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In this talk, a model for suspension bridge-type structures with
piers 1s considered. The model encompasses a coupled dynamics
involving longitudinal u(z,t?) and torsional #(x,t) oscillations. Focus-
ing the dynamics on a single specific Fourier component for both
the variables, a coupled system of ODEs is obtained. For this latter
system, we discuss the occurrence of a possible rich and complex
dynamics, including infinitely many periodic solutions (harmonic
and subharmonic ), for the longitudinal time-component, when the
torsional one is small. This goal is achieved by applying a rigorous
analytical approach, based on the theory of linked twist maps.
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1. Subharmonic solutions

Let us consider a non-autonomous periodic differential systems in
Rd

(S1) z=F(t,z),

for © = (z1,...,29) € R and F : R x Q — R? a sufficiently regular

vector field which is 7T-periodic in the t-variable.
Here 2 C R? is an open domain.

Definition 1 By a subharmonic solution of order m > 2, to system
(S1), we mean a mT-periodic solution of the system which is not
kT-periodic for all integers k c{1,...,m — 1}.




There are different definitions of the concept of “subharmonic so-
lution”.

For instance, in

|[J Mawhin, M. Willem, Critical point theory and Hamziltonian sys-
tems, Applied Mathematical Sciences, 74, Springer-Verlag, New
York, 1989]

a subharmonic is meant in the sense that the solution is m7-periodic
for some m > 2 and its minimal period is strictly greater than 7.




There are different definitions of the concept of “subharmonic so-
lution”.

For instance, in

|[J Mawhin, M. Willem, Critical point theory and Hamziltonian sys-
tems, Applied Mathematical Sciences, 74, Springer-Verlag, New
York, 1989]

a subharmonic is meant in the sense that the solution is m7-periodic
for some m > 2 and its minimal period is strictly greater than 7.
However, in many cases, the two concepts coincide.
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Let g : J — R be a locally Lipschitz continuous function defined on
an open interval J C R and let p : R —+ R be a continuous ' and
T-periodic function having 7" as minimal period.

Lwe could assume weaker regularity conditions on p; indeed, p € L(0,T') would be sufficient.



A typical example is the following.

Let g : J — R be a locally Lipschitz continuous function defined on
an open interval J C R and let p : R —+ R be a continuous ' and
T-periodic function having 7" as minimal period.

Then, any m-th order subharmonic of the scalar equation

(D1) u” + g(u) = p(t)

has m7 as minimal period.

lwe could assume weaker regularity conditions on p; indeed, p € L'(0,T) would be sufficient.




Indeed, if u is a mT-periodic solution of equation (D1) (or, equiva-
lently, system 2/ =y, v = —g(x) + p(t)), then @ has a minimal period,
say 7. Hence u”(t) 4+ g(u(t)) = p(t) is 7-periodic and, being T" the min-
imal period of p(:), we find that 7 = kT for some integer k¥ > 1. By
our hypothesis, u is mT-periodic but not kT-periodic for any integer
1 <k<m-—1. Hence 7 = mT.




Indeed, if u is a mT-periodic solution of equation (D1) (or, equiva-
lently, system 2/ =y, v = —g(x) + p(t)), then @ has a minimal period,
say 7. Hence u”(t) 4+ g(u(t)) = p(t) is 7-periodic and, being T" the min-
imal period of p(:), we find that 7 = kT for some integer k¥ > 1. By
our hypothesis, u is mT-periodic but not kT-periodic for any integer
1 <k<m-—1. Hence 7 = mT.

However, the problem of the minimality of the period could be very
complicated.




For instance, for d =2, in

[V.A Pliss, Nonlocal problems of the theory of oscillations, Trans-
lated from the Russian by Scripta Technica, Inc. Academic Press,
New York-London 1966|

there is an example (attributed to Erugin, 1956) of a system (S1)
with F I'-periodic in the t-variable, possessing a solution which is
T-periodic with T/7 ¢ Q.




