Existence and Non-Existence of Solutions of Third Order Equations Coupled to Three-Point Boundary CONDITIONS

Alberto Cabada

(join work with Nikolay D. Dimitrov)

Galician Centre For Mathematical Research and Technology (CITMAga) and Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas,Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

International Meetings on Differential Equations and Their Applications

Institute of Mathematics of the Lodz University of Technology, Poland
November 9, 2022.

ABSTRACT

In this talk, we present existence and non existence results for the third order nonlinear differential equation

$$
\begin{equation*}
u^{\prime \prime \prime}(t)=-\lambda p(t) f(u(t)), \text { a.e. } t \in I:=[0,1], \tag{1}
\end{equation*}
$$

coupled to the three-point boundary value conditions

$$
\begin{equation*}
u(0)=0, u^{\prime \prime}(\eta)=\alpha u^{\prime}(1), u^{\prime}(1)=\beta u(1) \tag{2}
\end{equation*}
$$

with $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}$ and $0 \leq \eta \leq \frac{1}{3}$.

ABSTRACT

Taking into account that the related Green's function is nonpositive for $0 \leq s<\eta$ and nonnegative if $\eta<s \leq 1$, we assume the following conditions on the nonlinear part of the equation:
$(F) \lambda>0$ is a parameter, $p \in L^{\infty}(I)$ is such that $p<0$ a.e. on $[0, \eta]$ and $p>0$ a. e. on $[\eta, 1]$ and $f:[0, \infty) \rightarrow[0, \infty)$ is a continuous function.

ABSTRACT

By defining suitable cones on $C^{1}(I)$, under additional conditions on the asymptotic behavior of function f, we deduce, for a particular set of values of the positive parameter λ, the existence of positive and increasing solutions on the whole interval of definition which are convex on $[0, \eta]$. The results hold by means of degree theory.
(R A. C., N. D. Dimitrov, Third-order differential equations with three-point boundary conditions. Open Math. 19 (2021), 1, 11-31.

PARTS OF THE TALK

\author{

- Introduction
}

PARTS OF THE TALK

\author{

- INTRODUCTION
}

- Linear Problem

PARTS OF THE TALK

- Introduction
- Linear Problem
- Nonlinear Problem

Part I

INTRODUCTION

Third order three-point boundary value problems arise in several areas of applied mathematics and physics: some particular models of deflection of a curved beam with a constant or varying cross sections, three layer beams, electromagnetic waves, study of the equilibrium states of a hated bar and others.

Q M. Greguš, Third Order Linear Differential Equations, Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht, 1987.

Using Krasnosels'kii's fixed-point theorem, Sun proved the existence of infinite positive solutions of the BVP

$$
\begin{aligned}
u^{\prime \prime \prime}(t) & =\lambda a(t) f(t, u(t)), 0<t<1 \\
u(0) & =u^{\prime}(\eta)=u^{\prime \prime}(1)=0, \eta \in(1 / 2,1)
\end{aligned}
$$

assuming that f is sublinear or superlinear with respect to the second variable.

嗇 Y. Sun, Positive solutions of singular third-order three-point boundary-value problem, J. Math. Anal. Appl. 306 (2005), 589-603.

Liu et al. studied the above problem with two-point boundary conditions

$$
u(0)=u(1)=u^{\prime \prime}(1)=0 \text { and } u(0)=u^{\prime}(1)=u^{\prime \prime}(0)=0
$$

䍰 Z. Q. Liu, J. S. Ume, and S. M. Kang, Positive solutions of a singular nonlinear third-order two-point boundary value problem, J. Math. Anal. Appl. 326 (2007), 589-601.

Liu et al. studied the above problem with two-point boundary conditions

$$
u(0)=u(1)=u^{\prime \prime}(1)=0 \text { and } u(0)=u^{\prime}(1)=u^{\prime \prime}(0)=0 .
$$

䍰 Z. Q. Liu, J. S. Ume, and S. M. Kang, Positive solutions of a singular nonlinear third-order two-point boundary value problem, J. Math. Anal. Appl. 326 (2007), 589-601.
Z. Q. Liu, J. S. Ume, D. R. Anderson, and S. M. Kang, Twin monotone positive solutions to a singular nonlinear third-order differential equation, J. Math. Anal. Appl. 334 (2007), 299-313.

