Adjoint first order linear equations with Stieltjes derivatives and Lagrange's identity

Ignacio Márquez Albés

ignacio.marquez@usc.es

Departamento de Estatística, Análise Matemática e Optimización

Facultade de Matemáticas, Universidade de Santiago de Compostela.

1 June 2022

Adjoint equation

Adjoint linear ODEs

In the context of ODEs, given the linear equation

$$x'(t) = p(t)x(t) + f(t), \qquad (LE)$$

the adjoint linear equation is defined as

$$x'(t) = -p(t)x(t) + f(t)$$
 (ALE)

Adjoint equation

Adjoint linear ODEs

In the context of ODEs, given the linear equation

$$x'(t) = p(t)x(t) + f(t), \qquad (LE)$$

the adjoint linear equation is defined as

$$x'(t) = -p(t)x(t) + f(t)$$
 (ALE)

This is because their linear operators,

Lu(t) = u'(t) - p(t)u(t), $L^*v(t) = v'(t) + p(t)v(t)$

are adjoint operators.

Adjoint linear ODEs

These equations satisfy a series of interesting properties:

 \cdot The adjoint equation of (ALE) is (LE).

Adjoint linear ODEs

These equations satisfy a series of interesting properties:

- · The adjoint equation of (ALE) is (LE).
- · Lagrange's identity: $(x \cdot y)'(t) = y(t)Lx(t) + x(t)L^*y(t)$.

Adjoint linear ODEs

These equations satisfy a series of interesting properties:

- · The adjoint equation of (ALE) is (LE).
- · Lagrange's identity: $(x \cdot y)'(t) = y(t)Lx(t) + x(t)L^*y(t)$.
- · If Lx = 0 and $L^*y = 0$, then $x \cdot y$ is constant.

Adjoint linear ODEs

These equations satisfy a series of interesting properties:

- · The adjoint equation of (ALE) is (LE).
- · Lagrange's identity: $(x \cdot y)'(t) = y(t)Lx(t) + x(t)L^*y(t)$.
- · If Lx = 0 and $L^*y = 0$, then $x \cdot y$ is constant.
- If $x(t)y(t) = \alpha \neq 0$ and Lx = 0, then $L^*y = 0$.
- If $x(t)y(t) = \alpha \neq 0$ and $L^*y = 0$, then Lx = 0.

Adjoint equation

Adjoint dynamic linear equations

Similarly, for a time scale, $\mathbb T,$ the equations

$$x^{\Delta}(t) = p(t)x(t) + f(t), \qquad (DLE)$$
$$x^{\Delta}(t) = -p(t)x(\sigma(t)) + f(t) \qquad (ADLE)$$

are called adjoint linear equations, with

$$\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}.$$

Adjoint equation

Adjoint dynamic linear equations

Similarly, for a time scale, $\mathbb T,$ the equations

$$x^{\Delta}(t) = p(t)x(t) + f(t), \qquad (DLE)$$
$$x^{\Delta}(t) = -p(t)x(\sigma(t)) + f(t) \qquad (ADLE)$$

are called adjoint linear equations, with

$$\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}.$$

Their linear operators are

$$Lu(t) = u^{\Delta}(t) - p(t)u(t),$$

$$L^*v(t) = v^{\Delta}(t) + p(t)v(\sigma(t))$$

Adjoint equation

Adjoint dynamic linear equations

M. Bohner, A. Peterson, *Dynamic Equations on Time Scales: An Introduction with Applications*, Birkhäuser, Boston, 2001.

Theorem (Lagrange's identity)

$$(x \cdot y)^{\Delta}(t) = y(\sigma(t))Lx(t) + x(t)L^*y(t).$$

Adjoint dynamic linear equations

M. Bohner, A. Peterson, *Dynamic Equations on Time Scales: An Introduction with Applications*, Birkhäuser, Boston, 2001.

Theorem (Lagrange's identity)

$$(x \cdot y)^{\Delta}(t) = y(\sigma(t))Lx(t) + x(t)L^*y(t).$$

· If Lx = 0 and $L^*y = 0$, then $x \cdot y$ is constant.

Adjoint dynamic linear equations

M. Bohner, A. Peterson, *Dynamic Equations on Time Scales: An Introduction with Applications*, Birkhäuser, Boston, 2001.

Theorem (Lagrange's identity)

$$(x \cdot y)^{\Delta}(t) = y(\sigma(t))Lx(t) + x(t)L^*y(t).$$

- · If Lx = 0 and $L^*y = 0$, then $x \cdot y$ is constant.
- If $x(t)y(t) = \alpha \neq 0$ and Lx = 0, then $L^*y = 0$.
- If $x(t)y(t) = \alpha \neq 0$ and $L^*y = 0$, then Lx = 0.

Adjoint linear in a more general context

 M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, *Adv. Nonlinear Anal.* 6(2017), No. 1, 13–36.

They studied the linear equation with Stieltjes derivatives

$$x'_g(t) = p(t)x(t) + f(t),$$

Adjoint linear in a more general context

 M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, *Adv. Nonlinear Anal.* 6(2017), No. 1, 13–36.

They studied the linear equation with Stieltjes derivatives

$$x'_g(t) = p(t)x(t) + f(t),$$

and showed ODEs and dynamic equations are particular cases of differential equations with Stieltjes derivatives.

Adjoint linear in a more general context

M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, *Adv. Nonlinear Anal.* 6(2017), No. 1, 13–36.

They studied the linear equation with Stieltjes derivatives

$$x'_g(t) = p(t)x(t) + f(t),$$

and showed ODEs and dynamic equations are particular cases of differential equations with Stieltjes derivatives.

Can we obtain Lagrange's identity in this context?

- 2 Linear equation with Stieltjes derivatives
- 3 Adjoint linear equation with Stieltjes derivatives

Linear equation

Adjoint equation

The Stieltjes derivative

What are Stieltjes derivatives?

Linear equation

Adjoint equation

The Stieltjes derivative

What are Stieltjes derivatives?

Essentially, the Stieltjes derivative of a function is the derivative of a function with respect to another one.

Adjoint equation

The Stieltjes derivative

What are Stieltjes derivatives?

Essentially, the Stieltjes derivative of a function is the derivative of a function with respect to another one.

