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The presentation is based on a series of joint works with:

Katarzyna Pietruska-Pa luba,
Jan Peszek,
Katarzyna Mazowiecka,
Tomasz Choczewski,
Ignacy Lipka,
Aberto Fiorenza and Claudia Capogne,
Tomas Roskovec and Dalmil Pesa.
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Inequalities of Kolmogorov and of Gagliardo and Nirenberg

Theorem (Kolmogorov, 1939)

Zachodzi nierówność:

‖f (k)‖∞ ≤ Ck,m‖f ‖
1− k

m∞ ‖f (m)‖
k
m∞,

where f is definef on R, 0 < k < m, k,m ∈ N.
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Theorem (E. Gagliardo, D. Nirenberg, 1959)

There holds:

‖∇(k)f ‖Lp(Ω) ≤ C‖f ‖1− k
m

Lq(Ω)‖∇
(m)f ‖

k
m

Lr (Ω) + ‖f ‖Lq(Ω),

where f : Ω→ R, Ω-regular enough, 0 < k < m, k ,m ∈ N, and

1

p
=

1− k

m

1

q
+

k

m

1

r
.
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Strongy nonlinear inequaalities

We are interested in inequality (SNMI):1∫
(a,b)∩{f>0}

|f ′(x)|ph(f (x))dx ≤

C

∫
(a,b)∩{f>0}

(√
|f ′′(x)Th(f (x))|

)p

h(f (x))dx , (1)

and its generalizations.

1we propose its name: SNMI=”Strongly nonlinear multiplicative nequality”
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Assumptions (in most cases):

−∞ ≤ a < b ≤ +∞, p ≥ 2,

f ∈ R, C∞0 (a, b) ⊆ R ⊆W 2,1
loc (a, b), f ≥ 0 (in most cases),

h : (0,∞)→ [0,∞) is continuous,

Th(·) is continuous, interpreted as the transformation of f :

Th(λ) :=

{
H(λ)
h(λ) if h(λ) 6= 0,

0 if h(λ) = 0,

where H is primitive to h. Important property: when
h(λ) = λα then Th(λ) ∼ λ and inequality is of the form:∫

(a,b)∩{f>0}
|f ′(x)|ph(f (x))dx ≤

C

∫
(a,b)∩{f>0}

(√
|f ′′(x)f (x)|

)p

h(f (x))dx

2

2Th(λ) := 1/ (lnH(λ))
′

if H(λ) > 0
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Our motivations:

Apply the new inequalities to regularity theory in singular
PDEs in the form

∆u = g(x)τ(u), g ∈ Lp(Ω), Ω ⊆ Rn

and more general ones

Pu = g(x)τ(u), g ∈ Lp(Ω), Ω ⊆ Rn,

where P is elliptic operator.
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Information about models where inequality applies

Example models typical for applications

Thomas-Fermi model (1927, describes electric charge in
isolated neutral atom){

y
′′

(t) = t
1
2 y(t)

3
2 , t ∈ (0,∞),

y(0) = 0, limt→∞ y(t) = 0.

Emden-Fowler problem (fluid dynamics):{
y
′′

+ λq(x)y−γ = 0, x ∈ (0, 1), γ > 0
y(0) = y(1) = 0,

model of membrana and model of mikro-electro-mechanical
system (MEMS), papers by Esposito and coauthors

−∆u = λg(x)
(1−u)2 in Ω ⊆ R2

0 ≤ u < 1 in Ω
u = 0 on ∂Ω

models in cosmology, e.g. Makutuma model

∆u +
1

1 + |x |2
uq = 0, x ∈ R.
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Unweighed simplest variant - multidimensional setting

Theorem (Katarzyna Pietruska-Paluba and A.K, 2006)

∫
G (|∇u|)dx ≤ C

∫
G (
√
|u||∇(2)u|)dx , (2)

where G is convex, G (λ)/λ2 is bouded near 0.
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Inequalities involving “weight” in dimension d=1

Theorem (Jan Peszek and A.K., 2012)∫
(a,b)∩{f>0}

|f ′(x)|ph(f (x))dx ≤

C

∫
(a,b)∩{f>0}

(√
|f ′′(x)Th(f (x))|

)p

h(f (x))dx ,

under certain assumptions on h and f .
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The special case

The special case: h(λ) = λ−θp

Theorem (Jan Peszek and A.K., 2012)

Let 2 ≤ p <∞, θ ∈ R and f ∈W 2,1
loc (R) be such that f

′
has

compact support. Assume additionally that at least one of the
conditions is satisfied:

1 θ < 1
p ,

2 θ > 1
p and f is nonnegative or (more generally) does not have

isolated zeroes,

3 θ > 1
p and there exists ε such that for every r < R:

∫
(r ,R)∩{x :0<|f (x)|<ε}

(
|f ′ |
|f |θ

)p

dx <∞.
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The special case

Then∫
{x :f (x)6=0}

(
|f ′ |
|f |θ

)p

dx ≤

(
p − 1

|1− θp|

) p
2
∫
{x :f (x)6=0}

(√
|ff ′′ |
|f |θ

)p

dx .

