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Preliminaries
We are interested in second-order nonlocal differential
equations. A few general examples are the following.

−A

(∫ 1

0

∣∣u(s)
∣∣q ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1)

−A

(∫ 1

0

∣∣u′(s)
∣∣q ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1)

−A
(∫

Ω

∣∣u(s)
∣∣q ds

)
(∆u)(x) = λg

(
x ,u(x)

)
, x ∈ Ω ⊂ Rn

−A
(∫

Ω

∣∣Du(s)
∣∣q ds

)
(∆u)(x) = λg

(
x ,u(x)

)
, x ∈ Ω ⊂ Rn
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Preliminaries

−A

(∫ 1

0

∣∣u(s)
∣∣q ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1)

−A

(∫ 1

0

∣∣u′(s)
∣∣q ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1)

−A
(∫

Ω

∣∣u(s)
∣∣q ds

)
(∆u)(x) = λg

(
x ,u(x)

)
, x ∈ Ω ⊂ Rn

−A
(∫

Ω

∣∣Du(s)
∣∣q ds

)
(∆u)(x) = λg

(
x ,u(x)

)
, x ∈ Ω ⊂ Rn

Our Goal: To develop existence theorems for the ODEs
case when the problem is equipped with some boundary
data.
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To understand the broader context for these types of problems
let us recall the classical wave PDE with a source term; it reads:

utt − (∆u)(x) = f
(
x ,u(x)

)
.

This is a local PDE. A nonlocal version of this was proposed by
Kirchhoff in the late 1800s; it takes the following form.

utt − A
(∫

Ω
|Du|2 ds

)
(∆u)(x) = f

(
x ,u(x)

)
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To understand the broader context for these types of problems
let us recall the classical wave PDE with a source term; it reads:

utt − (∆u)(x) = f
(
x ,u(x)

)
This is a local PDE. A nonlocal version of this was proposed by
Kirchhoff in the late 1800s; it takes the following form.

utt − A
(∫

Ω
|Du|2 ds

)
︸ ︷︷ ︸

Nonlocal term!

(∆u)(x) = f
(
x ,u(x)

)
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To understand the broader context for these types of problems
let us recall the classical wave PDE with a source term; it reads:

utt − (∆u)(x) = f
(
x ,u(x)

)
This is a local PDE. A nonlocal version of this was proposed by
Kirchhoff in the late 1800s; it takes the following form.

utt − A
(∫

Ω
|Du|2 ds

)
(∆u)(x) = f

(
x ,u(x)

)
Steady-state solutions solve:

0− A
(∫

Ω
|Du|2 ds

)
(∆u)(x) = f

(
x ,u(x)

)
,

which is one of the model cases.
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0− A
(∫

Ω
|Du|2 ds

)
(∆u)(x) = f

(
x ,u(x)

)
Specialized to the case n = 1 (i.e., the one-dimensional setting)
we recover the model ODE:

−A
(∫

Ω

∣∣u′(s)
∣∣2 ds

)
u′′(x) = f

(
x ,u(x)

)
, x ∈ I ⊂ R.
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utt − A
(∫

Ω
|Du|2 ds

)
(∆u)(x) = f

(
x ,u(x)

)
All in all, there is a long history (literally 150 years!) of analyzing
nonlocal DEs both in the one-dimensional and
higher-dimensional cases.
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Let’s look at some specific references for a couple reasons.

1 To get a sense of some of the common assumptions in the
literature regarding these problems.

2 To provide a brief accounting of how I became interested in
these problems.
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The authors considered problems of the following type, where α
and β are linear functionals.

u′′(t) = f
(
t ,u(t)

)
, t ∈ (0,1)

u(0) = α[u]

u(1) = β[u]
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The authors considered problems of the following type, where α
and β are linear functionals.

u′′(t) = f
(
t ,u(t)

)
, t ∈ (0,1)

u(0) = α[u]

u(1) = β[u]

This first piqued my interest in nonlocal problems – specifically,
nonlocal boundary conditions.
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The following problem was considered:

−ϕ′′(t) = M
(
f ◦ ϕ

)α
(t)

(∫ 1

0
(f ◦ ϕ)(s) ds

)−β
, t ∈ (0,1),

subject to ϕ′(0) = 0 = ϕ(1). Existence of a positive solution
was shown under the assumption that f is continuous,
nondecreasing, and satisfied a growth condition, which I won’t
state here.
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The following problem was considered.