The three-point boundary value problem

$$
u(0)=u^{\prime}(0)=0, u^{\prime}(1)=\alpha u^{\prime}(\eta), 0<\eta<1,1<\alpha<1 / \eta,
$$

is considered in

図 L. J. Guo, J. P. Sun, and Y. H. Zhao, Existence of positive solutions for nonlinear third-order three-point boundary value problem, Nonlinear Anal. 68 (2008), 3151-3158.

> In all the previous mentioned papers, the existence of positive solution follows from the fact that the corresponding Green's function is strictly positive.

Palamides and Veloni studied the singular BVP

$$
\begin{aligned}
u^{\prime \prime \prime}(t) & =-a(t) f(t, u(t)), 0<t<1, \\
u(0) & =u^{\prime}(1)=u^{\prime \prime}(\eta)=0, \eta \in[0,1 / 2] .
\end{aligned}
$$

The corresponding Green's function G has not constant sign.
However, the solution

$$
u(t)=\int_{0}^{1} G(t, s) a(s) f(s, u(s)) d s
$$

may be positive if its initial values $u^{\prime}(0)$ and $u^{\prime \prime}(0)$ are positive.
围 A. P. Palamides, A. N. Veloni, A singular third-order boundary-value problem with nonpositive Green's function, Electron. J. Differential Equations 2007 (2007), no. 151, 1-13.

Part II

LINEAR PROBLEM

Consider, for any $y \in C(I)$, the following three-point linear boundary value problem

$$
\begin{align*}
-u^{\prime \prime \prime}(t) & =y(t), 0 \leq t \leq 1, \tag{3}\\
u(0) & =0, u^{\prime \prime}(\eta)=\alpha u^{\prime}(1), u^{\prime}(1)=\beta u(1), \tag{4}\\
\text { with } 0 \leq \alpha \leq 1,0 & \leq \beta<\frac{2}{2-\alpha} \text { and } 0 \leq \eta \leq \frac{1}{2} .
\end{align*}
$$

Consider, for any $y \in C(I)$, the following three-point linear boundary value problem

$$
\begin{align*}
-u^{\prime \prime \prime}(t) & =y(t), 0 \leq t \leq 1, \tag{3}\\
u(0) & =0, u^{\prime \prime}(\eta)=\alpha u^{\prime}(1), u^{\prime}(1)=\beta u(1), \tag{4}
\end{align*}
$$

with $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}$ and $0 \leq \eta \leq \frac{1}{2}$.

It is immediate to verify that this problem has a unique solution if and only if

$$
\beta(2-\alpha) \neq 2 .
$$

A. C., L. López-Somoza, M. Yousfi, Green's Function Related to a n-th Order Linear Differential Equation Coupled to Arbitrary Linear Non-Local Boundary Conditions, Mathematics 2021, 9(16), 1948.

$$
\begin{align*}
\left\{\begin{array}{rll}
L_{n} u(t) & =y(t), & t \in I, \\
B_{i}(u) & =\delta_{i} C_{i}(u), & \\
i=1, \ldots, n,
\end{array}\right. \tag{5}\\
L_{n} u(t):=u^{(n)}(t)+a_{1}(t) u^{(n-1)}(t)+\cdots+a_{n}(t) u(t), \quad t \in I .
\end{align*}
$$

Here y and a_{k} are continuous functions for all $k=0, \ldots, n-1$ and $\delta_{i} \in \mathbb{R}$ for all $i=1, \ldots, n$.
$C_{i}: C^{n}(I) \rightarrow \mathbb{R}$ is a linear continuous operator and B_{i} covers the general two point linear boundary conditions, i.e.:

$$
B_{i}(u)=\sum_{j=0}^{n-1}\left(\alpha_{j}^{i} u^{(j)}(0)+\beta_{j}^{i} u^{(j)}(1)\right), \quad i=1, \ldots, n,
$$

being $\alpha_{j}^{i}, \quad \beta_{j}^{i}$ real constants for all $i=1, \ldots, n, j=0, \ldots, n-1$.

LEMMA

There exists the unique Green's function g related to

$$
\left\{\begin{align*}
L_{n} u(t) & =y(t), & & t \in I, \tag{6}\\
B_{i}(u) & =0, & & i=1, \ldots, n,
\end{align*}\right.
$$

if and only if for any $i \in\{1, \cdots, n\}$, the following problem

$$
\left\{\begin{aligned}
L_{n} u(t)=0, & t \in I, \\
B_{j}(u)=0, & j \neq i, \\
B_{i}(u)=1, &
\end{aligned}\right.
$$

has a unique solution, that we denote as $\omega_{i}(t), t \in I$.

