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Data-driven coupled bulk-surface and ECM models for cell motility
and pattern formation
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Aim: To develop a mathematical and computational
framework for modelling cell motility and pattern
formation

1 Data-driven Modelling and Analysis:
Mechanics: Viscoelastic, poroelastic, hyperelastic,
morphoelastic in the cell interior and ECM, Geometric
Surface PDEs on the cell surface: Protrusion,
Retraction, Adhesion, Membrane forces such as
surface tension and bending rigidity, . . .
Biochemistry: Polarisation, Receptor-Ligand
Dynamics, Spatio-temporal dynamics of RhoGTPases,
. . .

2 Numerical Analysis and HPC Scientific Computing:
Development of accurate, robust and efficient
numerical methods for simulating the model
equations

3 Validation and Model Predictions: Calibrate and test
model predictions with experimental data

4 Parameter Identification and Model Selection:
Bayesian and optimal control approaches (useful for
guiding data acquisition)
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Biological Motivation: Zebrafish as model organism

Whole cell tracking through an optimal control of geometric
evolution laws
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Zebrafish are transparent - observe morphological changes during development.

Use the GFP to label individual cells, organs or even organelles.

Embryo development in normal/abnormal situations (mutated or drugs)

Zebrafish are more closely related to humans than invertebrate models such as the worm C.
elegans and the fly D. Melanogaster,

that there was an unusually low number of cell tracks (*20 tracks),
which appeared to be insufficient for driving the estimation
framework (see Figure 2, Fish 10). These data were included in the
analysis for completeness, to avoid introducing unintentional bias
into the data analysis. Taken as an ensemble, the results provide
consistent support for the field inference framework and the
assumptions upon which it was constructed.

The chemoattractant field inference framework was derived
from the assumption that cell velocity was proportional to the
gradient of the field, which is a relationship described in the
Keller-Segel model of chemotaxis [25,26]. The proportionality
model used here may be a simplification of the true complexity of
the neutrophil movement-chemoattractant gradient relationship,
however, this framework could be extended and modified in the
future under modified assumptions, whilst retaining the funda-
mental approach. For instance, the assumption of a linear
relationship between chemottractant gradient and velocity might
benefit from refining at the upper extremes of the gradient range,
where we might expect a nonlinear relationship, such as a
saturation in velocity, to more accurately reflect neutrophil action.
A key aspect of the work presented here is the initial development
of a data-driven inference framework, which builds on relation-
ships expressed through existing biological models, and demon-
strates how observations of cell movement can be used to estimate
the hidden field driving those cell movements.

The near transparency of the zebrafish larva, along with the
ability to use genetic reporters of cell type and function, has led to
the discovery of Hydrogen Peroxide gradients during wound
healing [22]. These gradients are important in recruiting the first
wave of neutrophils, but rapidly decline. It is striking how similar
those gradients are qualitatively to those inferred here. As
technology advances, it will become increasingly important to
know to what degree the observed gradients match the gradient to
which the neutrophils are responding, which we suggest might be
achieved by comparing observations of signalling agents to the

chemoattractant field inferred using the framework proposed here.
In this investigation we have demonstrated that the modelling
framework reflects neutrophil action in vitro. In future experiments,
we hope to test the applicability of these approaches for known
gradients in vivo, which more accurately reflects the complex
environments neutrophils encounter in human disease settings.

We have presented the first step in visualising a static
chemotactic gradient in vivo, and future advances will seek to
address the relative importance of different chemotactic gradients
as they evolve over time. Niethammer et al. [22] also show the
evolution of the hydrogen peroxide gradient over time, and a key
area for extending our work will be timelapse experiments that will
provide analogous insight into the dynamic behaviour of the
inferred chemoattractant field. This will require a description of
the evolution of the spatial field over time using data-driven
spatiotemporal identification techniques that are suitable for
application to linear [34,35] and possibly nonlinear [36–38]
dynamic systems.

Furthermore, our analysis has begun as a two dimensional
system, aided by the properties of the zebrafish fin, but future work
in this system will allow analysis to be extended to three
dimensions. This will be a particularly important advance if this
is to be extended to the emerging field of in vivo inflammation
imaging in mouse [39].

In summary, the results presented here demonstrate the
effectiveness of a novel and simple-to-implement chemoattractant
field inference framework, which enables visualisation of the
inferred field driving neutrophil movements: a quantity that is not
directly measurable.