−a
(
‖u‖qLq

)
u′′(t) = h(t)f

(
u(t)

)
, t ∈ (0,1) subject to u′(0) = 0 = u(1)

Importantly, it was assumed that t 7→ a(t) was nondecreasing
and satisfied a(R) ⊂ (0,+∞).
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The following radially symmetric system (and, thus, a system of
ODEs) was considered.

−Ai
(
‖ui‖qi

Lqi

)
∆ui = fi(|x |,u), x ∈ Ω subject to ui = 0 on ∂Ω

Here it was assumed that the Ai functions were nondecreasing
and satisfied Ai(R) ⊂ [0,+∞). Some additional conditions
were imposed on the Ai functions – e.g., a limit condition
involving a ratio of the fi to the Ai .



Title
Preliminaries
Main Results

The following problem was considered.

−A
(∫

Ω

∣∣u(s)
∣∣γ ds

)
∆u = λf

(
x ,u(x)

)
, x ∈ Ω ⊂ Rn,

subject to u(x) = 0 on ∂Ω and u(x) > 0 in Ω. It was assumed
that A(t) > 0 for all t ≥ 0.
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They considered the problem

−A
(
‖u‖2L2

)
∆u = f

(
u(x)

)
, x ∈ Ω ⊂ Rn,

subject to u(x) = 0 on ∂Ω. Although A can change sign, it must
be positive on an open set having 0 as an accumulation point.
And, furthermore, a condition is imposed on a definite integral
of A. Also, only the L2-norm was considered as the argument of
A.
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Going back to the one-dimensional case, where we will
henceforth remain, we consider for a moment the specific
problem

−A

(∫ 1

0

∣∣u(s)
∣∣q ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1).
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Going back to the one-dimensional case, where we will
henceforth remain, we consider for a moment the specific
problem

−A

(∫ 1

0

∣∣u(s)
∣∣q ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1).

We summarize the conditions that are very common in the
literature.

1 A(z) > 0 for all z ≥ 0
2 A monotonicity condition on A – e.g., that A is monotone

increasing.
3 A growth-type condition on A – e.g., some on condition on

A(z) as z → +∞.
4 Conditions involving a ratio of f to A.
5 Considering only an integral of

∣∣u(s)
∣∣q as the argument for

the function A.
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−A

(∫ 1

0

∣∣u(s)
∣∣q ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1).

1 A(z) > 0 for all z ≥ 0
2 A monotonicity condition on A – e.g., that A is monotone

increasing.
3 A growth-type condition on A – e.g., some on condition on

A(z) as z → +∞.
4 Conditions involving a ratio of f to A.
5 Considering only an integral of

∣∣u(s)
∣∣q as the argument for

the function A.

Question: Are these necessary?
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−A

(∫ 1

0

∣∣u(s)
∣∣q ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1).

The methodology that I will discuss does not require any of
these assumptions. In fact, A(z) can equal zero infinitely often
and can even be negative on sets of infinite measure.
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−A

(∫ 1

0

∣∣u(s)
∣∣q ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1).

The methodology that I will discuss does not require any of
these assumptions. In fact, A(z) can equal zero infinitely often
and can even be negative on sets of infinite measure.

We also will be able to consider the above problem in the
following, more general formulation:

−A
((

a ∗ (g ◦ u)
)
(1)
)

u′′(t) = λf
(
t ,u(t)

)
, t ∈ (0,1),

where

(a ∗ b)(t) :=

∫ t

0
a(t − s)b(s) ds, t ≥ 0,

for sufficiently regular functions a and b.
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−A
((

a ∗ (g ◦ u)
)
(1)
)

u′′(t) = λf
(
t ,u(t)

)
, t ∈ (0,1),

Let’s consider for a moment why we would want to consider the
above convolution-type nonlocal term.
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−A
((

a ∗ (g ◦ u)
)
(1)
)

u′′(t) = λf
(
t ,u(t)

)
, t ∈ (0,1),

Let’s consider for a moment why we would want to consider the
above convolution-type nonlocal term. A primary motivation is
from the theory of fractional differential operators. Recall that
the Riemann-Liouville fractional integral of order α > 0 is
defined by

1
Γ(α)

∫ t

0
(t − s)α−1u(s) ds.
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−A
((

a ∗ (g ◦ u)
)
(1)
)

u′′(t) = λf
(
t ,u(t)

)
, t ∈ (0,1),

Let’s consider for a moment why we would want to consider the
above convolution-type nonlocal term. A primary motivation is
from the theory of fractional differential operators. Recall that
the Riemann-Liouville fractional integral of order α > 0 is
defined by

1
Γ(α)

∫ t

0
(t − s)α−1u(s) ds.

