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Linearisation at the space-homogeneous steady state and space-time patterns formation
Numerical solutions

Blow-up versus existence of global-in-time solutions

The talk is based on the joint papers with former ERCIM scholar Purnedu Mishra (at
present in Norwegian University of Life Science)

Purnedu Mishra, D.W. Repulsive chemotaxis and predator evasion in predator prey models
with diffusion and prey taxis Math. Models. Methods. Appl. Sciences (M3AS) (2022)

Purnendu Mishra, D.W, Indirect taxis drives spatio-temporal patterns in an extended
Schoener’s intraguild predator-prey , Appl. Math. Letters, (2022)

Purnendu Mishra, D.W, Pursuit-evasion dynamics for Bazykin-type predator-prey model
with indirect predator taxis, preprint.
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Transport equation

o V- constant vector field V : R” — R”
@ N = N(x,t)- gestos¢ , N: R" x (0,00) — R

Ny ==V - NV, N(x,0)= No(x)

e The solution :
N(x, t) = No(x — Vt)
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The Keller-Segel model of chemotaxis

Patlak (1953) - Keller-Segel model (1972)

W = W(x, t) density of some chemical released by the members of with density N(x, t),
x € Q C R" with smooth boundary

x-chemotactic sensitivity parameter

Nt = DNAN 4+ / — V - (xNV W)

Wi = DwWAW + N — pW
with homogeneous Neumanna boundary condition
(VN,v) =(VW,v) =0, on 99, t>0.

(—) chemoattractant  (+) chemorepellent
Early stages of the fruit body formation in slime mold Dictostelium Discoideum )

For n = 1 -global in time classical solution (Nagai, 1995)

® 6 6 0

For n = 2 - global solution for fn Nodx small enough, otherwise Tpax < co.(Nagai, Senba,
Yosida; 1997, Biler, 1998)
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A typical prey-predator model (O.D.E. case)

N(t)—prey density,
P(t)—predator density

dN N

— = (1- =) = F(N)P:= Ry(N, P
ekl ( ,() (N) w(N, P)
dP

- = bF(N)P =3P := Rp(N, P),

F = F(N)-functional response e.g. -amount of food (prey) consumed per predator per unite
of time, Holling's type Il function:

aN

= ——— a,b>0,
1+ ThpaN

F = Fu(N)
@ The Rosenzweig-MacArthur prey-predator model (1963)
r - growth rate, § - death rate, a-attack rate, Tj- handling time.

For K = oo and T, = 0 we get the Lotka-Volterra model.
b— efficiency of conversion of food into offspring

e For some set of parameters there is a unique globally stable steady state which may lose
stability and limit cycle emerges via the Hopf bifurcation
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Chemical signalling

@ Many chemicals (e.g. pheromones, kairomones) released by animals are used as means of
inter and intraspecific communication - (chemical signaling) and sense of smell is a primary

means by which prey animals detect predators or prey and trigger suitable behavioral
responses .

@ The chemical signal my be released by predator/prey itself (odor of predator or prey) or it
may be released due to damage of prey captured
(e.g. blood in aquatic ecosystems).
@ Let W be a chemical released by prey or predator then the corresponding equation reads
W; = d&sAW + g(N, P) — pW

where g = g(N, P) is the rate of chemical signal production and p is the degradation rate

g(N,P)=~P or g(N,P)=vN org(N,P)=BF(N)P,
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Terminology: Direct/indirect prey taxis and/or

predator taxis

@ direct prey-taxis is a directed movement of predator toward the gradient of prey density,

@ indirect prey-taxis is a directed movement of predator toward the density gradient of a
chemical released by prey,

@ direct repulsive predator taxis is the directed movement of prey in the opposite direction to
the gradient of predator density.

@ indirect repulsive predator taxis is a directed movement of prey in the opposite direction to
the density gradient of a chemical released by predator.

@ pursuit- evasion model includes both direct/indirect prey taxis (pursuit) and repulsive
direct/indirect predator taxis (evasion).