For instance, for d = 2, in

[V.A Pliss, Nonlocal problems of the theory of oscillations, Trans-
lated from the Russian by Scripta Technica, Inc. Academic Press,
New York-London 1966|

there is an example (attributed to Erugin, 1956) of a system (S1)
with F I'-periodic in the t-variable, possessing a solution which is
T-periodic with T/7 ¢ Q.

See also

|A. Cima, A. Gasull, F. Manosas, Periods of solutions of periodic
differential equations, Differential Integral Equations 29 (2016),
905—922]

for a more recent study on this topic.
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Among the different approaches considered to prove the existence
of subharmonic solutions to system (S1), three main ones are the
following:

M Variational methods / critical point theory

M Topological degree theory / Fixed point index theory in
function spaces

M Fixed points / Periodic points concerning the Poincaré
map




T ——
Variational methods / critical point theory



T ——
Variational methods / critical point theory

P.H. Rabinowitz, On subharmonic solutions of Hamiltonian sys-
tems. Comm. Pure Appl. Math. 33 (1980), 609—633]

On Subharmonic Solutions of Hamiltonian Systems™

PAUL H. RABINOWITZ

University of Wisconsin

Introduction
Consider the Hamiltonian system of ordinary differential equations

[ o)

where zeR*" and H is T periodic in t. It is then natural to seek T periodic
solutions of (0.1). Since H is kT periodic for all k€N, one can also search for
kT periodic solutions (called subharmonics). This latter quest is complicated
by the fact that any T periodic solution is a fortiori kT periodic. Thus an
additional argument is required to show that any subharmonics are indeed
distinct. Our main goal in this paper is to obtain the existence of subharmonic
solutions for certain Hamiltonian systems which are either sub- or superquad-
ratic, 1.e., which grow either less or more rapidly than quadratically at o in an
appropriate sense.

(0.1) z=%H,(t, z), j=(
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|C. Conley, E. Zehnder, Subharmonic solutions and Morse theory,

Phys. A 124 (1984), 649—657]

[R. Michalek, G. Tarantello, Subharmonic solutions with prescribed
minimal period for nonautonomous Hamiltonian systems, J. Dzif-
ferential Equations 72 (1988), 28—55]

|A. Fonda, M. Ramos, M. Willem, Subharmonic solutions for second
order differential equations, Topol. Methods Nonlinear Anal. 1
(1993), 49-66]

|[E. Serra, M. Tarallo, S. Terracini, Subharmonic solutions to second-
order differential equations with periodic nonlinearities, Nonlinear
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...a huge literature ...
|C. Conley, E. Zehnder, Subharmonic solutions and Morse theory,

Phys. A 124 (1984), 649—657]
[R. Michalek, G. Tarantello, Subharmonic solutions with prescribed
minimal period for nonautonomous Hamiltonian systems, J. Dzif-

ferential Equations 72 (1988), 28—55]
|A. Fonda, M. Ramos, M. Willem, Subharmonic solutions for second

order differential equations, Topol. Methods Nonlinear Anal. 1
(1993), 49-66]

|[E. Serra, M. Tarallo, S. Terracini, Subharmonic solutions to second-
order differential equations with periodic nonlinearities, Nonlinear

Anal. 41 (2000), 649—667]

Apologies for the missing citations !
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Topological degree theory / Fixed point index theory in function
spaces

|G. Feltrin, F.Z., Multiplicity of positive periodic solutions in the
superlinear indefinite case via coincidence degree, J. Differential
Equations 262 (2017), 4255—4291]

|A. Boscaggin, G. Feltrin, F.Z., Positive solutions for super-sublinear
indefinite problems: high multiplicity results via coincidence de-
gree, Trans. Amer. Math. Soc. 370(2018), 791-845]

|A. Boscaggin, G. Feltrin, Positive periodic solutions to an indefi-
nite Minkowski-curvature equation, J. Differential Equations 269
(2020), 5595-5645|

|A. Boscaggin, G. Feltrin, E. Sovrano, High multiplicity and chaos
for an indefinite problem arising from genetic models, Adv. Non-
linear Stud. 20 (2020), 675—699]
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Citations From References: 1 From Reviews: 0

MR4212385 34K13 47A11

Amster, Pablo (RA-UBAS); Benevieri, Pierluigi (BR-SPL-IMS);

Haddad, Julidn [Haddad, Julidn E.] (BR-FMGS)

Periodic positive solutions of superlinear delay equations via topological degree.
(English summary)

Philos. Trans. Roy. Soc. A 379 (2021), no. 2191, Paper No. 20190373, 18 pp.

