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Data-driven coupled bulk-surface and ECM models for cell motility
and pattern formation

Aim: To develop a mathematical and computational

framework for modelling cell motility and pattern
formation

@ Data-driven Modelling and Analysis:

o Mechanics: Viscoelastic, poroelastic, hyperelastic,
morphoelastic in the cell interior and ECM, Geometric
Surface PDEs on the cell surface: Protrusion,
Retraction, Adhesion, Membrane forces such as
surface tension and bending rigidity, . . .

o Biochemistry: Polarisation, Receptor-Ligand
Dynamics, Spatio-temporal dynamics of RhoGTPases,

© Numerical Analysis and HPC Scientific Computing:
Development of accurate, robust and efficient
numerical methods for simulating the model
equations

© Validation and Model Predictions: Calibrate and test
model predictions with experimental data

© Parameter Identification and Model Selection:
Bayesian and optimal control approaches (useful for
guiding data acquisition)
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Biological Motivation: Zebrafish as model organism

Whole cell tracking through an optimal control of geometric
evolution laws
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@ Zebrafish are transparent - observe morphological changes during development.
@ Use the GFP to label individual cells, organs or even organelles.
@ Embryo development in normal/abnormal situations (mutated or drugs)

@ Zebrafish are more closely related to humans than invertebrate models such as the worm C.
elegans and the fly D. Melanogaster,

Zebrafish larva three days post-fertilisation

Tail transection



Biological Motivation: Zebrafish as model organism

Neutrophil cell migration during wound healing process

Cell migration during wound healing process 3-D reconstruction of the cell migration



neutrophilsZebrafish3.mov
Media File (video/quicktime)


TimeLapse3D_Tracked.mov
Media File (video/quicktime)
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Whole cell tracking using geometric surface PDEs

Discrete sequence of cross-sections of 3D image datasets
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@ Can we model "optimally" the evolution of the cell from one image to the next?
@ Reconstruct dynamic evolution of the cell from static images?

100




Whole cell tracking using geometric surface PDEs

Cell Tracking

@ Reconstruct a dynamic (2D+t) or (3D+t) model from static imaging data (2D or 3D).

e Particle tracking (e.g. Agent Based Tracking): recover trajectories, “connect the dots”, enables the
computation of many motility related statistics such as velocities, persistence lengths, MSD, etc.

e Whole cell tracking: recover morphologies, allows investigation of the dynamics of geometric features
(surface area, volume, curvature, aspect ratio, .. .)

@ For example

e Particle tracking: reconstruct (often only
centroid) trajectories by linear interpolation

@ Whole Cell tracking: Level set and
electrostatic based methods that generate
trajectories for’marker points on the membrane

iy \ "——_sectors
N

+

[Tyson, Epstein, Anderson, and Bretschnei-
der, 2010]
@ Our approach: fitting a mathematical model to static imaging data.
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Whole Cell Tracking

Basic Idea: Reconstruct (dynamic) whole cell morphologies from static imaging data.

@ Majority of existing approaches (level set, electrostatics, .. .) incorporate only geometric
considerations equidistribution of vertices, . ...

@ Our approach: Fit models for the cell evolution to imaging data. Focus is on geometric
evolution law based models for the motion of the cell membrane as considered in [Barreira,
Elliott, and Madzvamuse, 2011; Elliott, Stinner, and Venkataraman, 2012; Marth and Voigt,
2013; Neilson, Veltman, van Haastert, Webb, Mackenzie, and Insall, 2011; Shao, Levine, and
Rappel, 2012].

@ For many cell tracking scenarios, only the membrane location is available with no other
fluorescence data provided, hence we focus on this most basic setting.

Geometric Evolution Law Model

VX.nn(x, ) = (n(x. 1) +X(1)  —oHX D)X, 1) (X,1) € (T(1),[0,T])
Velocity = Forcing + Vol. Cons. + Regularisation

The problem is to find (X, t) such that the solution to the model and the image data are “close”.

Problem is in effect the optimal control of the sharp interface formulation of a geometric evolution
law for which no adequate theory is available yet (how to define a smooth notion of “closeness”,
regularity for n(X, t), etc).
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Diffuse Interface Formulation

From Sharp to Diffuse Interface

Given a surface
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e(X) = { sin (%E(X)) if |dr(X)] <e
1 if O (%) < —e

Alternatively one may simply work with (high contrast) raw data without further segmentation of the
cell outline (with a few steps of de-noising).
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Individual cells




Optimal control of phase fields formulation using geometric PDEs

Diffuse Interface Formulation

Adopting a phase field (diffuse interface) formulation ~ Allen-Cahn with forcing.

