t)
1+p(t)∆g(t)

1 + −p(t)
1+p(t)∆g(t) ∆g(t)

= f (t)

Naturally, this is not enough to justify calling (ASLE) the adjoint
equation as other equations satify that (e.g. x ′g = −px + h)
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Linear operators

The equation (SLE) can be rewritten in the form Lx = f for the
linear operator L : ACg ([a, b],C)→ L1

g ([a, b],C) defined as

Lu(t) = u′g (t)− p(t)u(t), g -a.a. t ∈ [a, b).

For (ASLE) we have two options. If we rewrite it as L̂x = f
1+p∆g ,

we consider L̂ : ACg ([a, b],C)→ L1
g ([a, b],C) given by

L̂v(t) = v ′g (t) +
p(t)

1 + p(t)∆g(t)
v(t), g -a.a. t ∈ [a, b).

If we want to rewrite it as L∗x = f , we must consider the map
L∗ : ACg ([a, b],C)→ L1

g ([a, b],C) defined as

L∗v(t) = v ′g (t)(1 + p(t)∆g(t)) + p(t), g -a.a. t ∈ [a, b).
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If we want to rewrite it as L∗x = f , we must consider the map
L∗ : ACg ([a, b],C)→ L1

g ([a, b],C) defined as

L∗v(t) = v ′g (t)(1 + p(t)∆g(t)) + p(t)v(t), g -a.a. t ∈ [a, b).
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Lagrange’s identity

I. Márquez Albés, A. Slav́ık, M. Tvrdý, Duality for Stieltjes
differential and integral equations, submitted for publication.

Theorem (Lagrange’s identity)

Given x , y ∈ ACg ([a, b],C), we have that for g-a.a. t ∈ [a, b)

(x · y)′g (t) =
(
y(t) + y ′g (t)∆g(t)

)
Lx(t) + x(t)L∗y(t).

Remark

Since L∗ = (1 + p∆g)L̂, we also have that for g-a.a. t ∈ [a, b)

(x · y)′g (t) =
(
y(t)+y ′g (t)∆g(t)

)
Lx(t)+(1+p(t)∆g(t))x(t)L̂y(t).
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differential and integral equations, submitted for publication.

Theorem (Lagrange’s identity)

Given x , y ∈ ACg ([a, b],C), we have that for g-a.a. t ∈ [a, b)

(x · y)′g (t) =
(
y(t) + y ′g (t)∆g(t)

)
Lx(t) + x(t)L∗y(t).

Remark

Since L∗ = (1 + p∆g)L̂, we also have that for g-a.a. t ∈ [a, b)

(x · y)′g (t) =
(
y(t)+y ′g (t)∆g(t)

)
Lx(t)+(1+p(t)∆g(t))x(t)L̂y(t).



Derivative Linear equation Adjoint equation

Lagrange’s identity: proof

Proof.

Let x , y ∈ ACg ([a, b],C). There exists N ⊂ [a, b) st µg (N) = 0
and x ′g (t), y ′g (t) exist for t ∈ [a, b) \ N.

For t ∈ [a, b) \ N,

(xy)′g (t) = x ′g (t)y(t) + y ′g (t)x(t) + x ′g (t)y ′g (t)∆g(t)

= x ′g (t)
(
y(t) + y ′g (t)∆g(t)

)
+ y ′g (t)x(t)

Adding and subtracting p(t)x(t)(y(t) + y ′g (t)∆g(t)),

(xy)′g (t) =
(
y(t) + y ′g (t)∆g(t)

) (
x ′g (t)− p(t)x(t)

)
+ x(t)

(
y ′g (t)(1 + p(t)∆g(t))) + p(t)y(t)

)
=
(
y(t) + y ′g (t)∆g(t)

)
Lx(t) + x(t)L∗y(t)
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Derivative Linear equation Adjoint equation

Lagrange’s identity: consequences I

Theorem

If x , y ∈ ACg ([a, b],C) are st Lx = L∗y = 0 g-a.e. in [a, b), then

x(t)y(t) = x(a)y(a), t ∈ [a, b].

Proof.

We can find N ⊂ [a, b) st µg (N) = 0 and, for t ∈ [a, b) \ N,

Lx(t) = L∗y(t) = 0,

(x · y)′g (t) =
(
y(t) + y ′g (t)∆g(t)

)
Lx(t) + x(t)L∗y(t).

Thus, (x · y)′g (t) = 0 g -a.e. in [a, b). Since x · y ∈ ACg ([a, b],C),

x(t)y(t) = x(a)y(a) +

∫
[a,t)

(x · y)′g (t) d g(s) = x(a)y(a).
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Lagrange’s identity: consequences II

Theorem

Let x , y ∈ ACg ([a, b],C) be st xy = α ∈ C \ {0} in [a, b].