Methods

Ethics Statement
All animal work was performed according to guidelines and

legislation set out in UK law in the Animals (Scientific Procedures)

Figure 1. Zebrafish experimental setup and neutrophil analysis procedure. A: Zebrafish larva from the transgenic line, Tg(mpx:GFP)i114.
Neutrophils are visualised by excitation of green fluorescent protein, as previously described (Renshaw et al., 2006). The zebrafish were prepared by
transection of the tailfin at the site indicated to elicit an inflammatory response, which caused recruitment of the neutrophils to the site of injury. B:
The chemoattractant field inference framework. Firstly, images of neutrophil recruitment to the zebrafish wound site were acquired by video
microscopy. The neutrophil centroid positions were then obtained from a segmentation and tracking algorithm. Velocities of the neutrophils were
estimated from the neutrophil centroid tracks using a Kalman smoother and lastly, the velocity estimates were used in the inference of the
chemoattractant field.
doi:10.1371/journal.pone.0035182.g001

Data-Driven Inference of the Chemoattractant Field

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e35182
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Biological Motivation: Zebrafish as model organism

Neutrophil cell migration during wound healing process

Cell migration during wound healing process 3-D reconstruction of the cell migration
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Whole cell tracking using geometric surface PDEs

Discrete sequence of cross-sections of 3D image datasets

360 380 400
100

110

120

Can we model "optimally" the evolution of the cell from one image to the next?

Reconstruct dynamic evolution of the cell from static images?
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Whole cell tracking using geometric surface PDEs

Cell Tracking

Reconstruct a dynamic (2D+t) or (3D+t) model from static imaging data (2D or 3D).

Particle tracking (e.g. Agent Based Tracking): recover trajectories, “connect the dots”, enables the
computation of many motility related statistics such as velocities, persistence lengths, MSD, etc.

Whole cell tracking: recover morphologies, allows investigation of the dynamics of geometric features
(surface area, volume, curvature, aspect ratio, . . . )

For example
Particle tracking: reconstruct (often only
centroid) trajectories by linear interpolation

Whole Cell tracking: Level set and
electrostatic based methods that generate
trajectories for marker points on the membrane

[Tyson, Epstein, Anderson, and Bretschnei-
der, 2010]
Our approach: fitting a mathematical model to static imaging data.
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Optimal control of phase fields formulation using geometric PDEs

Whole Cell Tracking
Basic Idea: Reconstruct (dynamic) whole cell morphologies from static imaging data.

Majority of existing approaches (level set, electrostatics, . . . ) incorporate only geometric
considerations equidistribution of vertices, . . . .

Our approach: Fit models for the cell evolution to imaging data. Focus is on geometric
evolution law based models for the motion of the cell membrane as considered in [Barreira,
Elliott, and Madzvamuse, 2011; Elliott, Stinner, and Venkataraman, 2012; Marth and Voigt,
2013; Neilson, Veltman, van Haastert, Webb, Mackenzie, and Insall, 2011; Shao, Levine, and
Rappel, 2012].

For many cell tracking scenarios, only the membrane location is available with no other
fluorescence data provided, hence we focus on this most basic setting.

Geometric Evolution Law Model

V (~x , t)n(~x , t) = (η(~x , t) + λ(t) − σH(~x , t))n(~x , t) (~x , t) ∈ (Γ(t), [0,T ])

Velocity = Forcing + Vol. Cons. + Regularisation

The problem is to find η(~x , t) such that the solution to the model and the image data are “close”.

Problem is in effect the optimal control of the sharp interface formulation of a geometric evolution
law for which no adequate theory is available yet (how to define a smooth notion of “closeness”,
regularity for η(~x , t), etc).
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Optimal control of phase fields formulation using geometric PDEs

Diffuse Interface Formulation

From Sharp to Diffuse Interface

Given a surface

Γ = {~x ∈ Ω|dΓ(x) = 0},

where dΓ is the signed distance function to
Γ, compute ϕ : Ω→ R such that

ϕε(~x) =


1 if dΓ(~x) > ε

sin
(
πdΓ(~x)

2ε

)
if
∣∣dΓ(~x)

∣∣ < ε

−1 if dΓ(~x) < −ε

Alternatively one may simply work with (high contrast) raw data without further segmentation of the
cell outline (with a few steps of de-noising).

12



Optimal control of phase fields formulation using geometric PDEs

Individual cells

Cell two

Cell one Cell one

Cell two
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Optimal control of phase fields formulation using geometric PDEs

Diffuse Interface Formulation

Adopting a phase field (diffuse interface) formulation Allen-Cahn with forcing.