Allen-Cahn with forcing

edip(X, t) = eAp(x,t) — ;G’(ap(x, 1)) + cwn(x, t) + A(t) (X, t) e Qx [0, T] 1)

where G(p) = 1(4? — 1) is a double well potential with minima at +1.
Volume constraint interpreted as constraint on the mass, i.e., [, .
Example: fitting to a single image ¢ges (Using an observation at a previous time as initial data).

PDE constrained optimisation problem

. 1 T
mind (o) = 3 [ (00T = voes(0) e+ 7 [ [ s2anat
subject to (1).

Following [HauBer, Rasche, and Voigt, 2010; HauBer, Janssen, and Voigt, 2012] we formally
derive the first order optimality conditions and propose an adjoint based solution method for the
minimisation problem.



Optimality conditions [Troltzsch, 2010]

Introducing the Lagrange multiplier (adjoint state) p, we define the Lagrangian functional
T
L(p,n,p) = J(e, n)f/o /Q edo(X, t) — eAp(x, )

+ gG'(Lp(X, 1) + cun(x, t) + A(t)) p(x, H)dQat.

Requiring stationarity of the Lagrangian with respect to the adjoint state yields the state (forward)
equation and requiring stationarity of the Lagrangian, at the optimal control n* and associated
optimal state ¢*, with respect to the state and the control, yields the (formal) first order optimality
conditions

3o L(™,n",P)p = 0,9 : ¢(x,0) =0,
SnL(e™,n", p)n = 0,Vn.



Optimality conditions [Troltzsch, 2010]

Seeking optimality conditions yield the adjoint equation, which is the following linear parabolic PDE
(posed backwards in time) for the adjoint state p,

atp(x» t) = *AP(X, t)+ STGH(SD(X7 t))p(x7 t) in € x (T7 0]7
Vp-v =0 onoQx(T,0],
p(X, T) = (p(X, T) - ﬁoobs(x) inQ,
and together with the Riesz representation theorem yields the optimality condition for the control
[Tréltzsch, 2010]
* * * 1
L™ ", p) = 60"+ —p=0.
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HPC Scientific Computing

Cell-centred 2@ order finite difference method (FDM) on rectangular grids
PARAMESH library for mesh generation and parallelism

Dynamic load-balancing for adaptive mesh refinement (AMR)

Fully implicit 27 order backward differentiation formula (BDF2)

Geometric nonlinear multigrid solution method using full approximation scheme (FAS) and
multi-level adaptive technique (MLAT)

Point-wise Newton linearisation with Gauss-Seidel iteration
Full weighting restriction and multi-linear interpolation



Adaptive multigrid method

Numerical challenges

@ Each 7 iteration covers all time steps (both forward and backward)

@ Memory requirement (let’s consider double precision and 100 time steps)
o 2-D: 5122 requires 0.4 gigabytes
o 3-D: 512° requires 215 gigabytes



Adaptive multigrid method

Adaptive iterative update for the optimal control

@ We denote a superscript ¢ for the n iteration, and at ¢ = 0, we take
7% =0 o0n Qx[0,7)

as our initial guess for the control.

@ A gradient-based iterative update of the control, following the steepest descent approach, and
the update is given by

1
' =nf-a (9772 + fpe) , on Qx[0,7),
€
where ¢ 4+ 1 denotes the next n iteration and ¢ indicates the current 7 iteration.

@ The whole procedure is repeated until the objective function J satisfies some pre-defined
tolerances.

20



Adaptive o

@ While the difference between consecutive Js is still large or J has not reached below a
pre-defined tolerance do

@ Solve the forward Allen-Cahn equation in Q x (0, T]
© Compute the objective functional J*
Q if J£ > Jt1and ¢ > 0 then
a = max(a X P, amin)
restart = TRUE
elseif J* < J*~1and ¢ > 0 then

a=a X Py
restart = FALSE

end if

© if restart == FALSE then
Solve the backward adjoint equation in Q x [T, 0)
Backup the current n
Compute the next n using «
Continue to the next 7 iteration
else
Compute a new n using the latest backup with «
Restart the current 7 iteration
end if

Q End



Adaptive multigrid method

Space and time discretisations of the forward and adjoint
equations

@ Spatial discretisation — Finite differences (2D and 3D)

@ Time-stepping:
@ BDF1 (also known as backward Euler method) is employed for the very first time step.
@ BDF2 is employed for the remaining time steps

°
n+1,0+41 4 n£+1 + n 1,641
ifk 37¥ij,k 3 ij,k
T
3
1,041 n+1,0+1
2 =M ( ) 1,641

2¢ 41,041 Pijk Tt \Fijk 2055 )+

2o (i) - P e
3 s 3e 3 3

@ ¢+ 1 denotes the current n iteration, n+ 1, nand n — 1 indicate solutions from current,
previous and the one before the previous time steps, respectively.