THEOREM

Assume that Problem (6) has a unique solution and let g be its related Green's function. Let $\delta_{i}, i=1, \ldots, n$, be such that

$$
\operatorname{det}\left(I_{n}-A\right) \neq 0
$$

with I_{n} the identity matrix and $A=\left(a_{i j}\right)_{n \times n} \in \mathcal{M}_{n \times n}$ given by

$$
a_{i j}=\delta_{j} C_{i}\left(\omega_{j}\right), \quad i, j \in\{1, \ldots, n\}
$$

Then Problem (5) has a unique solution with Green's function
$G\left(t, s, \delta_{1}, \ldots, \delta_{n}\right):=g(t, s)+\sum_{i=1}^{n} \sum_{j=1}^{n} \delta_{i} b_{i j} \omega_{i}(t) C_{j}(g(\cdot, s)), \quad t, s \in I$,
with ω_{j} defined on Lemma 1 and $B=\left(b_{i j}\right)_{n \times n}=\left(I_{n}-A\right)^{-1}$.

In our particular case, we can rewrite Problem (3)-(4), as

$$
\left\{\begin{array}{rl}
L_{n} u(t) & =u^{\prime \prime \prime}(t)
\end{array}=-y(t), \quad t \in I, ~=u(0)=\delta_{1} C_{1}(u)=0, ~=\delta_{2} C_{2}(u)=\frac{1}{\alpha} u^{\prime \prime}(\eta), ~=u(1)=\delta_{3} C_{3}(u)=\frac{1}{\beta} u^{\prime}(1) .\right.
$$

In our particular case, we can rewrite Problem (3)-(4), as

$$
\begin{gathered}
\left\{\begin{array}{c}
L_{n} u(t)=u^{\prime \prime \prime}(t)=-y(t), \quad t \in I, \\
B_{1}(u)=u(0)=\delta_{1} C_{1}(u)=0, \\
B_{2}(u)=u^{\prime}(1)=\delta_{2} C_{2}(u)=\frac{1}{\alpha} u^{\prime \prime}(\eta), \\
B_{3}(u)=u(1)=\delta_{3} C_{3}(u)=\frac{1}{\beta} u^{\prime}(1) .
\end{array}\right. \\
g(t, s)= \begin{cases}-\frac{1}{2} s^{2}(t-1)^{2}, & 0 \leq s \leq t \leq 1, \\
-\frac{1}{2}(s-1) t(s(t-2)+t), & 0<t<s \leq 1 .\end{cases} \\
w_{1}(t)=t^{2}-2 t+1, \quad w_{2}(t)=t^{2}-t, \quad w_{3}(t)=2 t-t^{2} .
\end{gathered}
$$

$$
\begin{aligned}
& C_{1}(g(\cdot, s))=0 \\
& C_{2}(g(\cdot, s))=\frac{\partial^{2} g}{\partial t^{2}}(\eta, s)= \begin{cases}-s^{2} \\
1-s^{2}, & s<\eta, \\
\eta<s .\end{cases} \\
& C_{3}(g(\cdot, s))=\frac{\partial g}{\partial t}(1, s)=0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& C_{1}(g(\cdot, s))=0 \\
& C_{2}(g(\cdot, s))=\frac{\partial^{2} g}{\partial t^{2}}(\eta, s)= \begin{cases}-s^{2} & s<\eta, \\
1-s^{2}, & \eta<s .\end{cases} \\
& \begin{aligned}
C_{3}(g(\cdot, s)) & =\frac{\partial g}{\partial t}(1, s)=0
\end{aligned} \\
& \begin{aligned}
G(t, s) & =g(t, s)+\left(b_{22} w_{2}(t)+b_{32} w_{3}(t)\right) C_{2}(g(\cdot, s))
\end{aligned} \\
&= \begin{cases}-\frac{1}{2} s^{2}(t-1)^{2}, & 0 \leq s \leq t \leq 1, \\
-\frac{1}{2}(s-1) t(s(t-2)+t), & 0<t<s \leq 1 .\end{cases} \\
&+\frac{t(\beta(t-1)+t-2)}{(\alpha-2) \beta+2} \begin{cases}-s^{2} & s<\eta, \\
1-s^{2}, & \eta<s .\end{cases}
\end{aligned}
\end{aligned}
$$