In this paper, the authors establish criteria for the existence of positive periodic solutions
of nonlinear delay differential equations of the form

—u(t) = f(u(t), u(t —7),u'(t)).

Their approach is based on Mawhin’s coincidence degree theory. The results are then
applied to the equation —u"(t) = a(t)g(u(t),u(t — 7)), where g satisfies superlinear
growth conditions and a is periodic and sign changing. The work in this paper can be
regarded as an extension to that of G. Feltrin and F. Zanolin [Adv. Differential Equa-
tions 20 (2015), no. 9-10, 937-982; MR3360396] for the ordinary differential equation
—u" (t) = a(t)g(u(t)). Qingkai Kong

(© Copyright American Mathematical Society 2022
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For system

(S1) r = F(t,z)

we assume the uniqueness and the global existence the solutions to
the associated Cauchy problems.

IM.A. Krasnosel’skii, The operator of translation along the tra-
jectories of differential equations, Translations of Mathematical
Monographs, Vol. 19, American Mathematical Society, Providence,

R.I. 1968]

Let ((-; P) be the solution of system (S1) with x(0) = P € (.
Then, for any fixed 7, the map &/ : () — (), with

i (P) = ((1; P),

is well defined as a homeomorphism.
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The map
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is usually called the Poincaré map associated with (51).
By the T-periodicity of F with respect to the t-variable, we have
that
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m~times
Fixed points of ¢ correspond to initial points of 7T-periodic solutions
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The map
® = o
is usually called the Poincaré map associated with (51).
By the T-periodicity of F with respect to the t-variable, we have

that

@6”T2<Dm —PoPo---0@
m~times
Fixed points of ® correspond to initial points of T-periodic solutions
of (51).

A periodic point of period m > 2 to ¢ corresponds to a periodic
solution of (51) of period mT.
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General speaking, the search of subharmonic solutions to system
(S1) can be split into two parts.

B (1) Prove the existence of a mT-periodic solution, or,
equivalently, a m-periodic point » to ¢

M (2) Prove that m is minimal in the set {1,...,m}, or,
equivalently, that ®%(2) # 2 for k=1,...,m —1

To obtain (1), we use a fixed point theorem for the map o™

To obtain (2), we need some information on the fixed points, in order
to distinguish the “truly” periodic points from the fixed points of
D,



2. The planar case



2. The planar case

We consider now a planar differential system

=Xy, y=Y(wxy), (1)

where the vector field F (z,y) — (X(t,x,y),Y(t,x,y)) is T-periodic
in the t-variable. Recall that, by a subharmonic solution of order
m > 2, we mean a m/I-periodic solution to system (1) which is not £7T-
periodic for all integers k € {1,...,m —1}. Such solutions correspond

to periodic points of the associated Poincaré map ¢, having m as a
minimal period.
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I will briefly present two different approaches to this problem, an-
alyzing then in more detail some topological methods and their
applications to nonlinear second-order ODEs,

W The Poincaré-Birkhoff fixed point theorem

W Topological horseshoes 1n the setting of the Linked Twist
Maps

There is also a third approach based on a bifurcation type method
and dealing with systems of the form

v = Xo(z,y) +ep(t), ¢ =Yo(r,y)+eq(t), (2)

that 1s not considered here for time limitations.