@ We denote the 3-D Laplacian operator D as

Pittj.k T Pic1jk T Pijrtk + Pij—1.k T Pijk+1 + Pijk—1 — 60k

D (90’7/ k) h2
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Adaptive multigrid method

Space and time discretisations of the forward and adjoint
equations

@ Within each time step, while solving for the solution of the above systems, we are also
required to satisfy a given mass constraint.

@ lteratively determine the time-dependent, spatially-uniform volume constraint \ for the
imposed mass constraint

@ The Allen-Cahn system has to be solved multiple times, until a stopping criterion for X is met.

@ We denote this ) iteration using a superscript A, and its update follows the multi-step
approach which is given as

()\n+1,/\ _ )\n+1,/\—1) [Mg+1 ' @n+1,/\]
(IQ @M — [ (pn+1,A—1)

where M, is defined earlier, A + 1, A and A — 1 indicate values of X from current, previous
and the one before the previous X iterations, respectively.

@ Initial guesses

ATHLAHT — AnHA , forA>1,

,\A=°:—%+1, NS
T T

@ The stopping criterion used here is based upon the difference between consecutive values of

@ Providing a tolerance tol, we consider the algorithm to have converged when
|)\n+1,/\+1 _ )\n+1,/\| < IO/A.

o3



Adaptive multigrid method

Approximation of the Optimal Control Problem

We propose a simple steepest-descent based iterative algorithm for the solution of the OC
problem.

While tolerance not met:

@ Compute solution ¢ corresponding to control n". Mass constraint computed following
[Blowey and Elliott, 1993].

@ Compute objective functional J (", 7") check if tolerance met.

© Compute adjoint state p” (for efficient computation of the gradient of J) requires the ¢".
@ Update control according to gradient (i.e., compute n"t1).
Q@ nt+1—-n

Efficiency

@ Adaptive parallel multigrid based solution method for the forward and adjoint problems.

@ “Two-grid” strategy: adaptive grid for forward problem, coarse uniform grid for (linear) adjoint
problem. ~~ Massive memory savings.

© Adaptive step-size selection for control update.




Multigrid: Two grid solution strategy

One complete solve for the Allen-Cahn equation from t=(0,T]

One time step

Start the next n iteration ......
Restrict the
converged solution
o

\ f o
Fine grid for the W i i i st il

Allen-Cahn equation A A A

Intermediate grid(s) One complete solve for the adjoint equation from t=[T,0)

ﬁ i
\ _—

Coarse grid for the
adjoint equation

Interpolate the
computed n

25



Adaptive multigrid method

Two-grid scheme within multigrid V-cycles

One complete solve for the Allen-Cahn equation from t=(0,T]

One time step

Refinement o o o
level 5 R
Restrict the
level 4 converged
solution
level 3 \
level 2 Store the restricted
solution on this level
level 1 L i e eeeeaaas

One complete solve for the
adjoint equation from t=[T,0)

Interpolate n
Compute n

Repeat n
iteration
if needed

26




Numerical tests and applications

e Numerical tests and applications

27



Numerical tests and applications

Circle to ellipse

A circle becomes two ellipses.
Desired data

Initial data

o8



Numerical tests and applications

Geometric evolution of a circle to an ellipse

29



ellipese_movie.mov
Media File (video/quicktime)


Numerical tests and applications

Convergence
Lo(2) error for
m=1t m=t m=1
dfi, | 34264 1072 [ 4.9226 x 10~° | 6.8561 x 102
dlee | 1.9721 x 1072 | 4.8058 x 1072 | 6.0397 x 102
dpe | 81793 x 1072 | 2.2300 x 1072 | 3.4557 x 102
dfl, | 2.7850 x 1073 | 8.0407 x 1073 | 1.3192 x 102
L,(2) error for adjoint p
m=t m=tb m=1t
dfl, | 16773 x 1072 | 1.8048 x 1072 | 4.9344 x 102
dlge | 9:9721 1073 | 1.0158 x 1072 | 3.1554 x 102
dpi, | 7.9290 x 1073 | 8.5311 x 103 | 2.2551 x 1072
anl, | 65082 x 1073 | 7.5551 x 10~% | 1.4901 x 102
Lo(2) error for n
m=1t m=t m=1
df. | 16976 x 10~T [ 2.0752 x 10" | 7.5240 x 10~
dlge | 11923 x 1071 | 1.5793 x 10~ | 6.2554 x 10"
djl, | 85093 x 1072 | 1.0601 x 10~ | 5.3023 x 10~
dfl» | 3-2344 x 1072 | 3.9359 x 102 | 2.6302 x 10"

The convergence tests for the solutions of ¢, adjoint p and 7.