If $s>\eta$, then
$G(t, s)=\left\{\begin{array}{cc}\frac{\alpha \beta\left(1-s^{2}\right)}{2(2+\alpha \beta-2 \beta)} t^{2}+\left(\frac{2-\beta}{2+\alpha \beta-2 \beta}-s-\frac{(1-\alpha) \beta}{2+\alpha \beta-2 \beta} s^{2}\right) t, & s>t, \\ \frac{2 \beta-2-\alpha \beta s^{2}}{2(2+\alpha \beta-2 \beta)} t^{2}+\left(\frac{2-\beta}{2+\alpha \beta-2 \beta}-\frac{(1-\alpha) \beta}{2+\alpha \beta-2 \beta} s^{2}\right) t-\frac{s^{2}}{2}, & s \leq t .\end{array}\right.$

If $s<\eta$, then

$$
G(t, s)=\left\{\begin{aligned}
\frac{2+\alpha \beta-2 \beta-\alpha \beta s^{2}}{2(2+\alpha \beta-2 \beta)} t^{2}-\left(s+\frac{(1-\alpha) \beta s^{2}}{2+\alpha \beta-2 \beta}\right) t, & s>t \\
\frac{-\alpha \beta s^{2}}{2(2+\alpha \beta-2 \beta)} t^{2}-\frac{(1-\alpha) \beta s^{2}}{2+\alpha \beta-2 \beta} t-\frac{s^{2}}{2}, & s \leq t
\end{aligned}\right.
$$

Figure: Graph of $G\left(t_{0}, s\right), s \in[0,1]$, with $t_{0} \in(0,1)$ fixed.

REMARK

We point out that on our calculations we have assumed that $\alpha \neq 0, \beta \neq 0$ and $2+\alpha \beta-2 \beta \neq 0$. Moreover the expression is valid for $\alpha=0$ or $\beta=0$. In particular, if $\alpha=\beta=0$, we obtain the expression of the Green's function given in

REMARK

We point out that on our calculations we have assumed that $\alpha \neq 0, \beta \neq 0$ and $2+\alpha \beta-2 \beta \neq 0$. Moreover the expression is valid for $\alpha=0$ or $\beta=0$. In particular, if $\alpha=\beta=0$, we obtain the expression of the Green's function given in

囯 A. P. Palamides, A. N. Veloni, A singular third-order boundary-value problem with nonpositive Green's function, Electron. J. Differential Equations 2007 (2007), no. 151, 1-13.

LEMMA

Let $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}$ and $0 \leq \eta \leq \frac{1}{2}$. The Green's function G, related to problem (3) - (4), has the following sign properties:

$$
\begin{aligned}
G(t, s) \leq 0 \text { and } \frac{\partial}{\partial t} G(t, s) \leq 0 & \text { for } 0 \leq s<\eta \\
G(t, s) \geq 0 \text { and } \frac{\partial}{\partial t} G(t, s) \geq 0 & \text { for } \eta<s \leq 1 \\
\frac{\partial^{2}}{\partial t^{2}} G(t, s) \leq 0 & \text { for all } s<t \\
\frac{\partial^{2}}{\partial t^{2}} G(t, s) \geq 0 & \text { for all } s>t .
\end{aligned}
$$

Figure: Graph of $G\left(t, s_{0}\right), 0<s_{0}<\eta<1$ fixed.

Figure: Graph of $G\left(t, s_{0}\right), 0<\eta<s_{0}<1$ fixed.

LEMMA

$$
\max _{t, s \in I}\left|\frac{\partial}{\partial t} G(t, s)\right| \leq \frac{2+\alpha \beta-\beta}{2+\alpha \beta-2 \beta} .
$$

Now, we define the cone

$$
K:=\left\{y \in C^{1}(I): y(t) \geq 0, y^{\prime}(t) \geq 0, t \in I\right\} .
$$

Lemma

Let $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}, 0 \leq \eta \leq \frac{1}{2}$ and G be the related Green's function to Problem (3) - (4). Let $y \in K$. Then the unique solution of the linear boundary value Problem (3)-(4) is such that

$$
u(t)=\int_{0}^{1} G(t, s) y(s) d s \in K .
$$

Moreover, $u \in C^{2}(I)$ and $u^{\prime \prime}(t) \geq 0$ for all $t \in[0, \eta]$.