· If Lx(t) = 0 for g-a.a. t ∈ [a, b), then

L∗y(t) = 0 g-a.a. t ∈ [a, b).

· If L∗y(t) = 0 for g-a.a. t ∈ [a, b), then

Lx(t) = 0 g-a.a. t ∈ [a, b).

Proof.

Since x(t)y(t) = α, (x · y)′g (t) = 0. Hence, by Lagrange’s identity,

0 = (x · y)′g (t) =
(
y(t) + y ′g (t)∆g(t)

)
Lx(t) + x(t)L∗y(t),

so if Lx(t) = 0 and x(t) 6= 0, we must have that L∗y(t) = 0.
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Proof.

If L∗y(t) = 0, we get (y(t) + y ′g (t)∆g(t))Lx(t) = 0.

Since

L∗y(t) = 0, we have that y ′g (t) = − p(t)
1+p(t)∆g(t)y(t) which implies

that y(t)
1+p(t)∆g(t)Lx(t) = 0. Thus, if y(t) 6= 0, Lx(t) = 0.
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Lagrange’s identity: consequences III

Given that L∗ = (1 + p∆g)L̂, we can obtain the following result.

Theorem

Let x , y ∈ ACg ([a, b],C). Then, the following hold:

· If Lx = L̂y = 0 g-a.e. in [a, b), then

x(t)y(t) = x(a)y(a), g-a.a. t ∈ [a, b).

· If Lx(t) = 0 for g-a.a. t ∈ [a, b), then

L̂y(t) = 0, g-a.a. t ∈ [a, b].

· If L̂y(t) = 0 for g-a.a. t ∈ [a, b), then

Lx(t) = 0, g-a.a. t ∈ [a, b).
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Lagrange’s identity: consequences IV

From Lipschitz’s uniqueness criterion for IVP, we obtain:

Proposition

Let xa, ya ∈ C. The unique solution of Lx = 0, x(a) = xa, is

x(t) = xa expg (p, t), t ∈ [a, b].

The unique solution of L̂y = 0, y(a) = ya, is

y(t) = ya expg (p, t)−1, t ∈ [a, b].

Corollary

For g-a.a. t ∈ [a, b],

expg (p, t)−1 = expg

(
− p

1 + p∆g
, t

)
.
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Relations with other adjoint problems I

The pair of equations

x ′g (t) = p(t)x(t) + f (t), (SLE)

x ′g (t) =
−p(t)

1 + p(t)∆g(t)
x(t) +

f (t)

1 + p(t)∆g(t)
(ASLE)

is a generalization of the usual pair of adjoint linear ODEs.

Indeed,
for g(t) = t, we have that ∆g(t) = 0, t ∈ R, so we get

x ′(t) = p(t)x(t) + f (t),

x ′(t) = −p(t)x(t) + f (t)
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Relations with other adjoint problems II

The next natural question is: are (SLE)-(ASLE) a generalization of
the corresponding dynamic equations?

x∆(t) = p(t)x(t) + f (t) (DLE)

y∆(t) = −p(t)y(σ(t)) + f (t) (ADLE)

with σ(t) = inf{s ∈ T : s > t}.

This is partially covered in

M. Frigon, R. López Pouso, Theory and applications of
first-order systems of Stieltjes differential equations, Adv.
Nonlinear Anal. 6(2017), No. 1, 13–36.

I. Márquez Albés, Differential problems with Stieltjes
derivatives and applications, Ph.D. thesis, Universidade de
Santiago de Compostela, 2021.



Derivative Linear equation Adjoint equation

Relations with other adjoint problems II

The next natural question is: are (SLE)-(ASLE) a generalization of
the corresponding dynamic equations?

x∆(t) = p(t)x(t) + f (t) (DLE)

y∆(t) = −p(t)y(σ(t)) + f (t) (ADLE)

with σ(t) = inf{s ∈ T : s > t}. This is partially covered in
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Relations with other adjoint problems III

Time scales and Stieltjes calculus are equivalent for

g(t) = inf{s ∈ T : s ≥ t},

in which case, the two derivatives are equal. Thus, (SLE) and
(DLE) are equivalent.

Noting that, for x ∈ ACg ([a, b],C),

x ′g (t)(1 + p(t)∆g(t)) = x ′g (t) + p(t)(x(t+)− x(t)),

we see that (ASLE) can be rewritten as

x ′g (t) = −p(t)x(t+) + f (t),

from which it is easy to check that it is equivalent to (ADLE).
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