Persistence, global stability and attractor size

for delay differential equations

Daniel Franco

Universidad Nacional de Educacion a Distancia (UNED), Spain

IMDETA, November 2023



What is the talk about?

Asymptotic behaviour of delay equations

@ Difference equations
@ Control theory
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Difference equations tools

D. Franco, C. Guiver, H. Logemann, J. Peran, Electron. J. Qual. Theory Differ. Equ., 2020.



Delay equation model

X'(t) = —p(x(t) = f(x(t = h))), >0, (1)
with u, h > 0, f: | C R — [, and initial condition £ € C([—h, 0], /).

@ Nicholson’s blowflies equation (Nature, 1980)

1
f(x) = —xe ¥,
(x) .

@ Mackey—Glass equation (Science, 1977)

_1 ax
G

f(x) a>0,b>1.
Main contibutions by: Bellman, Cook, Hale, Krisztin, Mallet-Paret,

Nussbaum, Sell, Smith, Walther ...



Conditions on f

f unimodal (U)

f: (a,b) C R — (a, b) is differentiable, with —co < a < b < +o0;
satisfies that there is a unique x. such that f'(x) > 0 if
a<x<x.,f(x)=0,and f(x) < 0if x. < x < b; and that
there exists K € (x,, b) such that f(K) = K, f(x) > x for

x € (a,K), and f(x) < x for x € (K, b).

Condition (L)
Condition (U) holds and f(f(x.)) > x..




Conditions on f

1.0
(@as fl2))
! :
0.5 { :
0 ‘
0 T 5 53 1.0

Denote 5 :=f(x,) and «:=f(p3).



Size of the global attractor

If (L) holds, then for any solution x(t; &) of (1) with
¢ €C([—h,0],(a, b)) there exists ty s.t. x(t;¢) € [a, B] fort > t.

Problem

The interval [«, 5] might have a proper subinterval which
contains the global attractor of (1). Estimate the sharpest
attracting interval when condition (L) holds.

G. Rést, J. Wu, Proc. R. Soc. Lond. Ser. A, 2007.
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Dichotomy
Theorem |

If (L) holds and f satisfies
(S) (Sf)(x) <0 on|a,p], where

_(x) 3 /f"(x)\?
S00="50 -2 (7))

Then, exactly one of the following holds:

Q@ ' (K) > —1 and the global attractor of (1) for all values of
the delay is {K}.

Q f'(K) < —1 and the sharpest invariant and attracting
interval containing the global attractor of (1) for all values
of the delay is [a, 3], where {a, 3} is the unique nontrivial
2-cycle (i.e., a = f(p) and g = f(a)) of the map f in [«, A].

E. Liz, G. Rost, Discrete Contin. Dyn. Syst. 2009.



X'(t) = —p(x(t) — f(x(t = h)))

Related difference equation

Xo=f(X0_1), X0 €. (2)

Lemma
If there exists an interval Iy C | such that

| A\

inf Iy < liminf £ (x) < limsup A" (x) <suply Vxel,
n—-+o0 n—-+oo

then the solutions of (1) satisfy

inf Iy < I|mJ:an(t €) <limsupx(t,&) <suply

t——+o0

Yh>0,v¢eC(—ho0]0).

A. F. Ivanov, A. N. Sharkovsky, Dynam. Report. Expositions Dynam. Systems, 1992.

T. Yi, X. Zhou, Proc. Roy. Soc. A, 2010.



2-cycles and global stability

The following statements are equivalent:
@ K is a global attractor for (2).
e f®(x) #x

W. A. Coppel, The solution of equations by iteration. Proc. Cambridge Phil. Soc., 1955.

For S-unimodal maps there exists a global attracting 2-cycle for
the difference equation (2).

D. Singer, SIAM J. Appl. Math. 1978.



Rewrite x, = f(x,_1) as

Yn=Yn1+9(¥n-1), YoE€domg, (3)
where g € C' (o, B), a < id4+g < B, g < 0, g(B) < 0 < g(a).

| \

Definition
Define og4: (—bg, bg) — (0, +00) by

g (~u)-g7'(u)
ag(U) = { “ U

-2 _
9'(vg)’ u=0,

where by := min{—inf g,sup g}.

