Quasilinear parabolic systems describing taxis and chemical signaling in predator-prey models.

Dariusz Wrzosek University of Warsaw

Seminar at Łódź University of Technology , 12/10/2022

Outline:

- Keller-Segel model of chemotaxis
- A typical prey-predator model
- Chemical signalling
- Direct/indirect taxis & pursuit-evasion models
- Linearisation at the space-homogeneous steady state and space-time patterns formation
- Numerical solutions
- Blow-up versus existence of global-in-time solutions

The talk is based on the joint papers with former ERCIM scholar Purnedu Mishra (at present in Norwegian University of Life Science)

- 1 Purnedu Mishra, D.W. Repulsive chemotaxis and predator evasion in predator prey models with diffusion and prey taxis Math. Models. Methods. Appl. Sciences (M3AS) (2022)
- 2 Purnendu Mishra, D.W, Indirect taxis drives spatio-temporal patterns in an extended Schoener's intraguild predator-prey, Appl. Math. Letters, (2022)
- 3 Purnendu Mishra, D.W, Pursuit-evasion dynamics for Bazykin-type predator-prey model with indirect predator taxis, preprint.

Transport equation

- ① V- constant vector field $V:\mathbb{R}^n o \mathbb{R}^n$
- \bigcirc N=N(x,t)- gęstość , $N:\mathbb{R}^n\times(0,\infty)\to\mathbb{R}$

$$N_t = -\nabla \cdot NV$$
, $N(x, 0) = N_0(x)$

The solution :

$$N(x, t) = N_0(x - Vt)$$

The Keller-Segel model of chemotaxis

Patlak (1953) - Keller-Segel model (1972)

W=W(x,t) density of some chemical released by the members of with density N(x,t), $x\in\Omega\subset\mathbb{R}^n$ with smooth boundary x-chemotactic sensitivity parameter

$$\left\{ \begin{aligned} &N_t = D_N \Delta N + / - \nabla \cdot (\chi N \nabla W) \\ &W_t = D_W \Delta W + \gamma N - \mu W \\ &\text{with homogeneous Neumanna boundary condition} \\ &\langle \nabla N \,, \nu \rangle = \langle \nabla W \,, \nu \rangle = 0, \quad \text{on} \quad \partial \Omega, \ t > 0 \,. \end{aligned} \right.$$

- (−) chemoattractant (+) chemorepellent
- Early stages of the fruit body formation in slime mold Dictostelium Discoideum)
- For n = 1 -global in time classical solution (Nagai, 1995)
- For n=2 global solution for $\int_{\Omega} N_0 dx$ small enough, otherwise $T_{max} < \infty$.(Nagai, Senba, Yosida; 1997, Biler, 1998)

A typical prey-predator model (O.D.E. case)

N(t)—prey density,

P(t)—predator density

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) - F(N)P := R_N(N, P)$$

$$\frac{dP}{dt} = bF(N)P - \delta P := R_P(N, P),$$

F = F(N)-functional response e.g. -amount of food (prey) consumed per predator per unite of time, Holling's type II function:

$$F=F_H(N)=\frac{aN}{1+T_haN}\quad a\,,b>0\,,$$

1 The Rosenzweig-MacArthur prey-predator model (1963) r - growth rate, δ - death rate, a-attack rate, T_b - handling time.

For $K = \infty$ and $T_h = 0$ we get the Lotka-Volterra model.

b— efficiency of conversion of food into offspring

For some set of parameters there is a unique globally stable steady state which may lose stability and limit cycle emerges via the Hopf bifurcation

Chemical signalling

- Many chemicals (e.g. pheromones, kairomones) released by animals are used as means of inter and intraspecific communication - (chemical signaling) and sense of smell is a primary means by which prey animals detect predators or prey and trigger suitable behavioral responses.
- The chemical signal my be released by predator/prey itself (odor of predator or prey) or it
 may be released due to damage of prey captured
 (e.g. blood in aquatic ecosystems).
- lacktriangle Let W be a chemical released by prey or predator then the corresponding equation reads

$$W_t = d_3 \Delta W + g(N, P) - \mu W$$

where g = g(N, P) is the rate of chemical signal production and μ is the degradation rate