@ In the context of predator-prey models the term indirect taxis was first used for a simplistic
model in J.I. Tello, D.W. (M3AS, 2016).

@ Similar idea was also used in in a different context in K. Fujie, T.Senba, (JDE, 2017)
@ Tao, M. Winkler (J.Eur.Math. Soc., 2017)
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The prey-predator model with prey taxis (direct)

P. = dpAP + bF(N)P — 6P,

N
Ne=dyAN + N (1— 2 ) = F(N)P.
with homogeneous Neumann boundary conditions (no-flux) and initial conditions

on smooth boundary 99,  C R” and initial conditions. (£ > 0)
@ P.Kareiva, G.T. Odel (Am. Naturalist 1987),

@ Prey-taxis was found to stabilize prey-predator interactions, no pattern formation is possible
if (¢ > 0!)-J.M. Lee, T. Hillen and M.A. Lewis (J. Biol. Dyn., 2009)

Global-in-time existence of solutions:

@ n > 1 (with volume filling effect) B. Ainseba, at.al.(NARWA, 2008), Y. Tao (NARWA,
2010)

@ n > 1 (classical sol., for small £ with F(N) bounded) - S. Wu, J.Shi, B.Wu (JDE 2016);
D.Li (DCDS 2021)

@ n < 2 (classical sol.)- H.-Y Jin, Z.Wang (JDE, 2017), T. Xiang (Nonlin Anal, 2018), D. Li
(DCDS, 2021)

@ n < 5 (weak solutions) M. Winkler (JDE, 2017)
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Pursuit-evasion predator-prey model with direct

taxis

P, = dpAP — £V - P VN + Rp(P, N),
Ne = dyAN + xV - N VP + Ry(P, N),

with homogeneous Neumann boundary conditions (no flux)

@ The main part of the system is not upper triangular (full cross diffusion system)

@ Formal stability/instability analysis, travelling waves)- Y. Tyutyunov, L. Titova, R.Arditi
(Math. Mod.. Nat. Phenom., 2007)

Global-in-time existence of solutions

@ n < 3- (class. sol. in a neighbourhood of the constant steady state)
M. Fuest (SIAM J. MAth. Anal, 2020)

@ n =1- ( no restriction on the size of initial data, approximation by 6-th order operators)
Y.Tao, M. Winkler (J.F.A, 2021) , (Nonliner Anal. RWA, 2022)
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Pursuit evasion model - indirect taxis for both prey

and predator

Py = dpAP — XV - (PVU) + Rp(P, N)—6, P,
N = dyAN + €V - (NVW) + Ry(P, N)—r N,
We = dw AW + ayP — p, W,

U = dyAU + auN — pyU,

with homogeneous Neumann boundary conditions (no-flux)

@ The main part of the system is upper triangular
Global-in-time existence of solutions:
@ n < 3 (with x and £ small enough or §; , 1 big enough ) - S. Wu (JMAA, 2022)
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Pursuit -evasion prey-predator model with indirect

repulsive predator taxis and prey taxis

P = DpAP — V - (EPVN) — 6P + bF(N)P,

N
N; = DyAN + V - (x\NVW) + rN (1 - ?) — F(N)P,
W; = DwAW + P — pW.

@ Model B : (x > 0 £ = 0) indirect repulsive predator taxis

@ Model A :(x >0 £ > 0 ) pursuit-evasion model
@ Basic L!(Q) estimate :

4 (/ P(x,t)dx+b/N(x,t)dx) +G (/ P(x, 1.‘)d><-§-b\/N(><7 t)dx) <G
dt Q Q Q Q

where C; and G, are positive constants.
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Global existence in time

Theorem

Suppose that Py, No , Wy € Wl"(Q), r > n are non-negative functions.
For Model A and Model B there exists the unique local non-negative classical solution (N, P, W)
satisfying boundary and initial defined on Q x [0, Thax) such that

(N, P, W) € (C([0, Trmax) : WH(Q)) N C*HE x (0, Trmax)))* -

@ Moreover, Tpax = oo and the solution is uniformly L°° - bounded in the case of
@ Model B (x > 0,6 =0) foralln>1
@ Model A (x > 0,& > 0) in the case of n = 1.