For θ = 1
2 and f ≥ 0 we retrieve Mazja’s inequality

(book) know earlier.

Conjecture. Constant
(

p−1
|1−θp|

) p
2

is precise.
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Generalization to Orlicz spaces

Generalization to Orlicz spaces

We consider certain set of assumptions:

(M) M : [0,∞)→ [0,∞) is (convex) differentiable
N−function, and M satisfies the condition:

dM
M(λ)

λ
≤ M ′(λ) ≤ DM

M(λ)

λ
for every λ > 0,

(3)

where DM ≥ dM ≥ 2.

(h) h : (0,∞)→ (0,∞), |h′H| < Eh2, E -small enough +
some assumptions.
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Generalization to Orlicz spaces

Theorem (Jan Peszek and A.K, 2013)

Assume that M satisfies (M), h : (0,∞)→ (0,∞) satisfies (h).
Then any nonnegative f ∈W 2,1(R) such that f

′
has compact

support satisfies inequality∫
R∩{f>0}

M(|f ′(x)|h(f (x)))dx ≤

C

∫
R∩{f>0}

M

(√
|f ′′(x)Th(f (x))| · h(f (x))

)
dx .
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Generalization to Orlicz spaces

Application to the capacitary estimates

Mazya used the inequality:∫
{x :f (x) 6=0}

(
|f ′ |√

f

)p

dx

≤ (2(p − 1))
p
2

∫
{x :f (x) 6=0}

(√
|ff ′′ |√
|f |

)p

dx ,

to obtain the capacitary inequality:∫
Ω
cap+

p (Nt ,Ω)tp−1dt ≤ C

∫
Ω
|∇(2)u(x)|pdx ,

where Nt = {x ∈ Ω : u(x) ≥ t},

cap+
p (E ,Ω) := inf

{∫
Ω
|∇(2)u|pdx : u ∈ C∞0 (Ω), u ≥ 0 on Ω,

u ≡ 1 in a neighborhood of E} ,
whenever E ⊆ Ω is compact.



History - Kolmogorov, Gagliardo- Nirenberg inequalities and strongly nonlinear variants Inequalities without “weight” (Orlicz setting, together with Katarzyna Pietruska-Paluba) Inequalities involving “weight h(·)” in dimension 1, with Lebesque measure, and applications (together with Jan Peszek) n dimensional case (with Tomasz Choczewski and dalmil Pesa and Tomas Roskovec) Inequalities involving nonlocal operators (with Claudia Capogne and Alberto Fiorenza)

Generalization to Orlicz spaces

Let

µ is a given Borel measure defined on open set Ω,

N be the given N-function,

N∗ be the Legendre transform of N,

LN(Ω, µ) be an Orlicz space related to N.
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Generalization to Orlicz spaces

Theorem (Mazya: book, Theorem 8.3.1)

The following statements (a) and (b) are equivalent:
(a) The embedding:

‖|u|p‖LN(Ω,µ) ≤ A‖∇(2)u‖pLp(Ω) (4)

holds for every nonnegative u ∈ C∞0 (Ω), with a u-independent
finite constant A.
(b) The following isoperimetric inequality:

µ(E )(N∗)−1

(
1

µ(E )

)
≤ Bcap+

p (E ,Ω) (5)

holds for every compact E ⊂ Ω, such that cap+
p (E ,Ω) > 0.

Moreover, if A and B are the best constants in (4) and (5),
respectively, then B ≤ A ≤ pBC , where C is the same as in the
capacitary estimate.
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Generalization to Orlicz spaces

We asked about the validity of a more general embedding:

‖M(|u|)‖LN(Ω,µ) ≤ A

∫
Ω

M(|∇(2)u|)dx , (6)

where u ∈ C∞0 (Ω) is nonnegative, with a (possibly) general convex
function M instead of λp.
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Generalization to Orlicz spaces

Theorem (Jan Peszek, A.K., 2013)

Under suitable assumptions on M, (6) is equivalent to the
isoperimetric inequality:

µ(E )(N∗)−1

(
1

µ(E )

)
≤ Bcap+

M(E ,Ω), (7)

holding over all compact sets E ⊂ Ω such that cap+
M(E ,Ω) > 0,

where

cap+
M(E ,Ω) := inf

{∫
Ω

M(|∇(2)u|)dx : u ∈ C∞0 (Ω), u ≥ 0 on Ω,

u ≡ 1 in a neighborhood of E} .

For that we only needed the SNMI with h(λ) = λ−1/2 inside
M, like in Mazja’a approach.
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Applications to the nonlinear eigenvalue problems

Applications to the nonlinear ODEs

Consider the following O.D.E:{
f
′′

(x) = g(x)τ(f (x)) a.e. in (a, b),
f ∈ R (8)

where −∞ ≤ a < b ≤ +∞ and:

τ : A→ R, A ⊆ [0,∞) is an interval,

f ∈W 2,1
loc ((a, b)), f (x) ∈ A,

g ∈ Lq(a, b), q ∈ [1,∞],

set R defines the boundary conditions (ok for Dirichlet bc).