John Guckenheimer
Philip Holmes

Applied - Nonlinear
Matlematical ' Oscillations,
42 Dynamical
Systems,
and Bifurcations
of Vector Fields

M. Henrard, F.Z., Bifurcation from a periodic orbit in perturbed
planar Hamiltonian systems, J. Math. Anal. Appl. 277 (2003),
79-103]

[A. Buica, Bifurcations from a normally degenerate cycle in forced
planar differential equations, NoDFEA Nonlinear Differential Equa-
ttons Appl. 30 (2023), Paper No. 63, 18 pp.]
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The Poincaré-Birkhoff fixed point
theorem

The Poincaré—Birkhoff fixed point theorem, named also the “twist
theorem” or the ‘“Poincaré’s last geometric theorem”, in the orig-
inal formulation [Poincaré (1912), Birkhoff (1913)], asserts the ex-
istence of at least two fixed points for an area-preserving homeo-
morphism ¢ of a planar circular annulus

Ala,b] = {(z,y) 1 a” < 2" +y° < b7}

onto itself, such that the points of the inner boundary C, are ad-
vanced along C, in the clockwise sense and the points of the outer
boundary () are advanced along () in the counter-clockwise sense
(or, viceversa).




The next figure shows the effect of the twist on the annulus A[l, 2
under the action of the dynamical system

v’ = 2py(a” + )
y' = —2px(a” + )

for p > 1, on a short time interval.
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In 1913 George D. Birkhoff with an ingenious application of the
index of a vector field along a curve, gave a proof of the existence
of a fixed point.

|G. D. Birkhoff, Proof of Poincaré’s geometric theorem, Trans.
Amer. Math. Soc. 14 (1913), 14-22]




This remarkable result, conjectured by Henri Poincaré, was pub-
lished (by him with some reluctance) in 1912, the year of his death.
[H. Poincaré, Sur un théoréeme de géométrie, Rend. Circ. Mat.
Palermo 33 (1912), 375—407]

In 1913 George D. Birkhoff with an ingenious application of the
index of a vector field along a curve, gave a proof of the existence
of a fixed point.

|G. D. Birkhoff, Proof of Poincaré’s geometric theorem, Trans.
Amer. Math. Soc. 14 (1913), 14-22]

|G. D. Birkhoff, Dynamical Systems, Amer. Math. Soc., New
York, 1927]
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planation how to obtain a second fixed point, by suitably modify-
ing Birkhofl’s argument, can be found in the expository article by
Brown and Neumann



A complete description of Birkhoff’s approach, with also the ex-
planation how to obtain a second fixed point, by suitably modify-
ing Birkhofl’s argument, can be found in the expository article by
Brown and Neumann

M. Brown, W. D. Neumann, Proof of the Poincaré—Birkhoff fixed
point theorem, Michigan Math. J. 24 (1977), 21-31]




The history of the “twist” theorem and its generalizations and de-
velopments is quite interesting but impossible to summarize in few
lines (or in a short talk). After about hundred years of studies on
this topic, some controversial “proofs” of its extensions have been
settled only recently.




|[F. Dalbono, C. Rebelo: Poincaré—Birkhoff fixed point theorem and
periodic solutions of asymptotically linear planar Hamiltonian sys-
tems, Turin Fortnight Lectures on Nonlinear Analysis (2001), Rend.
Sem. Mat. Univ. Politec. Torino 60 (2002), 233—-263 (2003)]

|[P. Le Calvez, J. Wang, Some remarks on the Poincaré-Birkhoff
theorem, Proc. Amer. Math. Soc. 138 (2010), 703—715]

|A. Fonda, A.J. Urena A higher dimensional Poincaré-Birkhoff the-
orem for Hamiltonian flows, Ann. Inst. H. Poincaré C Anal. Non
Linéaire 34 (2017), 679—698]

|[A. Fonda, Playing around resonance. An invitation to the search

of periodic solutions for second order ordinary differential equa-
ttons, Birkhauser /Springer, Cham, 2016]
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A version for planar Hamiltonian systems

We consider a planar Hamiltonian system

, 0 , 0

and suppose that the vector field ﬁ(t,z) = ((%H(t,x,y), —%H(t,x,y)),
for z = (z,y), is continuous and T-periodic in the ¢-variable.
We also assume the uniqueness (the uniqueness hypothesis is not

necessary, if we apply Fonda-Urena version of the theorem) and

the global continuability for the solutions of the initial value prob-
lems.