$$g(N, P) = \gamma P$$
 or $g(N, P) = \gamma N$ or $g(N, P) = \beta F(N) P$,

Terminology: Direct/indirect prey taxis and/or predator taxis

- direct prev-taxis is a directed movement of predator toward the gradient of prev density.
- indirect prey-taxis is a directed movement of predator toward the density gradient of a chemical released by prey,
- direct repulsive predator taxis is the directed movement of prey in the opposite direction to the gradient of predator density.
- indirect repulsive predator taxis is a directed movement of prey in the opposite direction to the density gradient of a chemical released by predator.
- pursuit- evasion model includes both direct/indirect prey taxis (pursuit) and repulsive direct/indirect predator taxis (evasion).
- In the context of predator-prey models the term indirect taxis was first used for a simplistic model in J.I. Tello, D.W. (M3AS, 2016).
- Similar idea was also used in in a different context in K. Fujie, T.Senba, (JDE, 2017)
- Tao, M. Winkler (J.Eur.Math. Soc., 2017)

The prey-predator model with prey taxis (direct)

$$P_t = d_P \Delta P - \xi \nabla \cdot P \nabla N + bF(N)P - \delta P,$$

$$N_t = d_N \Delta N + r N \left(1 - \frac{N}{K}\right) - F(N) P$$
.

with homogeneous Neumann boundary conditions (no-flux) and initial conditions

on smooth boundary $\partial\Omega$, $\Omega\subset\mathbb{R}^n$ and initial conditions. $(\xi>0)$

- P.Kareiva, G.T. Odel (Am. Naturalist 1987),
- Prey-taxis was found to stabilize prey-predator interactions, no pattern formation is possible if $(\xi > 0!)$ -J.M. Lee, T. Hillen and M.A. Lewis (J. Biol. Dyn., 2009)

Global-in-time existence of solutions:

- n ≥ 1 (with volume filling effect) B. Ainseba, at.al.(NARWA, 2008), Y. Tao (NARWA, 2010)
- n ≥ 1 (classical sol., for small ξ with F(N) bounded) S. Wu, J.Shi, B.Wu (JDE 2016);
 D.Li (DCDS 2021)
- n ≤ 2 (classical sol.)- H.-Y Jin, Z.Wang (JDE, 2017), T. Xiang (Nonlin Anal, 2018), D. Li (DCDS, 2021)
- $n \le 5$ (weak solutions) M. Winkler (JDE, 2017)

Pursuit-evasion predator-prey model with direct taxis

$$\begin{cases} P_t = d_P \Delta P - \xi \nabla \cdot P \; \nabla N + R_P(P,N) \,, \\ N_t = d_N \Delta N + \chi \nabla \cdot N \; \nabla P + R_N(P,N) \,, \\ \text{with homogeneous Neumann boundary conditions (no flux)} \end{cases}$$

- The main part of the system is not upper triangular (full cross diffusion system)
- Formal stability/instability analysis, travelling waves)- Y. Tyutyunov, L. Titova, R.Arditi (Math. Mod.. Nat. Phenom., 2007)
 Global-in-time existence of solutions
- n ≤ 3- (class. sol. in a neighbourhood of the constant steady state)
 M. Fuest (SIAM J. MAth. Anal, 2020)
- n=1 (no restriction on the size of initial data, approximation by 6-th order operators) Y.Tao, M. Winkler (J.F.A, 2021) , (Nonliner Anal. RWA, 2022)

Pursuit evasion model - indirect taxis for both prey and predator

$$\begin{split} P_t &= d_P \Delta P - \chi \nabla \cdot (P \nabla U) + R_P(P,N) - \delta_1 P^2 \,, \\ N_t &= d_N \Delta N + \xi \nabla \cdot (N \nabla W) + R_N(P,N) - r_1 N^2 \,, \\ W_t &= d_W \Delta W + \alpha_w P - \mu_w W \,, \\ U_t &= d_U \Delta U + \alpha_u N - \mu_U U \,, \\ \text{with homogeneous Neumann boundary conditions (no-flux)} \end{split}$$

- The main part of the system is upper triangular Global-in-time existence of solutions:
- $n \le 3$ (with χ and ξ small enough or δ_1 , r_1 big enough) S. Wu (JMAA, 2022)