In other words,

1
Γ(α)

∫ t

0
(t − s)α−1u(s) ds = (a ∗ u)(t), where a(t) :=

1
Γ(α)

tα−1.
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Main Results
With the preceding context in mind we now set forth the specific
problem we’ll consider.
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Main Results
With the preceding context in mind we now set forth the specific
problem we’ll consider. We consider, for A : R→ R a
continuous function,

−A
((

a ∗ (g ◦ u)
)
(1)
)

u′′(t) = λf
(
t ,u(t)

)
, 0 < t < 1,

subject to the Dirichlet boundary conditions

u(0) = 0 = u(1).
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Main Results
With the preceding context in mind we now set forth the specific
problem we’ll consider. We consider, for A : R→ R a
continuous function,

−A
((

a ∗ (g ◦ u)
)
(1)
)

u′′(t) = λf
(
t ,u(t)

)
, 0 < t < 1,

subject to the Dirichlet boundary conditions

u(0) = 0 = u(1).

Note that the allowable boundary conditions are quite flexible –
we choose Dirichlet conditions just for definiteness and to keep
things simpler.
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Main Results
With the preceding context in mind we now set forth the specific
problem we’ll consider. We consider, for A : R→ R a
continuous function,

−A
((

1 ∗ (g ◦ u)
)
(1)
)

u′′(t) = λf
(
t ,u(t)

)
, 0 < t < 1,

subject to the Dirichlet boundary conditions

u(0) = 0 = u(1).

Also to keep things simpler, in the statement of the existence
theorem to follow we will assume that a ≡ 1, where 1 denotes
(with abuse of notation) the function that is constantly one –
i.e., 1 := 1(x) ≡ 1, x ∈ R.
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So the following is the problem for which I will state an existence
theorem (with conditions on g to be stated momentarily):

−A
((

1 ∗ (g ◦ u)
)
(1)
)

u′′(t) = λf
(
t ,u(t)

)
, 0 < t < 1

u(0) = 0 = u(1).

Note that

A
((

1 ∗ (g ◦ u)
)
(1)
)

= A

(∫ 1

0
(g ◦ u)(s) ds

)
.
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We consider the operator T : C
(
[0,1]

)
→ C

(
[0,1]

)
defined by

(Tu)(t) := λ

∫ 1

0

(
A

(∫ 1

0
(g ◦ u)(r) dr

))−1

G(t , s)f
(
s,u(s)

)
ds,

where the kernel G : [0,1]× [0,1]→ (0,+∞) is defined by

G(t , s) :=

{
s(1− t), 0 ≤ s ≤ t ≤ 1
t(1− s), 0 ≤ t ≤ s ≤ 1

.

Note (for 0 < c < d < 1) that

min
t∈[c,d ]

G(t , s) ≥ η0G (s), s ∈ [0,1],

where η0 := min{c,1− d} and G := sup
t∈[0,1]

G(t , s).
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(Tu)(t) := λ

∫ 1

0

(
A

(∫ 1

0
(g ◦ u)(r) dr

))−1

G(t , s)f
(
s,u(s)

)
ds.

Our approach is to find a fixed point of T (i.e., Tu = u) by
means of topological fixed point theory.



Title
Preliminaries
Main Results

To this end we consider the following cone and attendant open
set:

K :=

{
u ∈ C

(
[0,1]

)
: u ≥ 0, min

t∈[c,d ]
u(t) ≥ η0‖u‖,∫ 1

0
u(s) ds ≥ C0‖u‖

}
,

V̂ρ :=

{
u ∈ K :

∫ 1

0
(g ◦ u)(s) ds < ρ

}
.

Here

C0 := inf
s∈(0,1)

1
G (s)

∫ 1

0
G(t , s) dt ∈ (0,1].
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If a 6= 1, then:

K :=

{
u ∈ C

(
[0,1]

)
: u ≥ 0, min

t∈[c,d ]
u(t) ≥ η0‖u‖,

(a ∗ u)(1) ≥ C0‖u‖

}
,

V̂ρ :=
{

u ∈ K :
(
a ∗ (g ◦ u)

)
(1) < ρ

}
.