Specifically, given a nondecreasing and left-continuous function $g : \mathbb{R} \to \mathbb{R}$, we "define" the Stieltjes derivative of f at t_0 as

$$f_g'(t_0) = \lim_{t \to t_0} rac{f(t) - f(t_0)}{g(t) - g(t_0)}$$

Linear equation 0000 Adjoint equation

$$f'_g(t_0) = \lim_{t \to t_0} F_{t_0}(t), \qquad F_{t_0}(\cdot) = \frac{f(\cdot) - f(t_0)}{g(\cdot) - g(t_0)}, \qquad \mathsf{Dom}(F_{t_0})?$$

Linear equation 0000 Adjoint equation

$$f'_g(t_0) = \lim_{t \to t_0} F_{t_0}(t), \qquad F_{t_0}(\cdot) = \frac{f(\cdot) - f(t_0)}{g(\cdot) - g(t_0)}, \qquad \mathsf{Dom}(F_{t_0})?$$

Linear equation 0000 Adjoint equation

$$f'_g(t_0) = \lim_{t \to t_0} F_{t_0}(t), \qquad F_{t_0}(\cdot) = \frac{f(\cdot) - f(t_0)}{g(\cdot) - g(t_0)}, \qquad \mathsf{Dom}(F_{t_0})?$$

Linear equation 0000 Adjoint equation

$$f'_{g}(t_{0}) = \lim_{t \to t_{0}} F_{t_{0}}(t), \qquad F_{t_{0}}(\cdot) = \frac{f(\cdot) - f(t_{0})}{g(\cdot) - g(t_{0})}, \qquad \mathsf{Dom}(F_{t_{0}})?$$

Linear equation 0000 Adjoint equation

$$f'_{g}(t_{0}) = \lim_{t \to t_{0}} F_{t_{0}}(t), \qquad F_{t_{0}}(\cdot) = \frac{f(\cdot) - f(t_{0})}{g(\cdot) - g(t_{0})}, \qquad \mathsf{Dom}(F_{t_{0}})?$$

Adjoint equation

The Stieltjes derivative

R. López Pouso, A. Rodríguez, A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives, *Real Anal. Exchange* **40**(2014/15), No. 2, 319–353.

$$\begin{split} & C_g := \{t \in \mathbb{R} : g \text{ is constant in } (t - \varepsilon, t + \varepsilon) \text{ for some } \varepsilon > 0\} \\ & D_g := \{t \in \mathbb{R} : \Delta g(t) := g(t^+) - g(t) > 0\} \end{split}$$

Adjoint equation

The Stieltjes derivative

R. López Pouso, A. Rodríguez, A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives, *Real Anal. Exchange* **40**(2014/15), No. 2, 319–353.

$$C_g := \{t \in \mathbb{R} : g \text{ is constant in } (t - \varepsilon, t + \varepsilon) \text{ for some } \varepsilon > 0\}$$

 $D_g := \{t \in \mathbb{R} : \Delta g(t) := g(t^+) - g(t) > 0\}$

Definition

Define the Stieltjes derivative of $f : \mathbb{R} \to \mathbb{C}$ at $t_0 \in \mathbb{R} \setminus C_g$ as

Linear equation

Adjoint equation

The Stieltjes derivative at discontinuity points

Why that definition at D_g ?

Adjoint equation

The Stieltjes derivative at discontinuity points

Why that definition at D_g ?

• If $t_0 \in D_g$, then $(t_0, +\infty) \subset \text{Dom}(F_{t_0})$, which means that we can always consider the limit from the right.

Adjoint equation

The Stieltjes derivative at discontinuity points

Why that definition at D_g ?

- If $t_0 \in D_g$, then $(t_0, +\infty) \subset \text{Dom}(F_{t_0})$, which means that we can always consider the limit from the right.
- If $Dom(F_{t_0}) = \mathbb{R} \setminus \{t_0\}$ and $\lim_{t \to t_0} F_{t_0}(t)$ exists, so does $\lim_{t \to t_0^+} F_{t_0}(t)$ and they are equal.

The Stieltjes derivative at discontinuity points

Why that definition at D_g ?

- If $t_0 \in D_g$, then $(t_0, +\infty) \subset \text{Dom}(F_{t_0})$, which means that we can always consider the limit from the right.
- If $Dom(F_{t_0}) = \mathbb{R} \setminus \{t_0\}$ and $\lim_{t \to t_0} F_{t_0}(t)$ exists, so does $\lim_{t \to t_0^+} F_{t_0}(t)$ and they are equal.
- This definition allows us to establish a version of the Fundamental Theorem of Calculus.

Adjoint equation

The Stieltjes derivative at discontinuity points

Why that definition at D_g ?

- If $t_0 \in D_g$, then $(t_0, +\infty) \subset \text{Dom}(F_{t_0})$, which means that we can always consider the limit from the right.
- If $Dom(F_{t_0}) = \mathbb{R} \setminus \{t_0\}$ and $\lim_{t \to t_0} F_{t_0}(t)$ exists, so does $\lim_{t \to t_0^+} F_{t_0}(t)$ and they are equal.
- This definition allows us to establish a version of the Fundamental Theorem of Calculus.

Remark

For $t \in D_g$, $f'_g(t)$ exists if and only if $f(t^+)$ exists and, in that case, $f'_g(t) = \frac{f(t^+) - f(t)}{\Delta g(t)}.$

Adjoint equation

Properly understanding the Stieltjes derivative

$$f'_g(t_0) = \lim_{t \to t_0} F_{t_0}(t), \qquad F_{t_0}(\cdot) = \frac{f(\cdot) - f(t_0)}{g(\cdot) - g(t_0)}, \qquad \mathsf{Dom}(F_{t_0})?$$

Adjoint equation

Properly understanding the Stieltjes derivative

$$f'_g(t_0) = \lim_{t \to t_0} F_{t_0}(t), \qquad F_{t_0}(\cdot) = \frac{f(\cdot) - f(t_0)}{g(\cdot) - g(t_0)}, \qquad \mathsf{Dom}(F_{t_0})?$$

The Stieltjes derivative

I. Márquez Albés, Notes on the linear equation with Stieltjes derivatives, *Electron. J. Qual. Theory Differ. Equ.* 42 (2021) 1–18

Since C_g is open, we can write $C_g = \bigcup_{n=1}^{\infty} (a_n, b_n)$. Hence, we can define $N_g^- = \{a_n\}_{n=1}^{\infty} \setminus D_g$ and $N_g^+ = \{b_n\}_{n=1}^{\infty} \setminus D_g$.

Definition

Define the g-derivative of $f:\mathbb{R} o \mathbb{C}$ at $t_0 \in \mathbb{R} \setminus C_g$ as

$$f'_{g}(t_{0}) = \begin{cases} \lim_{t \to t_{0}} \frac{f(t) - f(t_{0})}{g(t) - g(t_{0})}, & t_{0} \notin D_{g} \cup N_{g}^{-} \cup N_{g}^{+}, \\ \lim_{t \to t_{0}^{-}} \frac{f(t) - f(t_{0})}{g(t) - g(t_{0})}, & t_{0} \in N_{g}^{-}, \\ \lim_{t \to t_{0}^{+}} \frac{f(t) - f(t_{0})}{g(t) - g(t_{0})}, & t_{0} \in D_{g} \cup N_{g}^{+}. \end{cases}$$