Pursuit -evasion prey-predator model with indirect repulsive predator taxis and prey taxis

$$\begin{split} P_t &= D_P \Delta P - \nabla \cdot \left(\xi P \nabla N \right) - \delta P + b F(N) P \,, \\ N_t &= D_N \Delta N + \nabla \cdot \left(\chi N \nabla W \right) + r N \left(1 - \frac{N}{K} \right) - F(N) P \,, \\ W_t &= D_W \Delta W + \gamma P - \mu W \,. \end{split}$$

- Model B : $(\chi > 0 \xi = 0)$ indirect repulsive predator taxis
- Model A : $(\chi > 0 \ \xi > 0)$ pursuit-evasion model
- Basic L¹(Ω) estimate :

$$\frac{d}{dt}\left(\int_{\Omega}P(x,t)dx+b\int_{\Omega}N(x,t)dx\right)+C_{1}\left(\int_{\Omega}P(x,t)dx+b\int_{\Omega}N(x,t)dx\right)\leqslant C_{2}$$

where C_1 and C_2 are positive constants.

Global existence in time

Theorem

Suppose that P_0 , N_0 , $W_0 \in W^{1,r}(\Omega)$, r > n are non-negative functions. For Model A and Model B there exists the unique local non-negative classical solution (N, P, W) satisfying boundary and initial defined on $\bar{\Omega} \times [0, T_{max})$ such that

$$(\textit{N},\textit{P},\textit{W}) \in \left(\textit{C}([0\,,\textit{T}_{\textit{max}}):\textit{W}^{1,\textit{r}}(\Omega)) \cap \textit{C}^{2,1}(\bar{\Omega} \times (0\,,\textit{T}_{\textit{max}})))^3\,.$$

- Moreover, $T_{max} = \infty$ and the solution is uniformly L^{∞} bounded in the case of
- Model B ($\chi > 0, \xi = 0$) for all $n \ge 1$
- Model A $(\chi > 0, \xi > 0)$ in the case of n = 1.
- P. Mishra, D.W. (Math. Mod. & Methods in Appl. Sc. (M3AS), 2022)

Linear stability analysis for Model B and Hopf bifurcation

• The coexistence steady state to Model B is of form

$$ar{\it E} = (ar{\it N}, ar{\it P}, ar{\it W}) \quad {
m where} \quad ar{\it W} = rac{\mu}{\gamma} ar{\it P} \, .$$

• A complex number belongs to the spectrum of the linearization of Model B at \bar{E} iff it is an eigenvalue of the following stability matrix :

$$M_j = \begin{pmatrix} -D_1 h_j + a_{11} & a_{12} & -\chi \bar{N} h_j \\ a_{21} & -D_2 h_j + a_{22} & 0 \\ 0 & a_{32} & -D_3 h_j + a_{33} \end{pmatrix}.$$

where $\{h_j\}_{j=0}^\infty$ denotes the eigenvalues of the Laplace operator $-\Delta$ with homogeneous Neumann boundary condition and $[a_{i,j}]$ is the Jacobian matrix for O.D.E. case.

$$a_{11} < 0$$
, $a_{12} < 0$, $a_{21} > 0$, $a_{22} \leqslant 0$ $a_{32} > 0$ $a_{33} < 0$.

lacktriangle For any $\chi>0$ considered as a **bifurcation parameter**: $\det M_j<0$ and $\mathrm{tr}M_j<0$.

Linear stability analysis for Model B and Hopf bifurcation

The dispersal equation of stability matrix M_j is following

$$\lambda^{3} + \rho_{j}^{(1)}\lambda^{2} + \rho_{j}^{(2)}\lambda + \rho_{j}^{(3)}(\chi) = 0$$