Idea of the Proof

We only show how to deduce that $u(t) \geq 0$ for all $t \in[0, \eta]$.
To this end we use that $G(t, s) \leq 0$ for $0 \leq s<\eta$ and $G(t, s) \geq 0$ for $\eta<s \leq 1, y(t) \geq 0, y^{\prime}(t) \geq 0$ for $0 \leq t \leq 1$, we have

$$
\begin{aligned}
u(t) & =\int_{0}^{\eta} G(t, s) y(s) d s+\int_{\eta}^{1} G(t, s) y(s) d s \\
& \geq \max _{0 \leq s \leq \eta} y(s) \int_{0}^{\eta} G(t, s) d s+\min _{\eta \leq s \leq 1} y(s) \int_{\eta}^{1} G(t, s) d s \\
& =y(\eta) \int_{0}^{\eta} G(t, s) d s+y(\eta) \int_{\eta}^{1} G(t, s) d s \\
& \geq y(\eta)\left(-\frac{1}{6} t \frac{-6+\alpha \beta-6 \beta \eta+6 \eta \beta t+2 \beta-2 \beta t \alpha-6 t \eta+12 \eta+\alpha \beta t^{2}+2 t^{2}-2 \beta t^{2}}{2+\alpha \beta-2 \beta}\right) \\
& \geq 0
\end{aligned}
$$

Idea of the Proof

The rest of the properties on u follow with similar arguments, by using that $y \in K$ and the sign properties of G and its two first partial derivatives.

Now, define $h(t):=1+\alpha(t-1)$. So we obtain
Lemma
Let $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}$ and $0 \leq \eta \leq \frac{1}{2}$. Then

$$
\begin{array}{ll}
\frac{\partial}{\partial t} G(t, s) \leq h(t) \frac{\partial}{\partial t} G(1, s) & \text { for } 0 \leq s<\eta \\
\frac{\partial}{\partial t} G(t, s) \geq h(t) \frac{\partial}{\partial t} G(1, s) & \text { for } \eta<s \leq 1 .
\end{array}
$$

Moreover, given $y \in K$, the unique solution u of Problem (3)-(4), is such that

$$
u^{\prime}(t) \geq h(t) u^{\prime}(1) \text { for all } t \in I
$$

LEMMA

Let $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}$ and $0 \leq \eta<\frac{1}{2}$ and G be the related Green's function to Problem (3) - (4). Then, for all $(t, s) \in(0,1] \times(0,1)$ the following inequalities are fulfilled:

$$
\frac{G(t, s)}{G(1, s)} \leq \lim _{s \rightarrow 0^{+}} \frac{G(t, s)}{G(1, s)} \leq \frac{1}{2} \beta(t-1)(\alpha(t-1)+2)+1 \leq 1
$$

and

$$
\frac{G(t, s)}{G(1, s)} \geq \lim _{s \rightarrow 1^{-}} \frac{G(t, s)}{G(1, s)}=\frac{1}{2} \alpha \beta(t-1) t+t=: g(t) .
$$

Figure: Graph of $G\left(t_{0}, s\right) / G(1, s), s \in[0,1]$, with $t_{0} \in(0,1)$ fixed.

Figure: Graph of function g.

Corollary

Let $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}$ and $0 \leq \eta \leq \frac{1}{2}$. Then

$$
G(t, s) \leq g(t) G(1, s) \quad \text { for } 0 \leq s<\eta
$$

$$
G(t, s) \geq g(t) G(1, s) \quad \text { for } \eta<s \leq 1
$$

$$
K_{0}:=\left\{y \in K, y(t) \geq g(t)\|y\|_{\infty}, t \in I\right\}
$$

So, we deduce that the solution of (3)- (4) belongs to the previous cone, when η is in the more restrictive interval $[0,1 / 3]$.

LEMMA

Let $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}, 0 \leq \eta \leq \frac{1}{3}$ and G be the related Green's function to problem (3) - (4). Let $y \in K_{0}$. Then the unique solution of the linear boundary value problem (3)-(4) is such that

$$
u(t)=\int_{0}^{1} G(t, s) y(s) d s \in K_{0} .
$$

Part III

Non Linear Problem

Now we will study the existence of solutions of the third order nonlinear differential equation

$$
\begin{gather*}
u^{\prime \prime \prime}(t)=-\lambda p(t) f(u(t)), \text { a.e. } t \in I, \tag{1}\\
u(0)=0, u^{\prime \prime}(\eta)=\alpha u^{\prime}(1), u^{\prime}(1)=\beta u(1), \tag{2}
\end{gather*}
$$

with $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}$ and $0 \leq \eta \leq \frac{1}{3}$.
(F) $\lambda>0$ is a parameter, $p \in L^{\infty}(I)$ is such that $p<0$ a.e. on $[0, \eta]$ and $p>0$ a. e. on $[\eta, 1]$ and $f:[0, \infty) \rightarrow[0, \infty)$ is a continuous function.

