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Difference equations tools

D. Franco, C. Guiver, H. Logemann, J. Perán, Electron. J. Qual. Theory Differ. Equ., 2020.



Delay equation model

x ′(t) = −µ
(
x(t)− f (x(t − h))

)
, t > 0, (1)

with µ,h > 0, f : I ⊂ R → I, and initial condition ξ ∈ C([−h,0], I).

Nicholson’s blowflies equation (Nature, 1980)

f (x) =
1
µ

xe−x ,

Mackey–Glass equation (Science, 1977)

f (x) =
1
µ

ax
1 + xb , a > 0, b ≥ 1.

Main contibutions by: Bellman, Cook, Hale, Krisztin, Mallet-Paret,
Nussbaum, Sell, Smith, Walther . . .



Conditions on f

f unimodal (U)
f : (a,b) ⊂ R → (a,b) is differentiable, with −∞ ≤ a < b ≤ +∞;
satisfies that there is a unique x∗ such that f ′(x) > 0 if
a ≤ x < x∗, f ′(x∗) = 0, and f ′(x) < 0 if x∗ < x < b; and that
there exists K ∈ (x∗,b) such that f (K ) = K , f (x) > x for
x ∈ (a,K ), and f (x) < x for x ∈ (K ,b).

Condition (L)
Condition (U) holds and f (f (x∗)) > x∗.
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Denote β := f (x∗) and α := f (β).



Size of the global attractor

Lemma
If (L) holds, then for any solution x(t ; ξ) of (1) with
ξ ∈ C([−h,0], (a,b)) there exists t0 s.t. x(t ; ξ) ∈ [α, β] for t ≥ t0.

Problem
The interval [α, β] might have a proper subinterval which
contains the global attractor of (1). Estimate the sharpest
attracting interval when condition (L) holds.

G. Röst, J. Wu, Proc. R. Soc. Lond. Ser. A, 2007.
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Dichotomy

Theorem

If (L) holds and f satisfies
(S) (Sf )(x) < 0 on [α, β], where

(Sf )(x) :=
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

.

Then, exactly one of the following holds:
1 f ′(K ) ≥ −1 and the global attractor of (1) for all values of

the delay is {K}.
2 f ′(K ) < −1 and the sharpest invariant and attracting

interval containing the global attractor of (1) for all values
of the delay is [ᾱ, β̄], where {ᾱ, β̄} is the unique nontrivial
2-cycle (i.e., ᾱ = f (β̄) and β̄ = f (ᾱ)) of the map f in [α, β].

E. Liz, G. Röst, Discrete Contin. Dyn. Syst. 2009.



x ′(t) = −µ
(
x(t)− f (x(t − h))

)
Related difference equation

xn = f (xn−1), x0 ∈ I. (2)

Lemma
If there exists an interval I0 ⊂ I such that

inf I0 ≤ lim inf
n→+∞

f (n)(x) ≤ lim sup
n→+∞

f (n)(x) ≤ sup I0 ∀ x ∈ I ,

then the solutions of (1) satisfy

inf I0 ≤ lim inf
t→+∞

x(t , ξ) ≤ lim sup
t→+∞

x(t , ξ) ≤ sup I0

∀ h > 0, ∀ ξ ∈ C([−h,0], I) .

A. F. Ivanov, A. N. Sharkovsky, Dynam. Report. Expositions Dynam. Systems, 1992.

T. Yi, X. Zhou, Proc. Roy. Soc. A, 2010.



2-cycles and global stability

Theorem
The following statements are equivalent:

K is a global attractor for (2).
f (2)(x) ̸= x

W. A. Coppel, The solution of equations by iteration. Proc. Cambridge Phil. Soc., 1955.

Theorem
For S-unimodal maps there exists a global attracting 2-cycle for
the difference equation (2).

D. Singer, SIAM J. Appl. Math. 1978.



Rewrite xn = f (xn−1) as

yn = yn−1 + g(yn−1), y0 ∈ domg, (3)

where g ∈ C1(α, β), α < id+g < β, g′ < 0, g(β) < 0 < g(α).