Allen-Cahn with forcing

ε∂tϕ(x, t) = ε∆ϕ(x, t)−
1
ε

G′(ϕ(x, t)) + cwη(x, t) + λ(t) ~(x , t) ∈ Ω× [0,T ] (1)

where G(ϕ) = 1
4 (ϕ2 − 1)2 is a double well potential with minima at ±1.

Volume constraint interpreted as constraint on the mass, i.e.,
∫

Ω ϕ.
Example: fitting to a single image ϕdes (using an observation at a previous time as initial data).

PDE constrained optimisation problem

min J (ϕ, η) =
1
2

∫
Ω

(
ϕ (x,T )− ϕdes(x)

)2 dx +
γ

2

∫ T

0

∫
Ω
η2dxdt

subject to (1).

Following [Haußer, Rasche, and Voigt, 2010; Haußer, Janssen, and Voigt, 2012] we formally
derive the first order optimality conditions and propose an adjoint based solution method for the
minimisation problem.

14



Optimal control of phase fields formulation using geometric PDEs

Optimality conditions [Tröltzsch, 2010]

Introducing the Lagrange multiplier (adjoint state) p, we define the Lagrangian functional

L(ϕ, η, p) = J(ϕ, η)−
∫ T

0

∫
Ω

(
ε∂tϕ(x , t)− ε∆ϕ(x , t)

+
1
ε

G′(ϕ(x , t)) + cwη(x , t) + λ(t)

)
p(x , t)dΩdt .

Requiring stationarity of the Lagrangian with respect to the adjoint state yields the state (forward)
equation and requiring stationarity of the Lagrangian, at the optimal control η∗ and associated
optimal state ϕ∗, with respect to the state and the control, yields the (formal) first order optimality
conditions

δϕL(ϕ∗, η∗, p)ϕ = 0,∀ϕ : ϕ(x , 0) = 0,

δηL(ϕ∗, η∗, p)η = 0,∀η.

15



Optimal control of phase fields formulation using geometric PDEs

Optimality conditions [Tröltzsch, 2010]

Seeking optimality conditions yield the adjoint equation, which is the following linear parabolic PDE
(posed backwards in time) for the adjoint state p,

∂t p(x , t) = −∆p(x , t) + 1
ε2 G′′(ϕ(x , t))p(x , t) in Ω× (T , 0],

∇p · ν = 0 on ∂Ω× (T , 0],

p(x ,T ) = ϕ(x ,T )− ϕobs(x) in Ω,

and together with the Riesz representation theorem yields the optimality condition for the control
[Tröltzsch, 2010]

δηL(ϕ∗, η∗, p) = θη∗ +
1
ε

p = 0.
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Adaptive multigrid method

HPC Scientific Computing

Cell-centred 2nd order finite difference method (FDM) on rectangular grids

PARAMESH library for mesh generation and parallelism

Dynamic load-balancing for adaptive mesh refinement (AMR)

Fully implicit 2nd order backward differentiation formula (BDF2)

Geometric nonlinear multigrid solution method using full approximation scheme (FAS) and
multi-level adaptive technique (MLAT)

Point-wise Newton linearisation with Gauss-Seidel iteration

Full weighting restriction and multi-linear interpolation

18



Adaptive multigrid method

Numerical challenges

Each η iteration covers all time steps (both forward and backward)
Memory requirement (let’s consider double precision and 100 time steps)

2-D: 5122 requires 0.4 gigabytes
3-D: 5123 requires 215 gigabytes

19



Adaptive multigrid method

Adaptive iterative update for the optimal control

We denote a superscript ` for the η iteration, and at ` = 0, we take

η`=0 = 0 on Ω× [0,T )

as our initial guess for the control.

A gradient-based iterative update of the control, following the steepest descent approach, and
the update is given by

η`+1 = η` − α
(
θη` +

1
ε

p`
)
, on Ω× [0,T ),

where `+ 1 denotes the next η iteration and ` indicates the current η iteration.

The whole procedure is repeated until the objective function J satisfies some pre-defined
tolerances.