The Stieltjes derivative: basic properties

Proposition

If f and h are g-differentiable at $t_0 \in \mathbb{R} \setminus C_g$, then • $\alpha f + \beta h$ is g-differentiable at t_0 for any $\alpha, \beta \in \mathbb{R}$ and

$$(\alpha f + \beta h)'_g(t_0) = \alpha f'_g(t_0) + \beta h'_g(t_0).$$

The Stieltjes derivative: basic properties

Proposition

- If f and h are g-differentiable at $t_0 \in \mathbb{R} \setminus C_g$, then
 - $\alpha f + \beta h$ is g-differentiable at t_0 for any $\alpha, \beta \in \mathbb{R}$ and

$$(\alpha f + \beta h)'_g(t_0) = \alpha f'_g(t_0) + \beta h'_g(t_0).$$

•
$$f \cdot h \text{ is } g\text{-differentiable at } t_0 \text{ and}$$

 $(f \cdot h)'_g(t_0) = f'_g(t_0)h(t_0) + h'_g(t_0)f(t_0) + f'_g(t_0)h'_g(t_0)\Delta g(t_0).$
The Stieltjes derivative: basic properties

Proposition

If f and h are g-differentiable at $t_0 \in \mathbb{R} \setminus C_g$, then

• $\alpha f + \beta h$ is g-differentiable at t_0 for any $\alpha, \beta \in \mathbb{R}$ and

$$(\alpha f + \beta h)'_g(t_0) = \alpha f'_g(t_0) + \beta h'_g(t_0).$$

• $f \cdot h$ is g-differentiable at t_0 and

 $(f \cdot h)'_{g}(t_{0}) = f'_{g}(t_{0})h(t_{0}) + h'_{g}(t_{0})f(t_{0}) + \frac{f'_{g}(t_{0})h'_{g}(t_{0})\Delta g(t_{0})}{\Delta g(t_{0})}.$

Proposition

Let f be g-differentiable at $t_0 \in \mathbb{R} \setminus (C_g \cup D_g)$ and let h be differentiable at $f(t_0)$. Then $h \circ f$ is g-differentiable at t_0 and $(h \circ f)'_g(t_0) = h'(f(t_0))f'_g(t_0).$

Adjoint equation

The Lebesgue-Stieltjes integral

The Lebesgue-Stieltjes integral is defined as

$$\int_{\mathcal{A}} f(s) \operatorname{d} g(s) := \int_{\mathcal{A}} f(s) \operatorname{d} \mu_g(s), \quad f \in \mathcal{L}^1_g := \mathcal{L}^1_{\mu_g},$$

The Lebesgue-Stieltjes integral is defined as

$$\int_{\mathcal{A}} f(s) \operatorname{d} g(s) := \int_{\mathcal{A}} f(s) \operatorname{d} \mu_g(s), \quad f \in \mathcal{L}^1_g := \mathcal{L}^1_{\mu_g},$$

by considering the outer measure

$$\mu_g^*(A) = \inf\left\{\sum_{n=1}^\infty (g(b_n) - g(a_n)) : A \subset \bigcup_{n=1}^\infty [a_n, b_n)\right\};$$

The Lebesgue-Stieltjes integral is defined as

$$\int_A f(s) \operatorname{d} g(s) := \int_A f(s) \operatorname{d} \mu_g(s), \quad f \in \mathcal{L}^1_g := \mathcal{L}^1_{\mu_g},$$

by considering the outer measure

$$\mu_g^*(A) = \inf \left\{ \sum_{n=1}^{\infty} (g(b_n) - g(a_n)) : A \subset \bigcup_{n=1}^{\infty} [a_n, b_n) \right\};$$

and its restriction, $\mu_{\mathbf{g}}:=\mu_{\mathbf{g}}^{*}|_{\mathcal{LS}_{\mathbf{g}}},$ to the set

$$\mathcal{LS}_{g} = \{A \subset \mathbb{R} : \mu_{g}^{*}(E) = \mu_{g}^{*}(E \cap A) + \mu_{g}^{*}(E \cap A^{c}), \ E \in \mathcal{P}(\mathbb{R})\}$$

A few remarks on the Lebesgue-Stieltjes measure:

• By construction, $\mu_g([a, b)) = g(b) - g(a)$, a < b.

A few remarks on the Lebesgue-Stieltjes measure:

- By construction, $\mu_g([a, b)) = g(b) g(a)$, a < b.
- We have that $\mu_g(C_g) = 0$.

A few remarks on the Lebesgue-Stieltjes measure:

- By construction, $\mu_g([a, b)) = g(b) g(a)$, a < b.
- We have that $\mu_g(C_g) = 0$.
- · For any $t \in \mathbb{R}$, $\mu_g(\{t\}) = \Delta g(t)$.

A few remarks on the Lebesgue-Stieltjes measure:

- By construction, $\mu_g([a, b)) = g(b) g(a)$, a < b.
- We have that $\mu_g(C_g) = 0$.
- · For any $t \in \mathbb{R}$, $\mu_g(\{t\}) = \Delta g(t)$. In particular,

 $\mu_g(\lbrace t\rbrace) > 0, \quad t \in D_g.$

A few remarks on the Lebesgue-Stieltjes measure:

- By construction, $\mu_g([a, b)) = g(b) g(a)$, a < b.
- We have that $\mu_g(C_g) = 0$.
- · For any $t \in \mathbb{R}$, $\mu_g(\{t\}) = \Delta g(t)$. In particular,

$$\mu_g(\lbrace t\rbrace) > 0, \quad t \in D_g.$$

$$\cdot$$
 For $t\in\mathbb{R}$, $\int_{\{t\}}f(s)\,\mathrm{d}\,g(s)=f(t)\Delta g(t).$

A few remarks on the Lebesgue-Stieltjes measure:

- By construction, $\mu_g([a, b)) = g(b) g(a)$, a < b.
- We have that $\mu_g(C_g) = 0$.
- . For any $t \in \mathbb{R}$, $\mu_g(\{t\}) = \Delta g(t)$. In particular,

$$\mu_g(\lbrace t\rbrace) > 0, \quad t \in D_g.$$

For
$$t \in \mathbb{R}$$
, $\int_{\{t\}} f(s) \, \mathrm{d}\, g(s) = f(t) \Delta g(t).$

In particular, for $t \in D_g$,

$$\int_{\{t\}} f'_g(s) \, \mathrm{d}\, g(s) = f'_g(t) \Delta g(t) = \frac{f(t^+) - f(t)}{\Delta g(t)} \Delta g(t) = f(t^+) - f(t).$$

The Fundamental Theorem of Calculus

R. López Pouso, A. Rodríguez, A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives, *Real Anal. Exchange* **40**(2014/15), No. 2, 319–353.

Theorem

Let $F : [a, b] \rightarrow \mathbb{C}$. Then, the following are equivalent:

(a) F ∈ AC_g([a, b], C), *i.e.*, for every ε > 0, there exists δ > 0 st for every open pairwise disjoint family of subintervals {(a_n, b_n)}^m_{n=1}, ∑^m_{n=1}(g(b_n) - g(a_n)) < δ ⇒ ∑^m_{n=1} |F(b_n) - F(a_n)| < ε.
(b) F'_g(t) exists for g-a.a. t ∈ [a, b), F'_g ∈ L¹_g([a, b), C), and F(t) = F(a) + ∫_{[a,t)} F'_g(s) d g(s), t ∈ [a, b].