where

$$\begin{split} \rho_j^{(1)} &= -\text{tr} M_j = - (a_{11} + a_{22} + a_{33}) + (D_1 + D_2 + D_3) h_j \,, \\ &:= \alpha_0 + \alpha_1 h_j \,, \\ \rho_j^{(2)} &= a_{11} a_{22} - a_{12} a_{21} + a_{11} a_{33} + a_{22} a_{33} \\ &\quad + h_j (-a_{22} D_1 - a_{33} D_1 - a_{11} D_2 - a_{22} D_3 - a_{11} D_3 - a_{33} D_2) \\ &\quad + h_j^2 \left(D_1 D_2 + D_1 D_3 + D_2 D_3 \right) \\ &:= \beta_0 + \beta_1 h_j + \beta_2 h_j^2 \,, \\ \rho_j^{(3)} (\chi) &= -\text{det} M_j = -a_{11} a_{22} a_{33} + a_{12} a_{21} a_{33} \\ &\quad + h_j (a_{22} a_{33} D_1 + a_{11} a_{22} D_3 - a_{12} a_{21} D_3 + a_{11} a_{33} d_2) \\ &\quad + h_j^2 \left(-a_{22} D_1 D_3 - a_{33} D_1 D_2 - a_{11} D_2 D_3 \right) + D_1 D_2 D_3 h_j^3 + \chi a_{21} a_{32} \bar{N} h_j \,, \\ &= \left(\gamma_0 + \gamma_1 h_j + \gamma_2 h_j^2 + \gamma_3 h_j^3 \right) + \chi (\gamma_4 h_j) := \rho_j^{(3,1)} + \chi \rho_j^{(3,2)} > 0 \end{split}$$

where we have denoted $\rho_j^{(3)}(\chi) = \rho_j^{(3,1)} + \chi \rho_j^{(3,2)}$. It can be checked that all coefficients α_j , β_j , γ_j are positive.

Linear stability analysis for Model B and Hopf bifurcation

① \bar{E} is linearly stable if and only if for each $j \ge 0$ matrices M_j have eigenvalues with negative real parts which according to the Routh-Hurtwitz stability criterion is equivalent to the conditions

$$\begin{split} \rho_j^{(1)} &> 0, \; \rho_j^{(3)} > 0, \\ \text{and} \quad Q_j &:= \rho_i^{(1)} \rho_i^{(2)} - \rho_i^{(3)}(\chi) = \rho_i^{(1)} \rho_i^{(2)} - \rho_i^{(3,1)} - \chi \rho_i^{(3,2)} > 0 \qquad \text{ for all } j \geqslant 0 \,. \end{split}$$

2 There exists $\chi^H > 0$ such that

$$\chi^{H} = \min_{j \in \mathbb{N}_{+}} \tilde{\Psi}(h_{j}) := \left\{ \frac{\rho_{j}^{(1)} \rho_{j}^{(2)} - \rho_{j}^{(3,1)}}{\rho_{j}^{(3,2)}} \right\}$$
 (1)

and the steady state $ar{\it E}$ is stable if $\chi < \chi^{\it H}$.

$$\tilde{\Psi}(h_i) \neq \tilde{\Psi}(h_k)$$
 for $i \neq k$

then the minimum is attained for a singe $i = i_0$.

Since ${\rm tr} M_{j_0} < 0$ and ${\rm det} M_{j_0} < 0$ there is one real negative eigenvalue and a pair of conjugate eigenvalues which cross imaginary axis for $\chi = \chi^H$ with the transversality condition being satisfied.

Theorem

There exist $\chi^H > 0$ such that steady state \bar{E} in model B is locally asymptotically stable if $\chi < \chi^H$. Morrover, at χ^H a solution periodic in space and time emerges according to the Hopf bifurcation mechanism.

based on result of Amann, 1991

Digression: Shoener's model of intra-gild prey-predator interactions

predator and prey exploit common resources

$$\begin{cases} P_t = d_1 \Delta P - \xi \nabla \cdot (P \nabla U) + \frac{b_1 R c P}{\gamma + c P + e N} - \delta P + d_1 N P , \\ N_t = d_2 \Delta N + \frac{b_2 R e N}{\gamma + c P + e N} - \delta' N - d_2 N P , \\ U_t = d_U \Delta U + \alpha N - \beta U , \end{cases}$$

with homogeneous Neumann boundary condition

- Kinetic O.D.E model has no periodic orbits (Bendixona-Dulac ctriterion)
- For the Schoener model with indirect prey taxis for ξ big enough there appears Hopf bifurcation (periodic in space and time).
- O.D.E. E. Ruggieri, S.J. Schreiber, Math. Biosc. Eng. 2005.
- P.D.E. P. Mishra, D. W., Applied Mathematics Letters 2022.