For any initial point w € R? let {(-,w) = (¢;(-,w), (-, w)) be the solu-
tion of (3) with ((0,w) = w.



For any initial point w € R? let {(-,w) = (¢;(-,w), (-, w)) be the solu-
tion of (3) with ((0,w) = w.
If

F(t,0) =0, (4)
we have that ((f,w) # 0 for every t, provided that w # 0. Hence we
can pass to polar coordinates and determine the normalized angular
displacement of the solution ((-,w) on a time interval |0, 7] as

o 1 ! (%H(t, C(tv w))CZ(tv w) + (‘%H(ta C(tv w))ﬁ@? w)
Rotu(r) =5 Cw)f

2T
where |- | denotes the Euclidean norm of a vector in the plane.

dt.




The rotation number Rot,(7) is the algebraic count of the clockwise
turns of the solution ((¢,w) around the origin in the time interval

0, 7].



The rotation number Rot,(7) is the algebraic count of the clockwise
turns of the solution ((¢,w) around the origin in the time interval
0, 7].

Using the fact that (as a consequence of Liouville’s theorem), for
every 7 > 0, the mapping w — ((7,w) is an area preserving homeo-
morphism of the plane onto itself, we can apply a consequence of
the Poincaré-Birkhoff fixed point theorem -, which reads as follows.

%in the version of W.-Y. Ding [Acta Mathematica Sinica (1982)] for the case of a standard annulus or, respectively, in the version of Ding-Rebelo




Theorem 1 Assume (1) and let m > 1 be a fized integer. Suppose
that there are 0 < r < R and a positive integer ; such that

Roty,(mT) > 7, V]iw| =r and Rot,(mT) < j, V|w| = R. (5)
Then there exist at least two w1nitial points w, # wy, with
r < |unl, lwo| < R
such that
Roty,(mT) = Roty,(mT) =3 (6)

and the solutions ((-,w) and ((-,ws) of (3) are mT-periodic.




Theorem 1 Assume (1) and let m > 1 be a fized integer. Suppose
that there are 0 < r < R and a positive integer ; such that

Roty,(mT) > 7, V]iw| =r and Rot,(mT) < j, V|w| = R. (5)
Then there exist at least two w1nitial points w, # wy, with
r < |wq|, luo] < R
such that
Roty,(mT) = Roty,(mT) =3 (6)
and the solutions ((-,w) and ((-,ws) of (3) are mT-periodic.
Instead of the circumferences of radius » and R we can take two

strictly star-shaped curves around the origin bounding a topological
annulus. The fixed points belong to the interior of such annulus.




The points w; and w, are obtained as fixed points of the m-th iterate
of the Poincaré map ¢ : w — ((7T,w). Hence, they determine two
orbits

Op = {w, ®(wr),..., 0" Hw)} and Oy = {wy, P(ws), ..., " Hwy)}

of fixed points of ®”. By a remark in [W.D. Neumann (1977)] we
know that it is always possible to choose w; and wy; so that their
orbits are disjoint. This means that the corresponding m7'-periodic
solutions are not in the same periodicity class.




In the special case of

'+ f(tu) =0 (7)
which writes as a planar Hamiltonian system of the form
v=y, Yy =—ftz)
and if we assume
f(t,0) =0,

the condition () corresponds to the fact that the solutions v'/(.) :=
Gi(-,w;) (1 =1,2) of (7) possess exactly 2 zeros in the interval |0, mT|.
From the relationships between m and j it is easy to produce condi-
tions ensuring the minimality of the period, and therefore to obtain
subharmonic solutions with a given minimal period.