20




Numerical tests and applications

Multigrid convergence rates

Forward Allen-Cahn equation Backward adjoint equation

10 ‘ ‘ 10 :
——64x64 ——64x64
——128x128 ——128x128
_ 10} —+-256x256 || _ 107 | —+— 256x256
S —=—512x512 3 —=—512x512
5 —2-1024x1024|| 2 ——1024x1024
240° ¢ ©10°}
2 2
k] 5
£10° ¢ £10° ¢
2 2
> 2
;g 10—107 g 107107
= IS
1073} 1078
1 2 3 4 5 6 7 1 2 3 4 5 6
No. multigrid V-cycles No. multigrid V-cycles

The multigrid convergence rates for the forward Allen-Cahn and backward adjoint equations.
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Numerical tests and applications

Linear complexity of the multigrid method

_10°

——CPU time for forward system
—o—CPU time for backward system
—— Line with slope of 1

10

10

10

CPU time per each system solve (seconds

-1

10

2 8

10 10* 10° 10
No. grid points on the finest grid.

A log-log plot to illustrate the linear complexity of our multigrid solver. For comparisons, a line of slop 1 is
included.

kPl



Numerical tests and applications

Dynamic Adaptive Mesh Refinement

AMR at t1 (first time step) AMR at t=T (end time)

Domain in y axis
Domain in y axis

1 2 3
Domain in x axis Domain in x axis

Two colour plots show the dynamic AMR in our solver. The blue region shows the 64* grid; light green region
indicates the 1282 grid; and finally red region illustrates the finest 2562 grid. The colour version of this figure is
online.

k]



Numerical tests and applications

Convergence: Two-grid strategy

L»(Q2) error for ¢
m=#t m=t m=1
e 1.2327 x 1072 | 2.6664 x 10~2 | 3.8450 x 102
AT o e | 86270 x 1073 | 1.6895 x 1072 | 3.2925 x 1072
L,(2) error for adjoint p
m=#t m=t m=1t
dnee 9.2021 x 10~ | 9.7122 x 10—3 | 3.0233 x 102
dM o e | 1.0004 1072 | 1.4886 x 1072 | 2.7392 x 1072
Lo(R2) error forn
m==H m=1t m=1f
dme 97196 x 1072 | 1.21563 x 101 | 5.3632 x 10!
Am s e | 7-7932x 1072 | 1.4930 x 102 | 5.9167 x 10~

Comparisons of errors between an adaptive two-grid simulation (2562 — 642) with adaptive mesh refinement and
a standard 1282 uniform grid simulation.
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Single cell imaging data

Initial and target Neutrophil shapes




Numerical tests and applications

Single cell imaging data

Zero level set of the computed surface shaded by the value of  and phase field representation of
the target surface.

25



svc.mov
Media File (video/quicktime)


Numerical tests and applications

Cell one video

26



cell_one.mov
Media File (video/quicktime)


Numerical tests and applications

Cancer cell migration

120

=100

Data from [Peschetola, Laurent, Duperray, Michel, Ambrosi, Preziosi, and Verdier, 2013].
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CancerCell.mov
Media File (video/quicktime)


Numerical tests and applications

Keratocyte migration

9



final_T24.avi
Media File (video/avi)


Tracking topological changes during cell migration

For a smooth, oriented, compact (i.e., no boundary) surface I', the Euler number of a Riemann
manifold (a topological invariant) is given by [Allendoerfer, 1940]

1
=— [ Kd
X 27r/r 7

where K is the Gauss curvature of the surface.

For—1<b<0O<ax<

1 V |Vel? -V
. <_A L VIVel Ve

= dX =~ # of cells
2m(a—b) Ja(ab) 2|Vel|? )

Penalise changes in topology [Dondl, Mugnai, and Roger, 2011, 2014].




Numerical tests and applications

Application to quantifying cell proliferation rates: The MDCK cell
line

40



MDCK_with_Euler.avi
Media File (video/avi)
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