Here

C0 := inf
s∈(0,1)

1
G (s)

(
a ∗G(·, s)

)
(1)

= inf
s∈(0,1)

1
G (s)

∫ 1

0
a(1− t)G(t , s) dt .
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If a 6= 1, then:

K :=

{
u ∈ C

(
[0,1]

)
: u ≥ 0, min

t∈[c,d ]
u(t) ≥ η0‖u‖,

(a ∗ u)(1) ≥ C0‖u‖

}
,

V̂ρ :=
{

u ∈ K :
(
a ∗ (g ◦ u)

)
(1) < ρ

}
.

Note that

(1 ∗ u)(1) =

∫ 1

0
u(s) ds

and (
1 ∗ (g ◦ u)

)
(1) =

∫ 1

0
(g ◦ u)(s) ds.
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V̂ρ :=

{
u ∈ K :

∫ 1

0
(g ◦ u)(s) ds < ρ

}

The key fact about V̂ρ is that

u ∈ ∂V̂ρ =⇒
(
a ∗ (g ◦ u)

)
(1) = ρ.

And this is important because we then have direct control over
the nonlocal element.
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V̂ρ :=

{
u ∈ K :

∫ 1

0
(g ◦ u)(s) ds < ρ

}

The key fact about V̂ρ is that

u ∈ ∂V̂ρ =⇒
(
a ∗ (g ◦ u)

)
(1) = ρ.

And this is important because we then have direct control over
the nonlocal element – that is,

−A

(a ∗ (g ◦ u)
)
(1)︸ ︷︷ ︸

=ρ

u′′(t) = λf
(
t ,u(t)

)
, t ∈ (0,1).
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Finally what must we assume about g : [0,+∞)→ [0,+∞)? A
possible (but by no means the only such) collection of
conditions is as follows.

1 g is continuous
2 g is strictly increasing
3 Either

1 g is concave; or
2 g is convex.
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possible (but by no means the only such) collection of
conditions is as follows.

1 g is continuous
2 g is strictly increasing
3 Either

1 g is concave; or
2 g is convex.

A model case in the concave case is g(t) := tq for 0 < q < 1
and a model case in the convex case is the same but with
q > 1. (Note that q = 1 can also be accommodated, in fact.)
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Finally what must we assume about g : [0,+∞)→ [0,+∞)? A
possible (but by no means the only such) collection of
conditions is as follows.

1 g is continuous
2 g is strictly increasing
3 Either

1 g is concave; or
2 g is convex.

A model case in the concave case is g(t) := tq for 0 < q < 1
and a model case in the convex case is the same but with
q > 1. (Note that q = 1 can also be accommodated, in fact.)
The choice g(t) = tq leads to the following model problem:

−A

(∫ 1

0

(
u(s)

)q ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1),

which we mentioned at the beginning.
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So, what does a typical existence theorem look like?

We’ll need the following notation
f m
[a,b]×[c,d ] to denote

f m
[a,b]×[c,d ] := min

(t ,y)∈[a,b]×[c,d ]
f (t , y); and

f M
[a,b]×[c,d ] to denote

f m
[a,b]×[c,d ] := max

(t ,y)∈[a,b]×[c,d ]
f (t , y).
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So, what does a typical existence theorem look like? Here’s the
case when g is concave.

Assume that there are numbers 0 < ρ1 < ρ2 such that each of
the following is true.

1 A(t) > 0 for t ∈
[
ρ1, ρ2

]
2 ∫ 1

0
g

(
λ

A (ρ1)

(
f m
[c,d ]×

[
η0g−1(ρ1), 1

η0
g−1( ρ1

d−c )
]
)∫ d

c
G(t , s) ds

)
dt >

ρ1

3
λ

A (ρ2)

(
f M
[0,1]×

[
0, 1

η0
g−1( ρ2

d−c )
]
)∫ 1

0

∫ 1

0
G(t , s) ds dt <

g−1 (ρ2)

If g(0) < ρ2, then the operator T has at least one positive fixed
point u0.
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In fact, we can say that u0 must satisfy the localization

g−1 (ρ1) ≤ ‖u0‖ ≤
1
η0

g−1
(

ρ2

d − c

)
.
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In fact, we can say that u0 must satisfy the localization

g−1 (ρ1) ≤ ‖u0‖ ≤
1
η0

g−1
(

ρ2

d − c

)
.

Note that
g−1 (ρ1) > 0

since
1 g

(
[0,∞)

)
⊂ [0,∞);

2 g is strictly increasing; and
3 ρ1 > 0.
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Notice the pointwise-type conditions on A, which, recall, houses
the nonlocal element.