Numerical solutions of models A and B

Non-dimensional Rosenzweig-MacArthur model in the frame of model A

$$\begin{cases} N_t = \Delta N + \nabla \cdot (\chi N \nabla W) + rN \left(1 - N\right) - \frac{aNP}{(1 + \beta N)}, \\ P_t = d_p \Delta P - \nabla \cdot (\xi P \nabla N) - \delta P + \frac{cNP}{(1 + \beta N)}, \\ W_t = d_w \Delta W + \gamma P - \mu W, \end{cases}$$

with non-negative initial and no-flux boundary condition.

- 1D simulations with the help of MATLAB PDEPE tool ($\Delta t = 0.01, \Delta x = 0.1$)
- 2D simulations with the help of FreeFem++ solver ($\Delta t = 0.01, \Delta x = \Delta y = 0.1$)
- Values of model parameters are assumed to be

- Unique coexistence steady state E = (0.3333; 0.2924; 5.8490) and $\chi^H = 6.889$.
- Initial data: perturbation of the steady state e.g.

$$N(x,0) = \bar{N} + 0.1\cos\left(\frac{j\pi x}{L}\right), \ P(x,0) = \bar{P} + 0.1\cos\left(\frac{j\pi x}{L}\right), \ W(x,0) = \bar{W} + \cos\left(\frac{j\pi x}{L}\right) \tag{3}$$

Model B; convergence to the steady state (1D simulations)

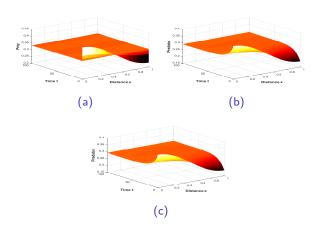
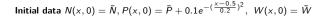


Figure 1: Model B: Perturbation in model B approaches the constant steady state \bar{E} for $\chi < \chi^H$ with j=1

Model B; transition of perturbation (1D simulation)



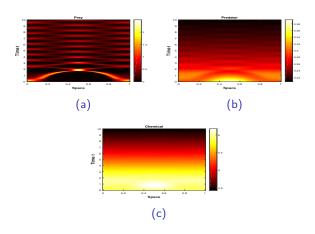


Figure 2: Model B: spatio-temporal patterns for $\chi > \chi^H$.

Model A; periodic solutions (1D simulations)

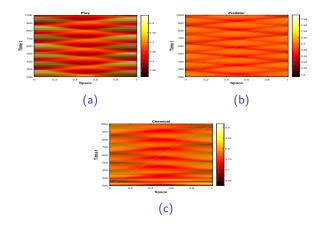


Figure 3: Model A: space-time patterns in unit domain when $\chi=5,\ \xi=0.2$ and symmetrical initial data with j=4.

Model B; separation regions (2D surface plot)

Gaussian initial data for predator centered in the middle of the square with constant initial data for the prey $N=\bar{N}$ and for the chemical $W=\bar{W}$

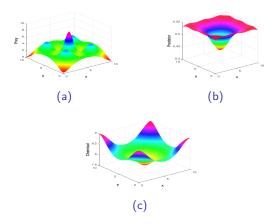


Figure 4: Model B ($\xi=0$): 2D separation regions for $\chi=10$ at time step t=1500 .

Model A; spike solution

Gaussian initial data for predator and prey centered in the middle of the square with constant initial data \bar{W} for the chemical.

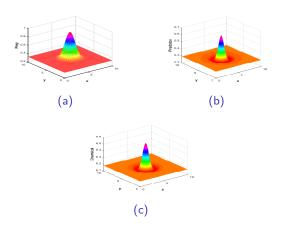


Figure 5: Model A: 2D simulation result for model A at time t=10 for $\chi=0.5, \xi=10.0$

Model A; spike solution

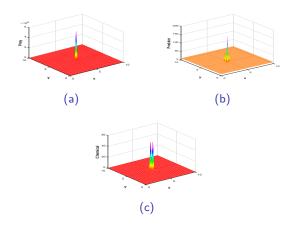


Figure 6: Model A: numerical indication of blowup at time t=134 for model A for $\chi=0.5, \xi=10.0$