@ P. Mishra, D.W. (Math. Mod. & Methods in Appl. Sc. (M3AS), 2022)
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Linear stability analysis for Model B and Hopf

bifurcation

@ The coexistence steady state to Model B is of form

E=(N,P,W) where W= =P.

==

@ A complex number belongs to the spectrum of the linearization of Model B at E iff it is an
eigenvalue of the following stability matrix :

—D1h; + an ar —xNh;
/Vlj = an1 —Dzhj + ax 0 .
0 as —D3h; + a33

where {hj}j'?’jo denotes the eigenvalues of the Laplace operator —A with homogeneous
Neumann boundary condition and [a; ;] is the Jacobian matrix for O.D.E. case.

an <0, a2<0, an >0, ap<0 ap>0 a3 <0.

@ For any x > 0 considered as a bifurcation parameter: detM; < 0 and trM; < 0 .
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Linear stability analysis for Model B and Hopf

bifurcation

The dispersal equation of stability matrix M; is following

N+ oA+ pPN 4 pP (x) = 0

where
pj(,l) = —tI’Mj = —(311 + axn + 333) + (D1 + Dy + Dg)hj s
= oo + azh;,
Pj(-z) = ai1ax — anzaz + anass + axass
+ hj(—axnD; — asDy — a1 Dy — ap D3 — a1 D3 — azDs)

+ h}(D1Dz + D1 D5 + D> Ds)

= Bo + Buhj + Boh?,
I)Jm(X) = —detM; = —anaxass + apaass

+ hj(axa33 Dy + anaxnDs — anan D3 + anassds)
+ hf(fangle — a3D1D> — a1 D2 Ds) + D1D293hf + xananNhj,
= (Yo +mh; + ’Y2hj? + ’Y3hj§) + x(vahj) = ;3‘1) + ij(.3’2)> 0
}.3’2) . It can be checked that all coefficients
14/34
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Linear stability analysis for Model B and Hopf

bifurcation

o E is linearly stable if and only if for each j > 0 matrices M; have eigenvalues with negative
real parts which according to the Routh- HurtW|tz stability crlterlon is equivalent to the

conditions
o >0, o >0,
and Q;: 1)pj(2) — pj(.S)(X) = pj(l)p](g) — pj(,3’1) — ij(.S’z) >0 forallj > 0.
e There exists x > 0 such that
(1) (2 (3,1)
H _ Pj Pj Pj
X = min W(hy) = { ST (1)

JENy i

e and the steady state E is stable if x < XH
If
(k) £ U(he) for j#k

then the minimum is attained for a singe j = jo.
o Since trMj; < 0 and detM;, <O there is one real negative eigenvalue and a pair of conjugate

elgenvalues which cross imaginary axis for x = x/ with the transversality condition being
satisfied.

There exist XH > 0 such that steady state E in model B is locally asymptotically stable if
x < x". Morrover, at x"' a solution periodic in space and time emerges according to the Hopf
bifurcation mechanism.

Q based on result of Amann, 1991
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Digression: Shoener’s model of intra-gild

prey-predator interactions

@ predator and prey exploit common resources

P = AP — £V - (PVU) 4 —2RP 5P+ chNP
t=a v+ cP+eN 1
ReN
N = doaN + — 2RV oy e
~+cP+eN

Ui = dyAU + aN — U,

with homogeneous Neumann boundary condition
@ Kinetic O.D.E model has no periodic orbits ( Bendixona-Dulac ctriterion )

@ For the Schoener model with indirect prey taxis for £ big enough there appears Hopf
bifurcation ( periodic in space and time).