Definition
Define σg : (−bg ,bg) → (0,+∞) by

σg(u) =

{
g−1(−u)−g−1(u)

u , u ̸= 0,
−2

g′(yg)
, u = 0,

where bg := min{− inf g, supg}.

Property

2-cycles correspond with solutions of σg(u) = 1.



Theorem

1 σg(0) > 1 =⇒ K is L.A.S.

2 σg(0) < 1 =⇒ K is unstable.

3 K is G.A.S. ⇐⇒ 1 < σg(u) for all u ̸= 0.
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Theorem
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Proposition

1 If
(
g−1)′ is strictly concave, then the difference equation

has at most one nontrivial period-2 solution.
2 If

(
g−1)′ is strictly concave and g′(yg) ≥ −2, then yg is

G.A.S.

Assume g ∈ C3(domg). Since

(g−1)′′′(u) =
3(g′′(y))2 − g′(y)g′′′(y)

(g′(y))5 ∀ u = g(y), y ∈ (a,b) ,

a sufficient condition for the strict concavity of
(
g−1)′ is

3(g′′)2 − g′g′′′ > 0.
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Theorem

Assume that (L) holds, that f is three times differentiable and
satisfies

3(f ′′)2 − (f ′ − 1)f ′′′ > 0 , (4)

on the interval (α, β). Then, exactly one of the following holds:
1 f ′(K ) ≥ −1 and the global attractor of (1) for all values of

the delay is {K}.
2 f ′(K ) < −1 and the sharpest invariant and attracting

interval containing the global attractor of (1) for all values
of the delay is [ᾱ, β̄], where {ᾱ, β̄} is the unique nontrivial
2-cycle of the map f in [α, β].



Example

Consider equation (1) with f : (0,1) → (0,1) given by

f (x) =
19
20

x(1 − x)(5 − 4x + 2x3).
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Example

Consider equation (1) with f : (0,1) → (0,1) given by

f (x) =
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x ′(t) = −µ
(
x(t)− f (x(t − h))

)
(1)

⇑

xn = f (xn−1) (2)

⇕

yn = yn−1 + g(yn−1) (3)



Topological conjugacy

g = f − id is the natural choice to rewrite (2) in the form (3).
But any topologically conjugate equation of (2) belonging
to model (3) will give a condition on f .
If f is positive and x 7→ f (x)/x is decreasing, we have

Theorem
Assume that (L) holds, that d(x) := f (x)/x is three times
differentiable with d ′ < 0, and that

3(g′′)2 − g′g′′′ > 0 ,

on the interval (lnα, lnβ), where g := ln ◦d ◦ exp. Then, the
dichotomy holds.
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Nicholson’s blowflies equation

f (x) =
1
µ

xe−x ,

Mackey–Glass equation

f (x) =
1
µ

ax
1 + xb , a > 0, b ≥ 1.

Nicholson’s blowflies equation

In this case, g(x) = ln(1/µ)− ex and 3(g′′)2 − g′g′′′ = 2e2x > 0 .

Mackey–Glass equation

In this case, g(x) = ln(a/µ)− ln(1 + ebx) and

3(g′′)2(x)− g′(x)g′′′(x) =
b4e2bx(2 + ebx)

(1 + ebx)4 > 0 .



Control Theory

D. Franco, C. Guiver & H. Logemann, Acta Applicandae Mathematicae, 2021.





Lur’e systems: Linear process with nonlinear feedback:
ẋ = Ax + u
y = cT x
u = b f (y)

x ∈ Rn is the state
y is the observation or output
u is the input

Adding all together

ẋ(t) = Ax(t) + bf (cT x(t − h)).
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Goals

Persistence
Tend to a positive steady state (global stability)
Allows to plan ahead.