Adjoint equation

The Fundamental Theorem of Calculus

R. López Pouso, A. Rodríguez, A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives, *Real Anal. Exchange* **40**(2014/15), No. 2, 319–353.

Theorem

Let $f \in \mathcal{L}^1_g([a, b), \mathbb{C})$. Consider $F : [a, b] \to \mathbb{C}$ given by

$$F(t) = \int_{[a,t)} f(s) \,\mathrm{d}\, g(s).$$

Then $F \in \mathcal{AC}_g([a, b], \mathbb{C})$ and $F'_g(t) = f(t)$ for g-a.a. $t \in [a, b)$.

1 The Stieltjes derivative

2 Linear equation with Stieltjes derivatives

3 Adjoint linear equation with Stieltjes derivatives

Derivative 0000000	Linear equation • 000	Adjoint equation

We consider the following scalar linear problem

$$x'_g(t) = p(t)x(t) + f(t).$$
(SLE)

Derivative 0000000	Linear equation • 000	Adjoint equation

We consider the following scalar linear problem

$$x'_g(t) = p(t)x(t) + f(t).$$
(SLE)

If f = 0, it is homogeneous; otherwise, it is nonhomogeneous.

Derivative 0000000	Linear equation • 000	Adjoint equation

We consider the following scalar linear problem

$$x'_g(t) = p(t)x(t) + f(t).$$
(SLE)

If f = 0, it is homogeneous; otherwise, it is nonhomogeneous.

Definition

A solution of (SLE) in [a, b] is a function $x \in \mathcal{AC}_g([a, b], \mathbb{C})$ st

 $x_g'(t) = p(t)x(t) + f(t), \quad g ext{-a.a.} \ t \in [a,b).$

Derivative 0000000	Linear equation • 000	Adjoint equation

We consider the following scalar linear problem

$$x'_g(t) = p(t)x(t) + f(t).$$
(SLE)

If f = 0, it is homogeneous; otherwise, it is nonhomogeneous.

Definition

A solution of (SLE) in [a, b] is a function $x \in \mathcal{AC}_g([a, b], \mathbb{C})$ st

$$x_g'(t) = p(t)x(t) + f(t), \quad g ext{-a.a.} \ t \in [a,b).$$

Why exclude the point b from the definition of solution?

Derivative 0000000	Linear equation • 000	Adjoint equation

We consider the following scalar linear problem

$$x'_g(t) = p(t)x(t) + f(t).$$
(SLE)

If f = 0, it is homogeneous; otherwise, it is nonhomogeneous.

Definition

A solution of (SLE) in [a, b] is a function $x \in \mathcal{AC}_g([a, b], \mathbb{C})$ st

$$x_g'(t) = p(t)x(t) + f(t), \quad g ext{-a.a.} \ t \in [a,b).$$

Why exclude the point b from the definition of solution?

· If $b \in D_g$, x not defined to the right of b, so $\not\supseteq x'_g(t)$.

Derivative 0000000	Linear equation • 000	Adjoint equation

We consider the following scalar linear problem

$$x'_g(t) = p(t)x(t) + f(t).$$
(SLE)

If f = 0, it is homogeneous; otherwise, it is nonhomogeneous.

Definition

A solution of (SLE) in [a, b] is a function $x \in \mathcal{AC}_g([a, b], \mathbb{C})$ st

$$x'_g(t) = p(t)x(t) + f(t), \quad g$$
-a.a. $t \in [a, b).$

Why exclude the point b from the definition of solution?

- · If $b \in D_g$, x not defined to the right of b, so $\not\supseteq x'_g(t)$.
- · If $b \notin D_g$, $\mu_g(\{b\}) = 0$, so g-a.e. $[a, b] \iff$ g-a.e. [a, b].

Linear equation

Adjoint equation

Homogeneous linear equation

A reasonable solution of the homogeneous equation in [a, b] would be

$$x(t) = \exp\left(\int_{[a,t)} p(s) dg(s)\right), \quad t \in [a,b].$$

Linear equation

Adjoint equation

Homogeneous linear equation

A reasonable solution of the homogeneous equation in [a, b] would be

$$x(t) = \exp\left(\int_{[a,t)} p(s) dg(s)\right), \quad t \in [a,b].$$

For $t \notin D_g \cup C_g$,

$$x'_g(t) = \exp\left(\int_{[a,t)} p(s) \operatorname{d} g(s)\right) \cdot \left(\int_{[a,t)} p(s) \operatorname{d} g(s)\right)'_g = x(t)p(t).$$

Linear equation ○●○○ Adjoint equation

Homogeneous linear equation

A reasonable solution of the homogeneous equation in [a, b] would be

$$x(t) = \exp\left(\int_{[a,t)} p(s) dg(s)\right), \quad t \in [a,b].$$

For $t \notin D_g \cup C_g$,

$$x'_g(t) = \exp\left(\int_{[a,t)} p(s) \operatorname{d} g(s)\right) \cdot \left(\int_{[a,t)} p(s) \operatorname{d} g(s)\right)'_g = x(t)p(t).$$

For $t \in D_g$,

$$x_g'(t) = rac{x(t^+) - x(t)}{\Delta g(t)}$$

Linear equation ○●○○ Adjoint equation

Homogeneous linear equation

A reasonable solution of the homogeneous equation in [a, b] would be

$$x(t) = \exp\left(\int_{[a,t)} p(s) dg(s)\right), \quad t \in [a,b].$$

For $t \notin D_g \cup C_g$,

$$x'_g(t) = \exp\left(\int_{[a,t)} p(s) \operatorname{d} g(s)\right) \cdot \left(\int_{[a,t)} p(s) \operatorname{d} g(s)\right)'_g = x(t)p(t).$$

For $t \in D_g$,

$$x'_{g}(t) = rac{x(t^{+}) - x(t)}{\Delta g(t)} = x(t) rac{e^{\int_{\{t\}} p(s) \, d \, g(s)} - 1}{\Delta g(t)}$$

Linear equation ○●○○ Adjoint equation

Homogeneous linear equation

A reasonable solution of the homogeneous equation in [a, b] would be

$$x(t) = \exp\left(\int_{[a,t)} p(s) dg(s)\right), \quad t \in [a,b].$$

For $t \notin D_g \cup C_g$,

$$x'_g(t) = \exp\left(\int_{[a,t)} p(s) \operatorname{d} g(s)\right) \cdot \left(\int_{[a,t)} p(s) \operatorname{d} g(s)\right)'_g = x(t)p(t).$$

For $t \in D_g$,

$$x'_{g}(t) = rac{x(t^{+}) - x(t)}{\Delta g(t)} = x(t) rac{e^{\int_{\{t\}} p(s) \, \mathrm{d}\, g(s)} - 1}{\Delta g(t)} = x(t) rac{e^{p(t)\Delta g(t)} - 1}{\Delta g(t)}$$