20



Adaptive multigrid method

Adaptive α

Algorithm

1 While the difference between consecutive Js is still large or J has not reached below a
pre-defined tolerance dododo

2 Solve the forward Allen-Cahn equation in Ω× (0,T ]

3 Compute the objective functional J`

4 ififif J` > J`−1 andandand ` > 0 thenthenthen
α = max(α× Pl , αmin)

restart = TRUETRUETRUE
else ifelse ifelse if J` < J`−1 andandand ` > 0 thenthenthen

α = α× Pu
restart = FALSEFALSEFALSE

end ifend ifend if
5 ififif restart == FALSEFALSEFALSE thenthenthen

Solve the backward adjoint equation in Ω× [T , 0)
Backup the current η
Compute the next η using α
Continue to the next η iteration

elseelseelse
Compute a new η using the latest backup with α
Restart the current η iteration

end ifend ifend if
6 End

21



Adaptive multigrid method

Space and time discretisations of the forward and adjoint
equations

Spatial discretisation – Finite differences (2D and 3D)
Time-stepping:

1 BDF1 (also known as backward Euler method) is employed for the very first time step.
2 BDF2 is employed for the remaining time steps

ε
ϕn+1,`+1

i,j,k − 4
3ϕ

n,`+1
i,j,k + 1

3ϕ
n−1,`+1
i,j,k

τ
=

2ε
3

D
(
ϕn+1,`+1

i,j,k

)
−

2
(
−ϕn+1,`+1

i,j,k +
(
ϕn+1,`+1

i,j,k

)3
)

3ε
+

2ηn+1,`+1
i,j,k

3
+

2λn+1

3
,

`+ 1 denotes the current η iteration, n + 1, n and n − 1 indicate solutions from current,
previous and the one before the previous time steps, respectively.

We denote the 3-D Laplacian operator D as

D
(
ϕi,j,k

)
=
ϕi+1,j,k + ϕi−1,j,k + ϕi,j+1,k + ϕi,j−1,k + ϕi,j,k+1 + ϕi,j,k−1 − 6ϕi,j,k

h2
.
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Adaptive multigrid method

Space and time discretisations of the forward and adjoint
equations

Within each time step, while solving for the solution of the above systems, we are also
required to satisfy a given mass constraint.

Iteratively determine the time-dependent, spatially-uniform volume constraint λ for the
imposed mass constraint

The Allen-Cahn system has to be solved multiple times, until a stopping criterion for λ is met.

We denote this λ iteration using a superscript Λ, and its update follows the multi-step
approach which is given as

λn+1,Λ+1 = λn+1,Λ +

(
λn+1,Λ − λn+1,Λ−1

) [
Mn+1
ϕ −

∫
Ω ϕ

n+1,Λ
]

(∫
Ω ϕ

n+1,Λ −
∫

Ω ϕ
n+1,Λ−1

) , for Λ > 1,

where Mϕ is defined earlier, Λ + 1, Λ and Λ− 1 indicate values of λ from current, previous
and the one before the previous λ iterations, respectively.

Initial guesses

λΛ=0 = −
2ε
τ

+ 1, λΛ=1 =
2ε
τ
− 1.

The stopping criterion used here is based upon the difference between consecutive values of
λ.

Providing a tolerance tolλ, we consider the algorithm to have converged when
|λn+1,Λ+1 − λn+1,Λ| < tolλ.
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Adaptive multigrid method

Approximation of the Optimal Control Problem

We propose a simple steepest-descent based iterative algorithm for the solution of the OC
problem.

Algorithm

While tolerance not met:
1 Compute solution ϕn corresponding to control ηn. Mass constraint computed following

[Blowey and Elliott, 1993].
2 Compute objective functional J

(
ϕn, ηn) check if tolerance met.

3 Compute adjoint state pn (for efficient computation of the gradient of J) requires the ϕn.
4 Update control according to gradient (i.e., compute ηn+1).
5 n + 1→ n.

Efficiency

1 Adaptive parallel multigrid based solution method for the forward and adjoint problems.
2 “Two-grid” strategy: adaptive grid for forward problem, coarse uniform grid for (linear) adjoint

problem.  Massive memory savings.
3 Adaptive step-size selection for control update.
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Adaptive multigrid method

Multigrid: Two grid solution strategy

One time step

One complete solve for the Allen-Cahn equation from t=(0,T]

Intermediate grid(s)

Restrict the
converged solution 
of ϕ

Fine grid for the
Allen-Cahn equation

Coarse grid for the 
adjoint equation

One time step

One complete solve for the adjoint equation from t=[T,0)
Interpolate the
computed η

Start the next η iteration

25



Adaptive multigrid method

Two-grid scheme within multigrid V-cycles
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Numerical tests and applications

Circle to ellipse

A circle becomes two ellipses.