The same remark extends to equation

(p(u) + f(t,u) =0 (8)

where ¢ : R — R is an increasing homeomorphism with ¢(0) = 0,
passing to the planar Hamiltonian system
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The same remark extends to equation

() + f(t,u) =0 (8)
where ¢ : R — R is an increasing homeomorphism with ©(0) = 0,
passing to the planar Hamiltonian system

=9 y), Y =—ftx),

There is a large and growing literature on the applications of the
Poincaré-Birkhoff theorem.

For a recent application of this technique to planar Hamiltonian
systems, see

ID. Qian, P.J. Torres, P. Wang, Periodic solutions of second or-
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4. Applications to Dufling type
equations

The goal is to apply the theory of Linked Twist Maps to a period-
ically perturbed planar system

(Spert) {$/ -

y' = —g(x) +p(t),

using some information on the associated autonomous unperturbed
system

(Saut) {I,/ -




A recent contribution for an equation with a singularity at the
origin is given in
L. Burra, F.Z., Monotonicity of the period function and chaotic

dynamics in a class of singular ODEs, J. Math. Anal. Appl. (2022),
Paper No. 125814, 17 pp.]
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boundary of the annulus.



The required geometry is that of an annulus filled by periodic orbits
of system (5,,;) and the twist condition will be obtained by proving
that there is some gap between the periods of the orbits at the
boundary of the annulus.

In order to prove such a twist condition, a convenient approach is
that of proving the monotonicity of the period map.







An annulus filled by periodic orbits around an equilibrium point

...or annulus filled by periodic orbits near infinity.
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The search of sufficient conditions on the vector field guaranteeing
that the period map is monotone, is still today a topic of great
interest, as one can see from the large number of articles in this
area.
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F utt+§uut‘|‘um:ﬂ££‘|‘g(ﬁ(ﬂz+92))H+25(£H9)9+f{u+9)—|—f(’h'e—9) = pulx,t)

9m+59a¢—9ﬂ+zJ(/ue)u+cr(/(uﬁ+-92))9+ f(u+6) — f(u—0) = py(x,t),
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Fig. 1.2 Qualitative behavior of the oscillations at the TNB the day of the collapse
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Fig. 1.3 A fish-bone model for a bridge with piers



This energy then leads to the following nonlocal system. forx € [ and f = 0:

Mty 4 Elttyyrr + zy(ff(uﬁ +.91])u Jr-fl;p-(Jﬂr uﬂ)ﬂ F U+ + fu—0)=0

_#Eﬂ” — By +4}’(f; HE)H 4—2?'(‘,[‘_;[.5!E +EE])E + f(u+6)— fu—06)=0. (1.8)
If y = 0and f 1s linear, then system (1.8) decouples into two linear equations. The
definition of weak solution of (1.8) will be given in Sect. 4.2.

In a shightly different setting. involving mixed space-time fourth order derivatives.
a linear version of (1.8) with coupling terms was suggested by Pittel-Yakubovich
[ 18], see also [23. p. 458, Chap. VI]. A nonlinear f was considered in (1.8) by
Holubova—Matas [ 16], who were able to prove well-posedness for a forced-damped
version of (1.8). Also in | 5] the well-posedness of an initial-boundary value problem
for (1.8) 1s proved for a wide class of nonlinear forces f. The fish-bone model
described by (1.8), with nonlinear f.1s able to display a possible transition between
vertical and torsional oscillations within the main span: the former are described by
u whereas the latter are described by 6.
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LARGE-AMPLITUDE PERIODIC OSCILLATIONS IN SUSPENSION
BRIDGES: SOME NEW CONNECTIONS WITH NONLINEAR
ANALYSIS*

A. C. LAZER! AND P. J. MCKENNAF®

Abstract. This paper surveys an area of nonlinear functional analysis and its applications. The
main application is to the existence and multiplicity of periodic solutions of a possible mathematical
models of nonlinearly supported bending beams, and their possible application to nonlinear behavior
as observed in large-amplitude flexings in suspension bridges. A second area, periodic flexings in a
floating beam, also nonlinearly supported, is covered at the end of the paper.
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1 Introduction

In the paper, we consider the following system, which describes the vibrating beam equa-

tion coupled with a vibrating string equation:

Mgy + gy + By2y + ks —v)* + fplu) = hg, in (0,L) x B,

(1)
vie — Bvee + 82ve — Kl —v)* + fslv) = hs, in (0,L) = B
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Abstract

We look for time-periodic solutions of the suspension bridge equation, Lazer and McKenna showed that for a
certain configuration of the parameters, one may expect the existence of large-amplitude penodic solutions having
the same period as the forcing term. We prove the existence of large-scale subharmonic solutions.