- M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, *Adv. Nonlinear Anal.*
- I. Márquez Albés, Notes on the linear equation with Stieltjes derivatives, *Electron. J. Qual. Theory Differ. Equ.*
- F. J. Fernández, I. Márquez Albés, F. A. F. Tojo, On first and second order linear Stieltjes differential equations, *J. Math. Anal.*

- M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, *Adv. Nonlinear Anal.*
- I. Márquez Albés, Notes on the linear equation with Stieltjes derivatives, *Electron. J. Qual. Theory Differ. Equ.*
- F. J. Fernández, I. Márquez Albés, F. A. F. Tojo, On first and second order linear Stieltjes differential equations, *J. Math. Anal*

Let $p \in \mathcal{L}^1_g([a, b], \mathbb{C})$ be such that

$$1+p(t)\Delta g(t) \neq 0, \quad t \in [a,b) \cap D_g.$$
 (C)

- M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, *Adv. Nonlinear Anal.*
- I. Márquez Albés, Notes on the linear equation with Stieltjes derivatives, *Electron. J. Qual. Theory Differ. Equ.*
- F. J. Fernández, I. Márquez Albés, F. A. F. Tojo, On first and second order linear Stieltjes differential equations, *J. Math. Anal*

Let $p \in \mathcal{L}^1_g([a, b], \mathbb{C})$ be such that

$$1+p(t)\Delta g(t) \neq 0, \quad t \in [a,b) \cap D_g.$$
 (C)

Define $\widetilde{p} \in \mathcal{L}^1_g([a, b), \mathbb{C})$ as

Theorem

Let $p \in \mathcal{L}^1_g([a,b],\mathbb{C})$ be st (C) holds. Then, the map

$$\exp_g(p,t) := \exp\left(\int_{[a,t)} \widetilde{p}(s) dg(s)\right) \quad t \in [a,b],$$

is a solution of the homogeneous problem in [a, b].

Theorem

Let $p \in \mathcal{L}^1_g([a, b], \mathbb{C})$ be st (C) holds. Then, the map

$$\exp_g(p,t) := \exp\left(\int_{[a,t)} \widetilde{p}(s) dg(s)\right) \quad t \in [a,b],$$

is a solution of the homogeneous problem in [a, b].

Theorem

Let $p, f \in \mathcal{L}^1_g([a, b], \mathbb{C})$ be such that (C) holds. Then, the map

$$x(t) = \exp_g(p, t) \left(1 + \int_{[a,t)} \frac{f(s)}{\exp_g(p, s)(1 + p(s)\Delta g(s))} dg(s) \right)$$

is a solution of the (SLE) in [a, b].

2 Linear equation with Stieltjes derivatives

3 Adjoint linear equation with Stieltjes derivatives

Linear equation

Adjoint equation

Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

$$x'_g(t) = p(t)x(t) + f(t), \qquad (SLE)$$

we define the adjoint linear equation with Stieltjes derivatives as

$$x'_{g}(t) = \frac{-\rho(t)}{1 + \rho(t)\Delta g(t)} x(t) + \frac{f(t)}{1 + \rho(t)\Delta g(t)}$$
(ASLE)

Linear equation

Adjoint equation

Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

$$x'_g(t) = p(t)x(t) + f(t), \qquad (SLE)$$

we define the adjoint linear equation with Stieltjes derivatives as

$$x'_{g}(t) = \frac{-\rho(t)}{1 + \rho(t)\Delta g(t)} x(t) + \frac{f(t)}{1 + \rho(t)\Delta g(t)}$$
(ASLE)

An equivalent formulation is

$$x_g'(t)(1+p(t)\Delta g(t))=-p(t)x(t)+f(t).$$

Linear equation

Adjoint equation

Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

$$x'_g(t) = p(t)x(t) + f(t), \qquad (SLE)$$

we define the adjoint linear equation with Stieltjes derivatives as

$$x'_{g}(t) = \frac{-\rho(t)}{1 + \rho(t)\Delta g(t)} x(t) + \frac{f(t)}{1 + \rho(t)\Delta g(t)}$$
(ASLE)

An equivalent formulation is

$$x_g'(t)(1+p(t)\Delta g(t))=-p(t)x(t)+f(t).$$

Observe that (ASLE):

 \cdot requires condition (C) to be well-defined.

Linear equation

Adjoint equation

Adjoint linear equation

Given the equation linear equation with Stieltjes derivatives

$$x'_g(t) = p(t)x(t) + f(t), \qquad (SLE)$$

we define the adjoint linear equation with Stieltjes derivatives as

$$x'_{g}(t) = \frac{-\rho(t)}{1 + \rho(t)\Delta g(t)} x(t) + \frac{f(t)}{1 + \rho(t)\Delta g(t)}$$
(ASLE)

An equivalent formulation is

$$x_g'(t)(1+p(t)\Delta g(t))=-p(t)x(t)+f(t).$$

Observe that (ASLE):

- \cdot requires condition (C) to be well-defined.
- · can be regarded as a particular case of (SLE).

Adjoint equation

Why that definition of adjoint equation?

The adjoint equation of (ASLE) is

$$x'_g(t) = P(t)x(t) + F(t)$$

where

$$P(t) = \frac{-\frac{-p(t)}{1+p(t)\Delta g(t)}}{1+\frac{-p(t)}{1+p(t)\Delta g(t)}\Delta g(t)}$$
$$F(t) = \frac{\frac{f(t)}{1+p(t)\Delta g(t)}}{1+\frac{-p(t)}{1+p(t)\Delta g(t)}\Delta g(t)}$$

Adjoint equation

Why that definition of adjoint equation?

The adjoint equation of (ASLE) is

$$x'_g(t) = P(t)x(t) + F(t)$$

where

$$P(t) = \frac{-\frac{-p(t)}{1+p(t)\Delta g(t)}}{1+\frac{-p(t)}{1+p(t)\Delta g(t)}\Delta g(t)} = p(t)$$
$$F(t) = \frac{\frac{f(t)}{1+p(t)\Delta g(t)}}{1+\frac{-p(t)}{1+p(t)\Delta g(t)}\Delta g(t)} = f(t)$$
Adjoint equation

Why that definition of adjoint equation?

The adjoint equation of (ASLE) is

$$x'_g(t) = P(t)x(t) + F(t)$$

where

$$P(t) = \frac{-\frac{-\rho(t)}{1+\rho(t)\Delta g(t)}}{1+\frac{-\rho(t)}{1+\rho(t)\Delta g(t)}\Delta g(t)} = \rho(t)$$
$$F(t) = \frac{\frac{f(t)}{1+\rho(t)\Delta g(t)}}{1+\frac{-\rho(t)}{1+\rho(t)\Delta g(t)}\Delta g(t)} = f(t)$$

Naturally, this is not enough to justify calling (ASLE) the adjoint equation as other equations satify that (e.g. $x'_g = -px + h$).