How to modify model A to prevent blow-up?—> Model C

- In Model C a minimal modification with respect to model A is made for prevention of blow-up in finite time.
- The kinetic part is as in the classical Bazykin model (1976).
- Density-dependent suppression of velocity in predators is interpreted as the result of interference (kind of regularisation)

$$\begin{cases} P_t = d_P \Delta P - \xi \nabla \cdot P\left(\frac{\nabla N}{1 + \sigma P}\right) + bF(N) - \delta P - \delta_1 P^2, \\ N_t = d_N \Delta N + \chi \nabla \cdot N \nabla W - F(N)P + rN - r_1 N^2, \\ W_t = d_W \Delta W + \gamma P - \mu W, \end{cases}$$

Model C

Theorem

If P_0 , N_0 , $W_0 \in W^{1,r}(\Omega)$, r > n are non-negative functions then there exist global in-time, non-negative classical solution to Model C satisfying boundary and initial condition provided $n \leqslant 3$ and the following restrictions on parameters are satisfied

$$\mathbf{Q} \begin{cases} \delta_1 \geqslant \left(\frac{\gamma^2(16+n)}{d_W} + d_W\right), \\ r_1 \geqslant \left(\frac{\chi^2 A_N}{(d_N)^2} + \frac{2\chi^2}{d_W} + d_W\right), \\ with \quad A_N = \frac{2\left((d_N)^2 + (d_W)^2 + \xi^2 \sigma^{-2}\right)}{d_W}. \end{cases}$$

P.Mishra, D.W., preprint 2022.

Numerical solutions to Model C

Set of parameters

$$r=2, r_1=1.8, a=0.7, b=0.9, \beta=2, \mu=0.01, \delta=0.1, \delta_1=0.15, \gamma=0.015, d_n=1, d_p=0.1, d_w=0.05.$$

- lacktriangle For this choice of parameters values the restriction f Q holds if and only if $\sigma>\sigma_c:=19.7$
- ullet For $\sigma < \sigma_c$, num. sol. to Model C exhibits finite-time blow-up of solution and for
- For $\sigma > \sigma_c$ there is prevention of blow-up (global solutions) .
- Initial data: perturbation of the constant steady state $E^* = (P^*, N^*, W^*) = (0.741, 1.016, 0.74)$

$$P_0(x, y) = P^* + 500e^{-100((x-2.5)^2 + (y-2.5)^2)},$$

$$N_0(x, y) = N^* + 800e^{-100((x-2.5)^2 + (y-2.5)^2)},$$

$$W_0(x, y) = W^* + 100e^{-100((x-2.5)^2 + (y-2.5)^2)}$$

where
$$(x, y) \in \Omega = (0, 5) \times (0, 5)$$

Figure 1

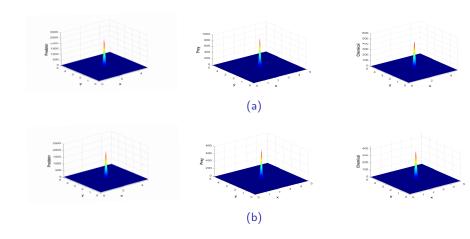


Figure 7: (a) Approximated blowup solution at time $t=1.5\times 10^{-4}$ for $\sigma=0.0$ (b) Approximated blowup solution at time $t=2.3\times 10^{-4}$ for $\sigma=5.0$ subject to initial conditions. It was assumed $\chi=0.1,~\xi=30$.

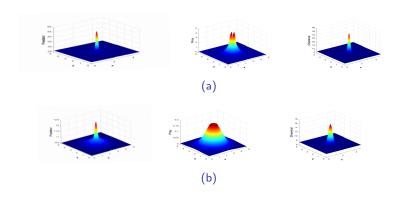
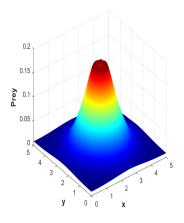


Figure 8: Snapshots for $\sigma=25$ at different time steps. (a) t=13, (b) t=50



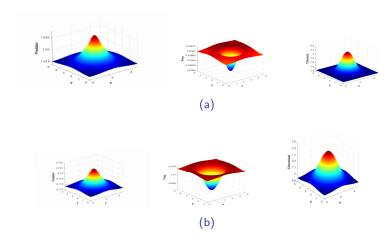


Figure 9: Snapshots for $\sigma=25$ at different time steps. (a) t=100, (b) t=500. All other parameter values and initial condition is same as in figure (7).