Kevwords: Periodic solutions; Poincaré-Birkhoft; Suspension bridges
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The model we want to study is analogous to Lazer and McKenna's. Let ofr, x) be the
downward displacement of the bridge ar the point x and time r, and denote, for any real
number «, by a” its positive part {i.e., a@” 15 equal to a when a 15 positive, and to U when o 15
ncgative), We consider the partial diffcrential cquation

g h]* F
m— +d— + El— +«[v+h]  =mg + F(1, x),
oz Tdgr tEG vtk =mg + F(1, x)



W)+ o)+ Aulr) +g“h"u[:}+ 1]+— 1] =e(f). (1.1}

We will look for time-periodic solutions of (1.1), Lazer and McKenna already showed that
for a certain configuration of the parameters one may expect the existence of large-amplitude
periodic solutions having the same period of the forcing term (). Our attention will instead be
directed in proving the existence of large-amplitude subharmonic solutions, i.e., periodic
solutions having as penod an integer multiple of the forcing's period.

We will prove that, if e{¢) is a periodic function with mean value zero, 4 = (0 and A is small
enough, the above equation has large-amplitude subharmonic solutions. The appearance of this
type of solutions is not related to the period nor to the amplitude of the forcing e(¢), and in this
regard they seem o owell simulate (he bebaviowr ol oscillatng bridges. By a numerical
simulation we will show that, tor a long and flexible brnidge, the coefficient A 1s In fact
sutficiently small, and subharmonic solutions can be seen. Motice that subharmonic solutions
for an eguation like (1.1) had already been observed numerically in [31] by a different
approach, and a theoretical explanation was asked for this phenomenon.




Ut + O Uy + 01U + k(1 —v)™ + fp(u) = hp, in(0,L) x RY,

Vit — BVyy + 02V — Kk — v)* + fs(v) = hs, in (0,L) x Bt

f utt+5uut+uxxxx+g(£(uz—I—QEJ)H—I—ZJ(Z;HQ)H—F}?(H—FQ) + flu—0) = py(z,t)

G808 = sz +20( [ w0)uto ([ (0 +69)0+ fut0) = fu=0) = pofa0)

I I



One of the possible issues related to system (1) is then to study the energy transfers between
different Fourier components. Indeed, it is well understood that in the famous Tacoma Narrows
Bridge collapse in 1940 a crucial role was played by a sudden switch from a longitudinal to a torsional
oscillation. This corresponds to some instability of the structure which, from an analytic point of
view, can be effectively highlighted starting from the analysis of bi-modal solutions, having the form

(u(z,t),0(z, 1)) = (w(t)ea(z), 2(t)1x(2)). (4)

for fixed eigenvalues A and k of (2) and (3), respectively. In this way, (1) is reduced to the 2 x 2 ODE
system

.

w(t) + 8,0 (t) + Atw(t) + o (14 243 )z(t) w(t) + ow(t)? + Ty (w(t), z(t)) = lpu{m, they(z) dz
1 (5)
Z(t) + doz(t) + £°2(t) + (1 4+ 245 w(t)’z(t) + oz(t)® + Ex x(w(t), z(t)) = ﬁ polz, t)ne(z) dz,

%

where
Ay = ff ex(2)7(z) da
and
Fye(w,2) = ff [F(wea(z) + 2na(z)) + F(wex(z) — 2ne())]er(z) de, (6)
San(w,2) = [ [fwer(z) + 2n(x) — Fluwen(z) ~ 2m(@)le(z) da