Linear operators

The equation (SLE) can be rewritten in the form Lx = f for the linear operator $L : \mathcal{AC}_g([a, b], \mathbb{C}) \to \mathcal{L}^1_g([a, b], \mathbb{C})$ defined as

 $Lu(t) = u'_g(t) - p(t)u(t), \quad g$ -a.a. $t \in [a, b).$

Linear operators

The equation (SLE) can be rewritten in the form Lx = f for the linear operator $L : \mathcal{AC}_g([a, b], \mathbb{C}) \to \mathcal{L}^1_g([a, b], \mathbb{C})$ defined as

 $Lu(t) = u'_g(t) - p(t)u(t), \quad g$ -a.a. $t \in [a, b).$

For (ASLE) we have two options.

Linear operators

The equation (SLE) can be rewritten in the form Lx = f for the linear operator $L : \mathcal{AC}_g([a, b], \mathbb{C}) \to \mathcal{L}^1_g([a, b], \mathbb{C})$ defined as

 $Lu(t) = u'_g(t) - p(t)u(t), \quad g$ -a.a. $t \in [a, b).$

For (ASLE) we have two options. If we rewrite it as $\widehat{L}x = \frac{f}{1+p\Delta g}$

If we want to rewrite it as $L^*x = f$

Linear operators

The equation (SLE) can be rewritten in the form Lx = f for the linear operator $L : \mathcal{AC}_g([a, b], \mathbb{C}) \to \mathcal{L}^1_g([a, b], \mathbb{C})$ defined as

$$Lu(t) = u'_g(t) - p(t)u(t), \quad g$$
-a.a. $t \in [a, b).$

For (ASLE) we have two options. If we rewrite it as $\widehat{L}x = \frac{f}{1+p\Delta g}$, we consider $\widehat{L} : \mathcal{AC}_g([a, b], \mathbb{C}) \to \mathcal{L}^1_g([a, b], \mathbb{C})$ given by

$$\widehat{L} v(t) = v_g'(t) + rac{p(t)}{1+p(t)\Delta g(t)}v(t), \quad g ext{-a.a.} \ t\in [a,b).$$

If we want to rewrite it as $L^*x = f$

Linear operators

The equation (SLE) can be rewritten in the form Lx = f for the linear operator $L : \mathcal{AC}_g([a, b], \mathbb{C}) \to \mathcal{L}^1_g([a, b], \mathbb{C})$ defined as

$$Lu(t) = u'_g(t) - p(t)u(t), \quad g$$
-a.a. $t \in [a, b).$

For (ASLE) we have two options. If we rewrite it as $\widehat{L}x = \frac{f}{1+p\Delta g}$, we consider $\widehat{L} : \mathcal{AC}_g([a, b], \mathbb{C}) \to \mathcal{L}_g^1([a, b], \mathbb{C})$ given by

$$\widehat{L} v(t) = v_g'(t) + rac{p(t)}{1+p(t)\Delta g(t)}v(t), \quad g ext{-a.a.} \ t\in [a,b).$$

If we want to rewrite it as $L^*x = f$, we must consider the map $L^* : \mathcal{AC}_g([a, b], \mathbb{C}) \to \mathcal{L}^1_g([a, b], \mathbb{C})$ defined as

 $L^*v(t) = v_g'(t)(1+p(t)\Delta g(t)) + p(t)v(t), \quad g ext{-a.a.} \ t\in [a,b).$

Adjoint equation

Lagrange's identity

I. Márquez Albés, A. Slavík, M. Tvrdý, Duality for Stieltjes differential and integral equations, submitted for publication.

Theorem (Lagrange's identity)

Given $x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$, we have that for g-a.a. $t \in [a, b)$ $(x \cdot y)'_g(t) = (y(t) + y'_g(t)\Delta g(t)) Lx(t) + x(t)L^*y(t).$

Lagrange's identity

I. Márquez Albés, A. Slavík, M. Tvrdý, Duality for Stieltjes differential and integral equations, submitted for publication.

Theorem (Lagrange's identity)

Given $x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$, we have that for g-a.a. $t \in [a, b)$ $(x \cdot y)'_g(t) = (y(t) + y'_g(t)\Delta g(t)) Lx(t) + x(t)L^*y(t).$

Remark

Since $L^* = (1 + p\Delta g)\widehat{L}$, we also have that for g-a.a. $t \in [a, b)$ $(x \cdot y)'_g(t) = (y(t) + y'_g(t)\Delta g(t))Lx(t) + (1 + p(t)\Delta g(t))x(t)\widehat{L}y(t).$

Lagrange's identity: proof

Proof.

Let $x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$. There exists $N \subset [a, b)$ st $\mu_g(N) = 0$ and $x'_g(t), y'_g(t)$ exist for $t \in [a, b) \setminus N$.

Lagrange's identity: proof

Proof.

Let $x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$. There exists $N \subset [a, b)$ st $\mu_g(N) = 0$ and $x'_g(t), y'_g(t)$ exist for $t \in [a, b) \setminus N$. For $t \in [a, b) \setminus N$,

$$\begin{aligned} (xy)'_{g}(t) &= x'_{g}(t)y(t) + y'_{g}(t)x(t) + x'_{g}(t)y'_{g}(t)\Delta g(t) \\ &= x'_{g}(t)\left(y(t) + y'_{g}(t)\Delta g(t)\right) + y'_{g}(t)x(t) \end{aligned}$$

Lagrange's identity: proof

Proof.

Let $x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$. There exists $N \subset [a, b)$ st $\mu_g(N) = 0$ and $x'_g(t), y'_g(t)$ exist for $t \in [a, b) \setminus N$. For $t \in [a, b) \setminus N$,

$$\begin{aligned} (xy)'_{g}(t) &= x'_{g}(t)y(t) + y'_{g}(t)x(t) + x'_{g}(t)y'_{g}(t)\Delta g(t) \\ &= x'_{g}(t)\left(y(t) + y'_{g}(t)\Delta g(t)\right) + y'_{g}(t)x(t) \end{aligned}$$

Adding and subtracting $p(t)x(t)(y(t) + y'_g(t)\Delta g(t))$,

Lagrange's identity: proof

Proof.

Let $x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$. There exists $N \subset [a, b)$ st $\mu_g(N) = 0$ and $x'_g(t), y'_g(t)$ exist for $t \in [a, b) \setminus N$. For $t \in [a, b) \setminus N$,

$$(xy)'_{g}(t) = x'_{g}(t)y(t) + y'_{g}(t)x(t) + x'_{g}(t)y'_{g}(t)\Delta g(t)$$

= $x'_{g}(t)(y(t) + y'_{g}(t)\Delta g(t)) + y'_{g}(t)x(t)$

Adding and subtracting $p(t)x(t)(y(t) + y'_g(t)\Delta g(t))$,

$$\begin{aligned} (xy)'_{g}(t) &= (y(t) + y'_{g}(t)\Delta g(t)) \left(x'_{g}(t) - p(t)x(t)\right) \\ &+ x(t) \left(y'_{g}(t)(1 + p(t)\Delta g(t))) + p(t)y(t)\right) \\ &= \left(y(t) + y'_{g}(t)\Delta g(t)\right) Lx(t) + x(t)L^{*}y(t) \end{aligned}$$

Lagrange's identity: consequences I

Theorem

If $x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$ are st $Lx = L^*y = 0$ g-a.e. in [a, b), then $x(t)y(t) = x(a)y(a), \quad t \in [a, b].$

Lagrange's identity: consequences I

Theorem

If
$$x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$$
 are st $Lx = L^*y = 0$ g-a.e. in $[a, b)$, then
 $x(t)y(t) = x(a)y(a), \quad t \in [a, b].$

Proof.