@ O.D.E. - E. Ruggieri, S.J. Schreiber, Math. Biosc. Eng. 2005.
@ P.D.E. - P. Mishra, D. W., Applied Mathematics Letters 2022.
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Numerical solutions of models A and B

@ Non-dimensional Rosenzweig-MacArthur model in the frame of model A

Nt:AN+V-(XNVW)+rN(17N)7i,
(1 +BN)
P = dyAP — V- (€PVN) — 6P + — P
(14 BN)

Wi = dy AW + P — uW |

with non-negative initial and no-flux boundary condition.
@ 1D simulations with the help of MATLAB PDEPE tool (At = 0.01, Ax = 0.1)
@ 2D simulations with the help of FreeFem++ solver (At = 0.01, Ax = Ay = 0.1)

@ Values of model parameters are assumed to be

r=0.25 B=2 c=0.85 a=0.95 &§=0.17, )
pn=05, v=10, d, = 0.0, d, = 0.01. @

@ Unique coexistence steady state E = (0.3333;0.2924; 5.8490) and x" = 6.889.
@ |Initial data : perturbation of the steady state e.g.
_ Jmx _F Jmx - Jmx
N(x,0) = N+0.1cos( i ), P(x,0) = P+0.1cos( i ), W(x,0) = W+cos( IE ))
3

17/34



Model B; convergence to the steady state (1D
simulations)

Figure 1: Model B: Perturbation in model B approaches the constant
steady state E for y < x" with j =1
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Model B; transition of perturbation (1D simulation)

— — —0.5 -
Initial data N(x,0) = N, P(x,0) = P + 0.1~ 52>, W(x,0) = W

Timet

Timet

ppppp

Figure 2: Model B: spatio-temporal patterns for y > x"
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Model A; periodic solutions (1D simulations)

Time t

Figure 3: Model A: space-time patterns in unit domain when
x =5, £ = 0.2 and symmetrical initial data with j = 4.
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Model B; separation regions (2D surface plot)

Gaussian initial data fo_r predator centered in the midfile of the square with constant initial
data for the prey N = N and for the chemical W = W

Y

(c)

Figure 4. Model B (¢ = 0): 2D separation regions for xy = 10 at time step
t = 1500 .
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Model A; spike solution

Gaussian initial data for predator and prey centered in the middle of the square with
constant initial data W for the chemical.

Chemical
s2f22d3

(c)

Figure 5: Model A: 2D simulation result for model A at time t = 10 for
x =05,£=10.0
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Model A; spike solution

Chemical

Figure 6: Model A: numerical indication of blowup at time t = 134 for
model A for y =0.5,&£ = 10.0
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How to modify model A to prevent blow-up?—>

Model C

@ In Model C a minimal modification with respect to model A is made for prevention of
blow-up in finite time.

@ The kinetic part is as in the classical Bazykin model ( 1976).

@ Density-dependent suppression of velocity in predators is interpreted as the result of
interference (kind of regularisation)

P

N: = dyAN 4+ xV - N VW — F(N)P + rN — nN?,
W = dwAW + P — pW |

VN
Py = dpAP — £V - P (7) + bF(N) — 6P7(51Pz7
1+o
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Model C

Theorem

If Py, No, Wy € Wl”(Q), r > n are non-negative functions then there exist global in-time,

non-negative classical solution to Model C satisfying boundary and initial condition provided n < 3
and the following restrictions on parameters are satisfied

2(1
512 (M—Fdw) s

dw
2 2
XAy | 2x
> = tdw),
Qln> ((dN)2+ dw + W)
2 ((dw)? + (dw)? + €20 77)
with Ay = .
dw
v

P.Mishra , D.W., preprint 2022.

25/34



Numerical solutions to Model C

@ Set of parameters

r=2 n=18,a=07 b=09, =2, =001, 6§ =0.1, = 0.15,
4 =0.015, d, =1, d, = 0.1, d,, = 0.05.