Let us consider the Banach space $C^{1}(I)$ equipped with the norm

$$
\|u\|=\max \left\{\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}\right\} .
$$

Taking into account the properties satisfied by the Green's function and its derivatives, we define the cone K_{1} in $C^{1}(I)$ as follows

$$
\begin{gathered}
K_{1}:=\left\{y \in K_{0}, y^{\prime}(t) \geq h(t) y^{\prime}(1), t \in I\right\}, \\
K_{0}:=\left\{y \in K, y(t) \geq g(t)\|y\|_{\infty}, t \in I\right\}, \\
K:=\left\{y \in C^{1}(I): y(t) \geq 0, y^{\prime}(t) \geq 0, t \in I\right\} .
\end{gathered}
$$

It is well known that the solutions of Problem (1)-(2) correspond with the fixed points of the integral operator

$$
T u(t)=\lambda \int_{0}^{1} G(t, s) p(s) f(u(s)) d s, t \in I
$$

Lemma

$T: K_{1} \rightarrow K_{1}$ is a completely continuous operator.

Define

$$
\begin{gathered}
\Lambda=\int_{0}^{1} G(1, s) p(s) g(s) d s>0 \\
p^{*}=\sup _{\operatorname{ess}}^{s \in I} \\
|p(s)|
\end{gathered}
$$

and denote, assuming that both limits exist,

$$
f_{0}=\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x} \text { and } f^{\infty}=\lim _{x \rightarrow+\infty} \frac{f(x)}{x}
$$

THEOREM (1)

Assume that $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}, 0 \leq \eta \leq \frac{1}{3}$ and

$$
\frac{2+\alpha \beta-\beta}{2+\alpha \beta-2 \beta} f^{\infty} p^{*}<\Lambda f_{0} .
$$

Then, if

$$
\lambda \in\left(\frac{1}{\Lambda f_{0}}, \frac{2+\alpha \beta-2 \beta}{(2+\alpha \beta-\beta) f^{\infty} p^{*}}\right)
$$

Problem (1)-(2) has at least one positive solution in K_{1}.

Idea of the Proof

Assume, at first, that $f_{0} \in(0,+\infty)$.
Let $\lambda \in\left(\frac{1}{\Lambda f_{0}}, \frac{2+\alpha \beta-2 \beta}{(2+\alpha \beta-\beta) f^{\infty} p^{*}}\right)$ and choose $\varepsilon \in\left(0, f_{0}\right)$ such that

$$
\frac{1}{\Lambda\left(f_{0}-\varepsilon\right)}<\lambda<\frac{2+\alpha \beta-2 \beta}{(2+\alpha \beta-\beta)\left(f^{\infty}+\varepsilon\right) p^{*}}
$$

Idea of the Proof

Assume, at first, that $f_{0} \in(0,+\infty)$.
Let $\lambda \in\left(\frac{1}{\Lambda f_{0}}, \frac{2+\alpha \beta-2 \beta}{(2+\alpha \beta-\beta) f^{\infty} p^{*}}\right)$ and choose $\varepsilon \in\left(0, f_{0}\right)$ such that

$$
\frac{1}{\Lambda\left(f_{0}-\varepsilon\right)}<\lambda<\frac{2+\alpha \beta-2 \beta}{(2+\alpha \beta-\beta)\left(f^{\infty}+\varepsilon\right) p^{*}}
$$

From the definition of f_{0}, it follows that there exists $\delta_{1}>0$ such that when $0 \leq u(t) \leq \delta_{1}$, for all $t \in I$, we have

$$
f(u(t))>\left(f_{0}-\varepsilon\right) u(t) \quad \text { for all } t \in I .
$$

Let $\Omega_{\delta_{1}}=\left\{u \in K_{1}:\|u\|<\delta_{1}\right\}$ and choose $u \in \partial \Omega_{\delta_{1}}$.
Since $p(s) G(1, s) \geq 0$ for all $s \in I$ and $u \in K_{1}$, we have

$$
\begin{aligned}
T u(1) & =\lambda \int_{0}^{1} G(1, s) p(s) f(u(s)) d s \\
& \geq \lambda\left(f_{0}-\varepsilon\right) \int_{0}^{1} p(s) G(1, s) u(s) d s \\
& \geq \lambda\left(f_{0}-\varepsilon\right)\|u\|_{\infty} \int_{0}^{1} p(s) G(1, s) g(s) d s \\
& =\lambda\left(f_{0}-\varepsilon\right) u(1) \wedge \\
& >u(1)
\end{aligned}
$$

Thus, we have that $T u(t) \leq u(t)$ is not true for all $t \in I$, which is a necessary condition to have $u-T u \in K \subset K_{1}$.