We can find $N \subset [a, b)$ st $\mu_g(N) = 0$ and, for $t \in [a, b) \setminus N$,

$$Lx(t) = L^*y(t) = 0,$$

(x \cdot y)'_g(t) = (y(t) + y'_g(t)\Delta g(t)) Lx(t) + x(t)L^*y(t).

Lagrange's identity: consequences I

Theorem

If
$$x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$$
 are st $Lx = L^*y = 0$ g-a.e. in $[a, b)$, then
 $x(t)y(t) = x(a)y(a), \quad t \in [a, b].$

Proof.

We can find $N \subset [a, b)$ st $\mu_g(N) = 0$ and, for $t \in [a, b) \setminus N$,

$$Lx(t) = L^*y(t) = 0,$$

(x \cdot y)'_g(t) = (y(t) + y'_g(t)\Delta g(t)) Lx(t) + x(t)L^*y(t).

Thus, $(x \cdot y)'_{g}(t) = 0$ g-a.e. in [a, b].

Lagrange's identity: consequences I

Theorem

If
$$x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$$
 are st $Lx = L^*y = 0$ g-a.e. in $[a, b)$, then
 $x(t)y(t) = x(a)y(a), \quad t \in [a, b].$

Proof.

We can find
$$N \subset [a, b)$$
 st $\mu_g(N) = 0$ and, for $t \in [a, b) \setminus N$,

$$Lx(t) = L^*y(t) = 0,$$

(x \cdot y)'_g(t) = (y(t) + y'_g(t)\Delta g(t)) Lx(t) + x(t)L^*y(t).

Thus, $(x \cdot y)'_g(t) = 0$ g-a.e. in [a, b). Since $x \cdot y \in \mathcal{AC}_g([a, b], \mathbb{C})$,

$$x(t)y(t) = x(a)y(a) + \int_{[a,t)} (x \cdot y)'_g(t) dg(s) = x(a)y(a).$$

Lagrange's identity: consequences II

Theorem

Let
$$x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$$
 be st $xy = \alpha \in \mathbb{C} \setminus \{0\}$ in $[a, b]$.
 \cdot If $Lx(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $L^*y(t) = 0$ g-a.a. $t \in [a, b)$.
 \cdot If $L^*y(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $Lx(t) = 0$ g-a.a. $t \in [a, b)$.

Lagrange's identity: consequences II

Theorem

Let
$$x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$$
 be st $xy = \alpha \in \mathbb{C} \setminus \{0\}$ in $[a, b]$
 \cdot If $Lx(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $L^*y(t) = 0$ g-a.a. $t \in [a, b)$.
 \cdot If $L^*y(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $Lx(t) = 0$ g-a.a. $t \in [a, b)$.

Proof.

Since $x(t)y(t) = \alpha$, $(x \cdot y)'_g(t) = 0$. Hence, by Lagrange's identity, $0 = (x \cdot y)'_g(t) = (y(t) + y'_g(t)\Delta g(t)) Lx(t) + x(t)L^*y(t),$

Lagrange's identity: consequences II

Theorem

Let
$$x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$$
 be st $xy = \alpha \in \mathbb{C} \setminus \{0\}$ in $[a, b]$
 \cdot If $Lx(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $L^*y(t) = 0$ g-a.a. $t \in [a, b)$.
 \cdot If $L^*y(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $Lx(t) = 0$ g-a.a. $t \in [a, b)$.

Proof.

Since $x(t)y(t) = \alpha$, $(x \cdot y)'_g(t) = 0$. Hence, by Lagrange's identity, $0 = (x \cdot y)'_g(t) = (y(t) + y'_g(t)\Delta g(t)) Lx(t) + x(t)L^*y(t)$, so if Lx(t) = 0 and $x(t) \neq 0$, we must have that $L^*y(t) = 0$. \Box

Lagrange's identity: consequences II

Theorem

Let
$$x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$$
 be st $xy = \alpha \in \mathbb{C} \setminus \{0\}$ in $[a, b]$.
 \cdot If $Lx(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $L^*y(t) = 0$ g-a.a. $t \in [a, b)$.
 \cdot If $L^*y(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $Lx(t) = 0$ g-a.a. $t \in [a, b)$.

Proof.

If
$$L^*y(t) = 0$$
, we get $(y(t) + y_g'(t)\Delta g(t))Lx(t) = 0$.

Lagrange's identity: consequences II

Theorem

Let
$$x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$$
 be st $xy = \alpha \in \mathbb{C} \setminus \{0\}$ in $[a, b]$.
 \cdot If $Lx(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $L^*y(t) = 0$ g-a.a. $t \in [a, b)$.
 \cdot If $L^*y(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $Lx(t) = 0$ g-a.a. $t \in [a, b)$.

Proof.

If
$$L^*y(t) = 0$$
, we get $(y(t) + y'_g(t)\Delta g(t))Lx(t) = 0$. Since $L^*y(t) = 0$, we have that $y'_g(t) = -\frac{p(t)}{1+p(t)\Delta g(t)}y(t)$ which implies that $\frac{y(t)}{1+p(t)\Delta g(t)}Lx(t) = 0$.

Lagrange's identity: consequences II

Theorem

Let
$$x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$$
 be st $xy = \alpha \in \mathbb{C} \setminus \{0\}$ in $[a, b]$.
 \cdot If $Lx(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $L^*y(t) = 0$ g-a.a. $t \in [a, b)$.
 \cdot If $L^*y(t) = 0$ for g-a.a. $t \in [a, b)$, then
 $Lx(t) = 0$ g-a.a. $t \in [a, b)$.

Proof.

If
$$L^*y(t) = 0$$
, we get $(y(t) + y'_g(t)\Delta g(t))Lx(t) = 0$. Since $L^*y(t) = 0$, we have that $y'_g(t) = -\frac{p(t)}{1+p(t)\Delta g(t)}y(t)$ which implies that $\frac{y(t)}{1+p(t)\Delta g(t)}Lx(t) = 0$. Thus, if $y(t) \neq 0$, $Lx(t) = 0$.

Adjoint equation

Lagrange's identity: consequences III

Given that $L^* = (1 + p\Delta g)\widehat{L}$, we can obtain the following result.