For this choice of parameters values the restriction Q holds if and only if 0 > o, := 19.7
For o < o¢, num. sol. to Model C exhibits finite-time blow-up of solution and for

For o > o, there is prevention of blow-up (global solutions) .

Initial data: perturbation of the constant steady state
E* = (P*,N*, W*) = (0.741,1.016, 0.74)

Po(x,y) = P* + 50067100((x72A5)2+(y—2.5)2),
No(x, y) = N* +8006—100((x—2.5)2+(y—2.5)2)7

2 2
Wolx,y) = W* + 1006~ 100((x—2.5)+(y—2.5)%)

where (x,y) € 2 =(0,5) x (0,5)
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Figure 7: (a) Approximated blowup solution at time t = 1.5 x 10~* for
o = 0.0 (b) Approximated blowup solution at time t = 2.3 x 10~* for
o = 5.0 subject to initial conditions. It was assumed x = 0.1, £ =30 .
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(a)

(b)

Figure 8: Snapshots for o = 25 at different time steps. (a) t = 13, (b)
t =50
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(a)

<> R ’
(b)
Figure 9: Snapshots for o = 25 at different time steps. (a) t = 100, (b)

t = 500. All other parameter values and initial condition is same as in
figure (7).
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Sketch of proof of the global existence for Model C

There is a local smooth solution defined on [, Trmay) satisfying L*(Q)-bound.
We begin with the N-equation

Ny = dyAN + XV - N VW — F(N)P + rN — n N?
e Using the Gagliardo-Nirenberg inequality and Ll(Q)—bound one proves that for n < 3

sup  [IN(-, t)[lk < Cn(k)

te[T , Tmax)
provided
sup [IVW(, t)ls < Gy -
te[T , Tmax)
Then

sup  [N(, )YW(, D)a—e < Ciy

tE[T , Tmax

0 Using properties of the heat semigroup we infer that

sup [INC, t)lloo < Civ -
te[T, Tmax)

e Using LP — L9 estimates for analytic semigroups (n < 3) we get

sup  ||[VN(,t)|, < Cy for p< 4
te[T , Tmax)

Next it is easy to deduce by parabolic regularity that

sup I[VP(-, )]le < Cp, sup [[VW(, t)lloe < Cw
tE[T , Tmax) te[T, Tmax)
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Sketch of proof of the global existence for Model C

@ The most complicated part of the proof is to find estimate on ||V W(-, t)||4. To this end we
derive differential inequality

y'(t) + y(t) < Const. for t € [T, Trmax)

where for suitable constants A; and A;

y(t):/|VW\4+/P|VW\2+/N\VW|2+A1/N2+A2/P2.
Q Q Q Q Q

@ We use Bochner's type inequality : For W € C?({2) there holds
Q2VWVAW = AIVW|? — 2|D*W|?
and
@ Mizoguchi-Souplet inequality : for u € C3*(Q) satisfying % = 0 on 9Q and Q there holds
the following pointwise inequality
o|Vul?
7| u] < K\Vu|2 on 9Q
ov

where K depends on the curvature of 9.
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Lemma

Let (P, N, W) be a solution to Model C . Then there exists a constant C > 0 such that for
t € (0, Tmax)-

d 2
= \VW|“+dw/|V<|VW\2)} +4M/\VW|4
Q Q Q

16
<72( +")/|VW|2P2+C.
dw Q
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Corollaries and open questions

@ Chemical signalling may destabilize a space-homogeneous steady state in a prey -predator
model and gives rise to space-time dependent pattern formation.

@ When an O.D.E, model is extended to a P.D.E model with taxis terms some mechanism of
blow-up prevention might be necessary to be built in the model.

@ Non of the two taxis mechanisms studied in Model C alone can lead to the blow-p for n = 2.
Their cumulative effect (for o = 0) leading to blow-up demands farther investigation.

@ Are there any weak solutions for for Model C when o = 0, weak enough to grasp the

singular solutions?

Thank you.
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