Denoting by \preceq the order induced by the cone K_{1}, we prove that $T u \npreceq u$ and we deduce that

$$
i_{K_{1}}\left(T, \Omega_{\delta_{1}}\right)=0
$$

The arguments for $f_{0}=+\infty$ are similar.

On the other hand, due to the definition of f^{∞}, we know that there exists $\delta_{2}>\delta_{1}>0$ such that when $\min _{t \in I}\{u(t)\} \geq \delta_{2}$,

$$
f(u(t)) \leq\left(f^{\infty}+\varepsilon\right) u(t) \leq\left(f^{\infty}+\varepsilon\right)\|u\|_{\infty} \quad \text { for all } t \in I
$$

Define

$$
\Omega_{\delta_{2}}=\left\{u \in K_{1}: \min _{t \in I}|u(t)|<\delta_{2}\right\} .
$$

$\Omega_{\delta_{2}}$ is an unbounded subset of the cone K_{1}.

Because of this, the fixed point index of the operator T with respect to $\Omega_{\delta_{2}}, i_{K_{1}}\left(T, \Omega_{\delta_{2}}\right)$ is only defined in the case that the set of fixed points of the operator T in $\Omega_{\delta_{2}}$ is compact and does not intersect $\partial \Omega_{\delta_{2}}$.

Let $u \in \partial \Omega_{\delta_{2}}$.

It is not difficult to verify that, for this range of values of the parameter λ, it holds that $\|T u\|_{\infty}<\|u\|_{\infty}$.

Thus $T u \neq u$ for all $u \in \partial \Omega_{\delta_{2}}$.

If $(I-T)^{-1}(\{0\}) \cap \Omega_{\delta_{2}}$ is unbounded we have infinite fixed points of T in $\Omega_{\delta_{2}}$ and, as a consequence, Problem (1)-(2) has an infinite number of positive solutions on $\Omega_{\delta_{2}}$ too.

In other case, from the fact that operator T is completely continuous and the set $(I-T)^{-1}(\{0\}) \cap \Omega_{\delta_{2}}$ is bounded and closed, it is not difficult to deduce that this set is equicontinuous in $C^{1}(I)$ and, as a consequence, compact.

In this last situation we may deduce that $\|T u\|<\|u\|$ for all $u \in \partial \Omega_{\delta_{2}}$ and, as a consequence, we have that

$$
i_{K_{1}}\left(T, \Omega_{\delta_{2}}\right)=1 .
$$

Thus, we conclude that T has a fixed point in $\Omega_{\delta_{2}} \backslash \bar{\Omega}_{\delta_{1}}$, which is a positive solution of Problem (1)-(2).

Corollary

Assume that condition (F) holds. Then, (i) If $f_{0}=+\infty$ and $f^{\infty}=0$, then for all $\lambda>0$ Problem (1)-(2) has at least one positive solution.
(ii) If $f_{0}=+\infty$ and $0<f^{\infty}<+\infty$, then for all
$\lambda \in\left(0, \frac{2+\alpha \beta-2 \beta}{(2+\alpha \beta-\beta))^{+\rho} p^{*}}\right)$ Problem (1)-(2) has at least one positive solution.
(iii) If $0<f_{0}<+\infty$ and $f^{\infty}=0$, then for all $\lambda>\frac{1}{\Lambda_{0}}$ Problem
(1)-(2) has at least one positive solution.

Alternative existence results are deduced by considering the sets

$$
K_{\rho}=\left\{u \in K_{1}:\|u\|<\rho\right\} .
$$

Lemma

Denote

$$
f^{\rho}=\sup \operatorname{ess}\left\{\frac{|p(t)| f(u)}{\rho} ; \quad(t, u) \in I \times[0, \rho]\right\}
$$

If there exists $\rho>0$ such that $\lambda f^{\rho}<\frac{2+\alpha \beta-2 \beta}{2+\alpha \beta-\beta}$, then

$$
i_{K_{1}}\left(T, K_{\rho}\right)=1
$$

Lemma
Let

$$
M=\left(\int_{0}^{1}|G(1, s)| d s\right)^{-1}
$$

and

$$
f_{\rho}=\inf \operatorname{ess}\left\{\frac{|p(t)| f(u)}{\rho} ; \quad(t, u) \in I \times[0, \rho]\right\}
$$