Theorem

Let $x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$. Then, the following hold: \cdot If $Lx = \widehat{L}y = 0$ g-a.e. in [a, b), then

 $x(t)y(t) = x(a)y(a), \quad g$ -a.a. $t \in [a, b).$

Lagrange's identity: consequences III

Given that $L^* = (1 + p\Delta g)\widehat{L}$, we can obtain the following result.

Theorem

Let $x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$. Then, the following hold: \cdot If $Lx = \widehat{L}y = 0$ g-a.e. in [a, b), then x(t)y(t) = x(a)y(a), g-a.a. $t \in [a, b)$. \cdot If Lx(t) = 0 for g-a.a. $t \in [a, b)$, then $\widehat{L}y(t) = 0$, g-a.a. $t \in [a, b]$.

Lagrange's identity: consequences III

Given that $L^* = (1 + p\Delta g)\widehat{L}$, we can obtain the following result.

Theorem

Let $x, y \in \mathcal{AC}_g([a, b], \mathbb{C})$. Then, the following hold: \cdot If $Lx = \widehat{L}y = 0$ g-a.e. in [a, b), then x(t)y(t) = x(a)y(a), g-a.a. $t \in [a, b)$. \cdot If Lx(t) = 0 for g-a.a. $t \in [a, b)$, then $\widehat{L}y(t) = 0$, g-a.a. $t \in [a, b]$. \cdot If $\widehat{L}y(t) = 0$ for g-a.a. $t \in [a, b)$, then Lx(t) = 0, g-a.a. $t \in [a, b)$. Derivative 0000000 Linear equation

Adjoint equation

Lagrange's identity: consequences IV

From Lipschitz's uniqueness criterion for IVP, we obtain:

Proposition

Let $x_a, y_a \in \mathbb{C}$. The unique solution of Lx = 0, $x(a) = x_a$, is

$$x(t) = x_a \exp_g(p, t), \quad t \in [a, b].$$

Derivative 0000000 Linear equation

Adjoint equation

Lagrange's identity: consequences IV

From Lipschitz's uniqueness criterion for IVP, we obtain:

Proposition

Let $x_a, y_a \in \mathbb{C}$. The unique solution of Lx = 0, $x(a) = x_a$, is $x(t) = x_a \exp_g(p, t), \quad t \in [a, b].$ The unique solution of $\widehat{L}y = 0$, $y(a) = y_a$, is $y(t) = y_a \exp_g(p, t)^{-1}, \quad t \in [a, b].$ Derivative 0000000 Linear equation

Adjoint equation

Lagrange's identity: consequences IV

From Lipschitz's uniqueness criterion for IVP, we obtain:

Proposition

Let $x_a, y_a \in \mathbb{C}$. The unique solution of Lx = 0, $x(a) = x_a$, is $x(t) = x_a \exp_g(p, t), \quad t \in [a, b].$ The unique solution of $\widehat{L}y = 0$, $y(a) = y_a$, is

$$y(t) = y_a \exp_g(p, t)^{-1}, \quad t \in [a, b].$$

Corollary

For g-a.a.
$$t \in [a, b]$$
,
 $\exp_g(p, t)^{-1} = \exp_g\left(-rac{p}{1+p\Delta g}, t\right).$

Adjoint equation

Relations with other adjoint problems I

The pair of equations

$$\begin{aligned} x'_g(t) &= p(t)x(t) + f(t), \\ x'_g(t) &= \frac{-p(t)}{1 + p(t)\Delta g(t)}x(t) + \frac{f(t)}{1 + p(t)\Delta g(t)} \end{aligned} \tag{SLE}$$

is a generalization of the usual pair of adjoint linear ODEs.

Adjoint equation

Relations with other adjoint problems I

The pair of equations

$$\begin{aligned} x'_g(t) &= p(t) x(t) + f(t), \\ x'_g(t) &= \frac{-p(t)}{1 + p(t) \Delta g(t)} x(t) + \frac{f(t)}{1 + p(t) \Delta g(t)} \end{aligned} \tag{SLE}$$

is a generalization of the usual pair of adjoint linear ODEs. Indeed, for g(t) = t, we have that $\Delta g(t) = 0$, $t \in \mathbb{R}$, so we get

$$x'(t) = p(t)x(t) + f(t),$$

 $x'(t) = -p(t)x(t) + f(t)$

Adjoint equation

Relations with other adjoint problems II

The next natural question is: are (SLE)-(ASLE) a generalization of the corresponding dynamic equations?

$$x^{\Delta}(t) = p(t)x(t) + f(t)$$
(DLE)
$$y^{\Delta}(t) = -p(t)y(\sigma(t)) + f(t)$$
(ADLE)

with $\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}.$

Relations with other adjoint problems II

The next natural question is: are (SLE)-(ASLE) a generalization of the corresponding dynamic equations?

$$x^{\Delta}(t) = p(t)x(t) + f(t)$$
(DLE)
$$y^{\Delta}(t) = -p(t)y(\sigma(t)) + f(t)$$
(ADLE)

with $\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}$. This is partially covered in

- M. Frigon, R. López Pouso, Theory and applications of first-order systems of Stieltjes differential equations, *Adv. Nonlinear Anal.* 6(2017), No. 1, 13–36.
- I. Márquez Albés, Differential problems with Stieltjes derivatives and applications, Ph.D. thesis, Universidade de Santiago de Compostela, 2021.

Relations with other adjoint problems III

Time scales and Stieltjes calculus are equivalent for

$$g(t) = \inf\{s \in \mathbb{T} : s \ge t\},$$

in which case, the two derivatives are equal. Thus, (SLE) and (DLE) are equivalent.

Relations with other adjoint problems III

Time scales and Stieltjes calculus are equivalent for

$$g(t) = \inf\{s \in \mathbb{T} : s \ge t\},$$

in which case, the two derivatives are equal. Thus, (SLE) and (DLE) are equivalent. Noting that, for $x \in \mathcal{AC}_g([a, b], \mathbb{C})$,

$$x'_g(t)(1 + p(t)\Delta g(t)) = x'_g(t) + p(t)(x(t^+) - x(t)),$$

Relations with other adjoint problems III

Time scales and Stieltjes calculus are equivalent for

$$g(t) = \inf\{s \in \mathbb{T} : s \ge t\},$$

in which case, the two derivatives are equal. Thus, (SLE) and (DLE) are equivalent. Noting that, for $x \in \mathcal{AC}_{g}([a, b], \mathbb{C})$,

$$x'_{g}(t)(1 + p(t)\Delta g(t)) = x'_{g}(t) + p(t)(x(t^{+}) - x(t)),$$

we see that (ASLE) can be rewritten as

$$x'_g(t) = -p(t)x(t^+) + f(t),$$

from which it is easy to check that it is equivalent to (ADLE).

Adjoint first order linear equations with Stieltjes derivatives and Lagrange's identity

Ignacio Márquez Albés

ignacio.marquez@usc.es

Departamento de Estatística, Análise Matemática e Optimización

Facultade de Matemáticas, Universidade de Santiago de Compostela.

1 June 2022