Property
2-cycles correspond with solutions of og(u) = 1.




Q 04(0)>1 = KisLAS,

@ 04(0) <1 = K is unstable.

Q KisGAS. < 1<o4(u)forallu+0.

L.A.S. and G.A.S.




Q 540 >1 = KisLAS.

Q 04(0) <1 = K is unstable.

Q KisGAS. < 1<o4(u)forallu+0.

L.A.S. but not G.A.S.
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Q 540 >1 = KisLAS.

Q 04(0) <1 = K is unstable.

Q KisGAS. < 1<o4(u)forallu+0.

G.A.S.




Proposition

@ If (g7 is strictly concave, then the difference equation
has at most one nontrivial period-2 solution.

Q If (g7")"is strictly concave and ¢'(yg) > —2, then yg is
G.A.S.




Proposition

@ If (g7 is strictly concave, then the difference equation
has at most one nontrivial period-2 solution.

Q If (g7")"is strictly concave and ¢'(yg) > —2, then yg is
G.A.S.

Assume g € C3(dom g). Since

3(9"W)? -9 )" (y)
(gW))°

a sufficient condition for the strict concavity of (g*1 )' is

(97)"(1) =

Vu=g(y). y€(ab),

3(9")? - d'9" > 0.



Assume that (L) holds, that f is three times differentiable and
satisfies

3(f)2 — (F —1)f" >0, (4)
on the interval (o, ). Then, exactly one of the following holds:

@ ' (K) > —1 and the global attractor of (1) for all values of
the delay is {K}.

Q@ f'(K) < —1 and the sharpest invariant and attracting
interval containing the global attractor of (1) for all values
of the delay is [a, 3], where {&, B} is the unique nontrivial
2-cycle of the map f in [«, 5].




Consider equation (1) with f: (0,1) — (0, 1) given by

f(x) = %xﬁ — x)(5 — 4x +2x3).

. 1
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Consider equation (1) with f: (0,1) — (0, 1) given by

f(x) = %xﬁ — x)(5 — 4x +2x3).




Consider equation (1) with f: (0,1) — (0, 1) given by

f(x) = %xﬁ — x)(5 — 4x +2x3).




X'(t) = —p(x(t) = f(x(t = h)))

Xn = f(Xn-1)

)

Yn=Yn-1+9(¥n-1)



Topological conjugacy

@ g = f —id is the natural choice to rewrite (2) in the form (3).

@ But any topologically conjugate equation of (2) belonging
to model (3) will give a condition on f.




Topological conjugacy

@ g = f —id is the natural choice to rewrite (2) in the form (3).

@ But any topologically conjugate equation of (2) belonging
to model (3) will give a condition on f.

@ If f is positive and x — f(x)/x is decreasing, we have

Assume that (L) holds, that d(x) := f(x)/x is three times
differentiable with d’ < 0, and that

s(g//)z _ g/g/// >0,

on the interval (In a, In 3), where g := Inod o exp. Then, the
dichotomy holds.




Consider equation (1) with f: (0,1) — (0, 1) given by

sign(3(f")° —(f'=1) ")
10

—~

- =—



@ Nicholson’s blowflies equation

"
f(x) = —xe %,
(x) .
@ Mackey—Glass equation

1 ax
M= e

a>0,b>1.
Nicholson’s blowflies equation

In this case, g(x) = In(1/u) —e*¥ and 3(9")? — g'g"” = 2e?* > 0.
Mackey—Glass equation

In this case, g(x) = In(a/u) — In(1 4 ¢®) and

4 2bx ebx
3(6"12(x) - g (x)g" () = T B ET)

(ET

[m]

=




Control Theory

D. Franco, C. Guiver & H. Logemann, Acta Applicandae Mathematicae, 2021.
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Lur’e systems: Linear process with nonlinear feedback:

X=Ax+u
y=c'x
u=>bf(y)

x € R"is the state
y is the observation or output
uis the input



Lur’e systems: Linear process with nonlinear feedback:
X=Ax+u
y=c'x
u=>bf(y)

x € R"is the state
y is the observation or output
uis the input

Adding all together
x(t) = Ax(t) + bf(c" x(t — h)).