Assume that there are numbers 0 < ρ1 < ρ2 such that each of
the following is true.

1 A(t) > 0 for t ∈
[
ρ1, ρ2

]
2 ∫ 1

0
g

(
λ

A (ρ1)

(
f m
[c,d ]×

[
η0g−1(ρ1), 1

η0
g−1( ρ1

d−c )
]
)∫ d

c
G(t , s) ds

)
dt >

ρ1

3
λ

A (ρ2)

(
f M
[0,1]×

[
0, 1

η0
g−1( ρ2

d−c )
]
)∫ 1

0

∫ 1

0
G(t , s) ds dt <

g−1 (ρ2)

If g(0) < ρ2, then the operator T has at least one positive fixed
point u0.
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Note that in the model case g(u) = uq, where 0 < q < 1 and
u ≥ 0, the conditions previously stated become

∫ 1

0

 λ

A (ρ1)

f m

[c,d ]×
[
η0ρ

1
q
1 ,

1
η0

( ρ1
d−c )

1
q

]
∫ d

c
G(t , s) ds


q

dt > ρ1,

(1)
and

λ

A (ρ2)

f M

[0,1]×
[

0, 1
η0

( ρ2
d−c )

1
q
]
∫ 1

0

∫ 1

0
G(t , s) ds dt < ρ

1
q
2 . (2)
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For example, in case q =
1
2

so that g(u) =
√

u and

g−1(u) = u2, for u ≥ 0, we see that (1) becomes

∫ 1

0

 λ

A (ρ1)

f m

[c,d ]×
[
η0ρ

2
1,
(

ρ1
(d−c)

√
η0

)2
]
∫ d

c
G(t , s) ds

 1
2

dt > ρ1,

whereas (2) becomes

λ

A (ρ2)

f M

[0,1]×
[

0,
(

ρ2
(d−c)

√
η0

)2
]
∫ 1

0

∫ 1

0
G(t , s) ds dt < ρ2

2.
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So, what does a typical application look like?

Consider the problem

− A

(∫ 1

0

(
u(s)

) 1
2 ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1)

subject to the Dirichlet boundary conditions

u(0) = 0 = u(1).

Here we have chosen q =
1
2

and defined

g : [0,+∞)→ [0,+∞) by g(t) = t
1
2 so that g−1 is defined by

g−1(t) = t2. Furthermore, define the function A : [0,+∞)→ R
by

A(t) :=

{
−t3, 0 ≤ t ≤ 1

t sin
(3π

2 t
)
, t > 1

.
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Consider the problem

−A

(∫ 1

0

(
u(s)

) 1
2 ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1)

subject to the Dirichlet boundary conditions

u(0) = 0 = u(1).

Furthermore, define the function A : [0,+∞)→ R by

A(t) :=

{
−t3, 0 ≤ t ≤ 1

t sin
(3π

2 t
)
, t > 1

.

Note that A is nonpositive on infinitely many intervals of positive
measure. Moreover, A(t) = 0 for countably infinitely many
values of t ≥ 0. And, in addition, A is not bounded on [0,+∞).
In fact, lim inf

t→+∞
A(t) = −∞.
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One can then show that if

λf m
[ 1

4 ,
3
4 ]×

[
1
4 ( 4003

3000 )
2
,4( 4003

1500 )
2
] > 0.14474,

and
λf M

[0,1]×[0, 400
9 ] <

500
9
,

then

−A

(∫ 1

0

(
u(s)

) 1
2 ds

)
u′′(t) = λf

(
t ,u(t)

)
, t ∈ (0,1)

has at least one positive solution u0 satisfying the localization(
4003
3000

)2

≤ ‖u0‖ ≤
400
9
.



Title
Preliminaries
Main Results

Some concluding thoughts.

1 The more general case, in which a 6= 1, proceeds similarly.
The main difference is that the conditions for existence
now contain integrals involving a(1− s) since a is no
longer a constant function.

2 The case in which g is convex (rather than concave) also
proceeds similarly.

3 One can also consider multiple nonlocal convolution
elements – e.g.,

−A
(
(a ∗ uq)(1)

)
u′′(t) = λB

(
(b ∗ up)(1)

)
f
(
t ,u(t)

)
, t ∈ (0,1).

However, this case is more technical because using a set
like V̂ρ :=

{
u ∈ K :

(
a ∗ (g ◦ u)

)
(1) < ρ

}
only allows us

to control directly one nonlocal element at a time.
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Thank you for your attention!
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