If there exists $\rho>0$ such that $\lambda f_{\rho}>M$, then

$$
i_{K_{1}}\left(T, K_{\rho}\right)=0
$$

THEOREM (2)

Assume $0<\eta<1 / 3$. Then Problem (1)-(2) has at least one nontrivial solution in K_{1} if one of the following conditions hold.
(C1) There exist $0<\rho_{1}<\rho_{2}$, such that $\lambda f_{\rho_{1}}>M$ and $\lambda f^{\rho_{2}}<\frac{2+\alpha \beta-2 \beta}{2+\alpha \beta-\beta}$.
(C2) There exist $0<\rho_{1}<\rho_{2}$, such that $\lambda f^{\rho_{1}}<\frac{2+\alpha \beta-2 \beta}{2+\alpha \beta-\beta}$ and $\lambda f_{\rho_{2}}>M$.

THEOREM (3)

Let $[a, b] \subset I$, with $a>0$, be given. If one of the following conditions holds
(i) $f(x)<m^{*} x$ for every $x \geq 0$, where

$$
m^{*}=\left(\lambda \sup _{t \in I} \int_{0}^{1} G(t, s) p(s) d s\right)^{-1}
$$

(ii) $f(x)>m_{*} x$ for every $x \geq 0$, where

$$
m_{*}=\left(\lambda \inf _{t \in[a, b]} \int_{a}^{b} G(t, s) p(s) d s\right)^{-1}
$$

Then Problem (1)-(2) has not nontrivial solution in K_{1}.

EXAMPLE

Let $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}$ and $0 \leq \eta \leq \frac{1}{3}$, and consider the problem

$$
\begin{aligned}
u^{\prime \prime \prime} & =-\lambda u^{\gamma} q(t) \arctan (t-\eta), t \in I, \\
u(0) & =0, u^{\prime \prime}(\eta)=\alpha u^{\prime}(1), u^{\prime}(1)=\beta u(1),
\end{aligned}
$$

with $\gamma \in(0,1)$ and $c_{1} \geq q(t) \geq c_{2}>0$ for all $t \in I$.
In this case,

$$
f_{0}=+\infty \text { and } f^{\infty}=0 \text {. }
$$

From Theorem (1) there exists at least one positive solution for all $\lambda>0$.

EXAMPLE

On the other hand, for $\rho>0$,

$$
f_{\rho}=\inf \operatorname{ess}\left\{\frac{q(t) \arctan |t-\eta| u^{\gamma}}{\rho} ;(t, u) \in I \times[0, \rho]\right\}=0
$$

and it is not possible to find a positive ρ, such that $\lambda f_{\rho}>M$, which means that Theorem (2) can not be applied in this case.

EXAMPLE
Let $0 \leq \alpha \leq 1,0 \leq \beta<\frac{2}{2-\alpha}$ and $0 \leq \eta \leq \frac{1}{3}$, and consider the problem

$$
\begin{aligned}
u^{\prime \prime \prime} & =-\lambda u q(u) \arctan (t-\eta), t \in I \\
u(0) & =0, u^{\prime \prime}(\eta)=\alpha u^{\prime}(1), u^{\prime}(1)=\beta u(1)
\end{aligned}
$$

with $D>q(u) \geq c>0$ for all $t \in I$ where

$$
D \equiv \frac{2+\alpha \beta-2 \beta}{\lambda\left(1-\eta^{2}\right)\left(\left(-\frac{1}{2} \ln \left(((\eta-2) \eta+2)\left(\eta^{2}+1\right)\right)-(\eta-1) \arctan (1-\eta)+\eta \arctan \eta\right)\right)} .
$$

EXAMPLE

Since,

$$
\begin{aligned}
\frac{1}{m^{*}} & =\lambda \sup ^{2} \operatorname{ess}_{t \in I} \int_{0}^{1} G(t, s) p(s) d s \\
& \leq \lambda \max _{t, s \in I}|G(t, s)| \int_{0}^{1}|\arctan (s-\eta)| d s=\frac{1}{D}
\end{aligned}
$$

then, $f(u)=u q(u)<u D=u m^{*}$.

Theorem (3) ensures that the considered problem has not nontrivial solutions in K_{1}.

THANKS FOR YOUR ATTENTION