Main processes:

1 Mortality.
2 Interchanges among classes:

Migration

ẋi = −dixi +
n∑

j=1

aijxj , aij ≥ 0,

A =


−d1 a12 . . . a1n

a21 −d2
. . .

...
...

. . . . . . an−1n
an1 . . . ann−1 −dn

 Metzler and Hurwitz.
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Birth: a natural feedback

ẋ1(t) = −d1x1(t) +
n∑

j=1

a1jxj(t) + f
(

u(t),
n∑

j=1

cjxj(t − h)
)
+ v1(t),

ẋi(t) = −dixi(t) +
n∑

j=1

aijxj(t) + vi(t), i ∈ {2, . . . ,n},


h > 0 maturation time; f : [u−,u+]× R+ → R+ birth function;
ci ≥ 0 contribution of patch i to births in patch 1;
u(t) ∈ [u−,u+] ⊂ (0,∞) and vi(t) ≥ 0 controls or disturbances.

ẋ(t) = Ax(t)+bf (u(t), cT x(t−h))+v(t), b :=


1
0
...
0

 , c :=


c1
c2
...

cn

 .



Observavility

From an observation we know the state.

Theorem

ẋ = Ax , y = cT x is observable iff ker(O(cT ,A)) = {0}.

O(cT ,A) :=


cT

cT A
cT A2

...
cT An−1

 ∈ Rn×n .



ISS stability

A system is input-to-state stable (ISS) if

∥x(t)∥ ≤ β(∥x(0)∥, t) + γ(∥u∥∞), t ≥ 0

for all admissible initial values and inputs, with
β(s, t) increasing in s, decreasing in t , β(0, t) = 0 and
limt→+∞ β(s, t) = 0.
γ is increasing and γ(0) = 0.



ISS stability

A system is input-to-state stable (ISS) if

∥x(t)∥ ≤ e−t∥x(0)∥+ ∥u∥∞, t ≥ 0

for all admissible initial values and inputs, with
β(s, t) increasing in s, decreasing in t , β(0, t) = 0 and
limt→+∞ β(s, t) = 0.
γ is increasing and γ(0) = 0.



Assumptions

(P) ker(O(cT ,A)) ∩ Rn
+ = {0}.

0 cannot be L.A.S.
The smallest positive parameter value q for which the additive
linear perturbation qbctx(t − h) destabilizes ẋ = Ax is −1

cT A−1b

Sector bound condition

Let u∗ ∈ [u−,u+] and p = −1
cT A−1b .

(N) There exists a unique y∗ > 0 such that f (y∗) = py∗ and

|f (u∗, y)− py∗| < p|y − y∗|, y ∈ R+ \ {0, y∗}
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Stability

Let u∗ ∈ U, then x∗ = −A−1bpy∗ is the non-zero steady state of
the system with u ≡ u∗ and v ≡ 0.

Theorem

Assume (P) and (N) and let β > α > 0.Then there exist R ≥ 1
and µ > 0 such that

∥x(t)− x∗∥ ≤ R
(
e−µt∥ξ − x∗∥M1 + ∥u − u∗∥L∞(0,t) + ∥v∥L∞(0,t)

)
,

for all t ≥ 0, u ∈ L(R+,U), ξ ∈ M∞
+ := Rn

+ × L∞([−h,0],Rn
+),

and v ∈ L∞
+ with

∥ξ∥M∞ + ∥v∥L∞ ≤ β, ∥ξ0∥ ≥ α.



Application

G. Kiss and G. Röst. Controlling Mackey-Glass chaos. Chaos
27, 114321 (2017).

Process → Mackey-Glass equation.
Feedback → Constant, Proportional and Pyragas.

ẋ = Ax + b(f (ctx(t − h))+bk) → (A,b, cT , f + k)

ẋ = Ax−dx + bf (ctx(t − h)) → (A − I d ,b, cT , f )

ẋ = Ax−kbx+b(f (ctx(t−h)+kctx(t − h)) → (A−k I b,b, cT , f+k id)
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Thank you!