2 Uni-modal solutions and their period maps

In this section, we consider the solutions of system (5) which satisfy z = 0, corresponding via (4) to
purely longitudinal uni-modal solutions of (1). In this case, w satisfies the Duffing equation (8), which

henceforth we write as

W+ Oy1b + XNw + ow” + Tpp(w) = /;'pu[i‘-._ t)ex(x), (9)
where
yau) =2 [ flwes(z))ex(@) do. (10)

In particular, in case p, = 0, we are dealing with the homogeneous damped equation

i + Oyt + Aw + ow® + Ty (w) = 0. (11)



In order to prove the onset of chaotic dynamiecs for both large and small solutions of (9), in presence
of a suitable stepwise forcing term p,, it will be crucial to analyze the properties of the time map for
the associated unforced and undamped equation

W+ Nw + ow® + Ty (w) =0, (12)

with I's the transform of a function f satisfying (F'). As suggested by Remark 6, such features cannot
be fully deduced from the corresponding ones for the equation

i+ AMw + ow® + 2f(w) = 0; (13)

this point indeed deserves some further comments, which we here provide. Let us first recall that (12)

Proposition 8. Let €y be an odd eigenfunction of problem (2). If

4
"(0)? > % (% + f"(l]]) (f"(0) +3a), with f”(0) ff ex(x)dr + 30 > 0, (14)

then the time map associated with (13) is locally inereasing near the origin, while the time map
associated with (12) is locally decreasing near the origin.



6. Chaotic dynamics of longitudinal
motions



6. Chaotic dynamics of longitudinal
motions
We suppose that p, is a stepwise function of time, acting on a single

longitudinal mode, and we analyze the behavior of the correspond-
ing purely longitudinal (6(x,t¢) = 0) uni-modal solution of

Utt+5uut+uxxxx+0(/(u2+‘92))U+20</U9)9+f(u+‘9>+f(u_9)—p

1 I

Htt+(596’t—6’%+20(/u9)u+0(/(u2+92))9+f(u+9) — flu—8) = pyl:

I I
(9)
according to the properties of p,.



This leads us to the study of the periodically perturbed Duffing
equation

w" + g(w) = p(t). (10)



This leads us to the study of the periodically perturbed Duffing
equation

w” + g(w) = p(t). (10)
As for the forcing term p in (10), we assume that it is given by
P, U € [O, Tl)
t) = t) = 11

for pi,ps € (g(sy), +00), p1 # p» and T =T, + T, giving rise to the two
corresponding equilibrium points (w,,0), (w,,,0).



The first order planar system equivalent to (10) turns then out to
be the switched system

{@y (12)
y = —g(w) + p12(t),

namely the dynamics is that of two autonomous planar systems
with global centers at (w,,,0) and (w,,,0), respectively, which switch
back and forth in a periodic fashion along time intervals of lengths
17, I, respectively.




Figure 4: A typical geometry of linked annuli: on the left, the graphs of C"Jl and t“:;’g, on the right the
resulting annular regions in the phase plane.



Theorem 2 Let A, and A be two linked annuli as above and suppose
that 7,1 # 7,2 for ¢ = 1,2. Then, given n; > 1 and ny, > 1 with
m = ning > 2, there exist 17 and I such that, for each 1| > 'IT7 and
T, > T, the Poincaré map P! associated with system (12) induces
chaotic dynamics on m symbols in each of the sets R’ and R’.




An analysis of the proof shows that our main result is robust with
respect to small perturbations in the terms appearing in the equa-
tion. In particular, we can give an application to

w"” + dw' + h(w, z) = q(t),
where, for a suitably small ¢ > 0, it is assumed that: 0 < 0 < &,
h(w, z) = g(w)+7r(w, z), where ¢ is a function fulfilling assumption (G)
and ||r|~m) < €, and ¢ : R — R is a T-periodic function (possibly
smooth) with fOT lq(t) — p12o(t)| dt < e. The constant ¢ > (0 depends on
the pair (77,75) and on the configuration of the linked annuli.
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Thank you for your attention!