Sketch of proof of the global existence for Model C

- 1 There is a local smooth solution defined on $[\tau, T_{max})$ satisfying $L^1(\Omega)$ -bound.
- 2 We begin with the N-equation

$$N_t = d_N \Delta N + \chi \nabla \cdot N \nabla W - F(N)P + rN - r_1 N^2$$

3 Using the Gagliardo-Nirenberg inequality and $L^1(\Omega)$ -bound one proves that for $n \leq 3$

$$\sup_{t\in[\tau,T_{max})}\|N(\cdot,t)\|_{k}\leqslant C_{N}(k)$$

provided

$$\sup_{t\in[\tau,T_{max})}\|\nabla W(\cdot,t)\|_{4}\leqslant C'_{W}.$$

Then

$$\sup_{t \in [\tau, T_{max}]} \|N(\cdot, t)\nabla W(\cdot, t)\|_{4-\varepsilon} \leqslant C_W''$$

Using properties of the heat semigroup we infer that

$$\sup_{t\in[\tau,T_{max})}\|N(\cdot,t)\|_{\infty}\leqslant C_{N}.$$

5 Using $L^p - L^q$ estimates for analytic semigroups $(n \le 3)$ we get

$$\sup_{t \in [\tau, T_{max})} \|\nabla N(\cdot, t)\|_p \leqslant C_N' \quad \text{for } p < 4$$

Next it is easy to deduce by parabolic regularity that

$$\sup_{t \in [\tau, T_{max})} \|\nabla P(\cdot, t)\|_{\infty} \leqslant C_{P}, \quad \sup_{t \in [\tau, T_{max})} \|\nabla W(\cdot, t)\|_{\infty} \leqslant C_{W}$$

Sketch of proof of the global existence for Model C

• The most complicated part of the proof is to find estimate on $\|\nabla W(\cdot,t)\|_4$. To this end we derive differential inequality

$$y'(t) + y(t) \leqslant Const.$$
 for $t \in [\tau, T_{max})$

where for suitable constants A_1 and A_2

$$y(t) = \int_{\Omega} |\nabla W|^4 + \int_{\Omega} P|\nabla W|^2 + \int_{\Omega} N|\nabla W|^2 + A_1 \int_{\Omega} N^2 + A_2 \int_{\Omega} P^2.$$

lacktriangle We use Bochner's type inequality : For $W\in \mathcal{C}^2(ar\Omega)$ there holds

$$2\nabla W \nabla \Delta W = \Delta |\nabla W|^2 - 2|D^2 W|^2$$

and

• Mizoguchi-Souplet inequality : for $u \in C^2(\bar{\Omega})$ satisfying $\frac{\partial u}{\partial \nu} = 0$ on $\partial \Omega$ and Ω there holds the following pointwise inequality

$$\frac{\partial |\nabla u|^2}{\partial \nu} \leqslant K |\nabla u|^2 \quad \text{on} \quad \partial \Omega$$

where K depends on the curvature of $\partial\Omega$.

Lemma

Let (P,N,W) be a solution to Model C . Then there exists a constant C>0 such that for $t\in(0,T_{max})$.

$$\begin{split} \frac{d}{dt} \int_{\Omega} |\nabla W|^4 + d_W \int_{\Omega} \left| \nabla (|\nabla W|^2) \right|^2 + 4\mu \int_{\Omega} |\nabla W|^4 \\ \leqslant \gamma^2 \left(\frac{16+n}{d_W} \right) \int_{\Omega} |\nabla W|^2 P^2 + C \,. \end{split}$$

Corollaries and open questions

- Chemical signalling may destabilize a space-homogeneous steady state in a prey -predator model and gives rise to space-time dependent pattern formation.
- When an O.D.E. model is extended to a P.D.E model with taxis terms some mechanism of blow-up prevention might be necessary to be built in the model.
- Non of the two taxis mechanisms studied in Model C alone can lead to the blow-p for n=2. Their cumulative effect (for $\sigma=0$) leading to blow-up demands farther investigation.
- Are there any weak solutions for for Model C when $\sigma=0$, weak enough to grasp the singular solutions?

Thank you.