Initial data

Desired data
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Numerical tests and applications

Geometric evolution of a circle to an ellipse
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Numerical tests and applications

Convergence

L2(Ω) error for ϕ
m = t1 m = t2 m = t3

dm
642 3.4264× 10−2 4.9226× 10−2 6.8561× 10−2

dm
1282 1.9721× 10−2 4.8058× 10−2 6.0397× 10−2

dm
2562 8.1793× 10−3 2.2300× 10−2 3.4557× 10−2

dm
5122 2.7850× 10−3 8.0407× 10−3 1.3192× 10−2

L2(Ω) error for adjoint p
m = t1 m = t2 m = t3

dm
642 1.6773× 10−2 1.8048× 10−2 4.9344× 10−2

dm
1282 9.9721× 10−3 1.0158× 10−2 3.1554× 10−2

dm
2562 7.9290× 10−3 8.5311× 10−3 2.2551× 10−2

dm
5122 6.5082× 10−3 7.5551× 10−3 1.4901× 10−2

L2(Ω) error for η
m = t1 m = t2 m = t3

dm
642 1.6976× 10−1 2.0752× 10−1 7.5240× 10−1

dm
1282 1.1923× 10−1 1.5793× 10−1 6.2554× 10−1

dm
2562 8.5093× 10−2 1.0601× 10−1 5.3023× 10−1

dm
5122 3.2344× 10−2 3.9359× 10−2 2.6302× 10−1

The convergence tests for the solutions of ϕ, adjoint p and η.
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Numerical tests and applications

Multigrid convergence rates
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The multigrid convergence rates for the forward Allen-Cahn and backward adjoint equations.
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Numerical tests and applications

Linear complexity of the multigrid method
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A log-log plot to illustrate the linear complexity of our multigrid solver. For comparisons, a line of slop 1 is
included.
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Numerical tests and applications

Dynamic Adaptive Mesh Refinement
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Two colour plots show the dynamic AMR in our solver. The blue region shows the 644 grid; light green region
indicates the 1282 grid; and finally red region illustrates the finest 2562 grid. The colour version of this figure is

online.

33



Numerical tests and applications

Convergence: Two-grid strategy

L2(Ω) error for ϕ
m = t1 m = t2 m = t3

dm
1282 1.2327× 10−2 2.6664× 10−2 3.8450× 10−2

dm
2562−642 8.6270× 10−3 1.6895× 10−2 3.2925× 10−2

L2(Ω) error for adjoint p
m = t1 m = t2 m = t3

dm
1282 9.2021× 10−3 9.7122× 10−3 3.0233× 10−2

dm
2562−642 1.0004× 10−2 1.4886× 10−2 2.7392× 10−2

L2(Ω) error for η
m = t1 m = t2 m = t3

dm
1282 9.7196× 10−2 1.2153× 10−1 5.3632× 10−1

dm
2562−642 7.7932× 10−2 1.4930× 10−2 5.9167× 10−1

Comparisons of errors between an adaptive two-grid simulation (2562 − 642) with adaptive mesh refinement and
a standard 1282 uniform grid simulation.
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Numerical tests and applications

Single cell imaging data
Initial and target Neutrophil shapes
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Numerical tests and applications

Single cell imaging data

Zero level set of the computed surface shaded by the value of η and phase field representation of
the target surface.
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Numerical tests and applications

Cell one video
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Numerical tests and applications

Cancer cell migration

Data from [Peschetola, Laurent, Duperray, Michel, Ambrosi, Preziosi, and Verdier, 2013].
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Numerical tests and applications

Keratocyte migration
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Numerical tests and applications

Tracking topological changes during cell migration

For a smooth, oriented, compact (i.e., no boundary) surface Γ, the Euler number of a Riemann
manifold (a topological invariant) is given by [Allendoerfer, 1940]

χ =
1

2π

∫
Γ

K dσ

where K is the Gauss curvature of the surface.

2D case [Du, Liu, and Wang, 2005]

For −1 < b < 0 < a < 1

χε =
1

2π(a− b)

∫
Ω(a,b)

(
−∆ϕ+

∇|∇ϕ|2 · ∇ϕ
2 |∇ϕ|2

)
d~x ≈ # of cells

Future Work

Penalise changes in topology [Dondl, Mugnai, and Röger, 2011, 2014].
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Numerical tests and applications

Application to quantifying cell proliferation rates: The MDCK cell
line
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