Goals

@ Persistence

@ Tend to a positive steady state (global stability)
Allows to plan ahead.



Main processes:

© Mortality.

© Interchanges among classes:
Migration

n
Xj = —dix; + Z ajXj, aj > 0,
J=1



Main processes:

© Mortality.
© Interchanges among classes:
Migration
n
Xj = —dix; + Z ajXj, aj > 0,
j=1
—dy  ap ain

Metzler and Hurwitz.



Birth: a natural feedback

fa(8) = —dixa(t) + 3 anp(t) + F(u(0). > ox(t = h)) +w (D),
j=1

j71

Xxi(t) = —dixi(t) +Za,,x, )+ vi(t), ie{2,...,n},

h > 0 maturation time; f: [u—,u™] x R, — R birth function;
¢; > 0 contribution of patch i to births in patch 1;
u(t) € [u~,ut] C (0,00) and v;(t) > 0 controls or disturbances.

X(t) = Ax(t)+bf(u(t), c"x(t=m)+v(t), b=]|.|, c=



Observavility

From an observation we know the state.

x = Ax, y = ¢’ x is observable iff ker(O(c', A)) = {0}.

o7
c’A
OcT,A)=| A | ermn.

CTAnq



ISS stability

A system is input-to-state stable (ISS) if

XDl < BIxO), 1) +~(lull), =0

for all admissible initial values and inputs, with
@ (s, t) increasing in s, decreasing in t, 5(0,t) = 0 and
lims_ 40 B(8, 1) = 0.
@ v isincreasing and v(0) = 0.



ISS stability

A system is input-to-state stable (ISS) if
Ix(BIF < e IxO)] + [ullos, t>0

for all admissible initial values and inputs, with
@ (s, t) increasing in s, decreasing in t, 5(0,t) = 0 and
lims_ 40 B(8, 1) = 0.
@ v isincreasing and v(0) = 0.



(P) ker(O(cT, A) N R? = {0}. J

0 cannot be L.A.S.

The smallest positive parameter value g for which the additive

linear perturbation gbc!x(t — h) destabilizes x = Ax is CT%LD

Sector bound condition

Letu* € [u™,ut]and p = 51
(N) There exists a unique y* > 0 such that f(y*) = py* and

[f(u*,y) —py* <ply —y*l, yeR\{0,y"}




Stability

Let u* € U, then x* = —A~'bpy* is the non-zero steady state of
the system with u = v* and v = 0.

Assume (P) and (N) and let 3 > o« > 0.Then there exist R > 1
and p > 0 such that

Ix(2) = x*|| < R(e7M1l& = X[l + [lu = u*[l (0, + VIl (0,0))

forallt> 0, ue L(Ry,U), { € MP =R x L*°([-h,0],R]),
andv € LS with

€llm + VIl < B, [1E%)) > .




Application

G. Kiss and G. Rést. Controlling Mackey-Glass chaos. Chaos
27, 114321 (2017). J

@ Process — Mackey-Glass equation.
@ Feedback — Constant, Proportional and Pyragas.



Application

G. Kiss and G. Rést. Controlling Mackey-Glass chaos. Chaos
27, 114321 (2017). J

@ Process — Mackey-Glass equation.
@ Feedback — Constant, Proportional and Pyragas.

x = Ax + b(f(c'x(t — h))+bk) — (Ab,c’,f+k)
X = Ax—dx + bf(c'x(t—h)) — (A—Id,b,cT,f)

X = Ax—kbx+b(f(c'x(t—h)+kc'x(t — h)) — (A=kIb,b,c’, f+kid)
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Thank you!