History - Kolmogorov, Gagliardo- Nirenberg inequalities and strongly nonlinear variants Inequalities without “weight” (Orlicz setting, together with Katarzyna Pietruska-Paluba) Inequalities involving “weight h(·)” in dimension 1, with Lebesque measure, and applications (together with Jan Peszek) n dimensional case (with Tomasz Choczewski and dalmil Pesa and Tomas Roskovec) Inequalities involving nonlocal operators (with Claudia Capogne and Alberto Fiorenza)

Regularity

We find function h(·) such that3

|g(x)|q =

∣∣∣∣∣ f
′′

(x)

τ(f (x))

∣∣∣∣∣
q

= |Th(f (x))f
′′

(x)|
2q
2 h(f (x)) = (∗),

We apply:∫
(a,b)
|f ′(x)|2qh(f (x))dx ≤

(√
2q − 1

)2q
∫

(a,b)

(√
|f ′′(x)Th(f (x))|

)2q

h(f (x))dx

=

∫
(∗)dx =

∫
|g(x)|qdx <∞.

3ok when |1/τ(λ)|q = |H(λ)/h(λ)|qh(λ)- we have to solve the ODE with

the unknown H, H
′

= h.
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Regularity

We deduce that∫
|f ′ |2qh(f ) ≤ C‖g‖qq.

Let G = Gτ be such transform of τ that
|(G (f ))

′ |2q = |f ′ |2q · h(f ) (G
′

= h1/(2q)). Then
G (f ) ∈W 1,2q((a, b)), so is λ-Hölder continuous, where
λ = 1− 1

2q .

we deduce the regularity and asymptotic behavior of solutions.
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Asymptotic behavior

Application (with Jan Peszek, generalization with
Katarzyna Mazowiecka)

Assumption: 1 ≤ q <∞, α 6= −1 + 1
q , κ = −sign(α + 1− 1

q ),

0 < b ≤ ∞, g ∈ Lq(0, b) and let f ∈W 2,1
loc (0, b) and f ≥ 0 solves:

f
′′

(x) = g(x)(f (x))α a.e. on (0, b)

and nonlinear boundary condition (mixed type):

lim inf
R↗b

κ|f ′(R)|2q−2f
′
(R)(f (R))−q(α+1)+1

− lim sup
r↘0

κ|f ′(r)|2q−2f
′
(r)(f (r))−q(α+1)+1 ≤ 0.

4

4Dirichlet bc - ok.
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Asymptotic behavior

Theorem (Jan Peszek, A.K., 2012)

i) ∫ b

0
|f ′(x)|2q|f (x)|−q(α+1)dx ≤ Cq

∫ b

0
|g(x)|qdx ,

ii)

sup

{
|(f (x))

1−α
2 − (f (y))

1−α
2 |

|x − y |1−
1

2q

: x , y ∈ (0, b)

}
≤

Aq

(∫ b

0
|g(x)|qdx

) 1
2q

,

iii) If α < 1 then limr↘0 f (r) =: f (0) = 0 then

|f (x)|
1−α

2 ≤ Aq|x |1−
1

2q

(∫ b

0
|g(x)|qdx

) 1
q

.
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Asymptotic behavior

Extensions were obtained with Katarzyna Mazowiecka (2015).
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Asymptotic behavior

Questions about better regularity

Can G (f ) ∈W 2,2q((a, b))? Answer: in gerenaral ‘no’ (with
Katarzyna Mazowiecka);

Can we expect G (f ) ∈W s,2q((a, b)) with 1 < s < 2? We
expect such a phenomena but for that we need SNMI with ∇s

where 1 < s < 2- open !!!.



History - Kolmogorov, Gagliardo- Nirenberg inequalities and strongly nonlinear variants Inequalities without “weight” (Orlicz setting, together with Katarzyna Pietruska-Paluba) Inequalities involving “weight h(·)” in dimension 1, with Lebesque measure, and applications (together with Jan Peszek) n dimensional case (with Tomasz Choczewski and dalmil Pesa and Tomas Roskovec) Inequalities involving nonlocal operators (with Claudia Capogne and Alberto Fiorenza)

Generalization to d > 1

We obtained the analogue of multiplicative inequality having the
form:∫

Ω
|∇f (x)|ph(f (x))dx ≤

C

∫
Ω

(√
|Pf (x)Th(f (x))|

)p
h(f (x))dx , (9)

and applications to the eigenvalue problems like:{
∆f (x) = g(x)τ(f (x)) a.e. in Ω.
f ∈ R (10)

where P- is the elliptic operator (with Dalmil Pesa and Tomas
Roskovec), P = ∆ - earlier with Tomasz Choczewski.
5

5f ∈ R - OK for f > 0 in Ω, f ≡ 0 on ∂Ω.
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for the choice of the admitted weights h(·) we require
information about:
- best constants in the Hardy inequality (for the radial case);
- best constant in the inequality (for general case)(∫

Ω
|∆♠w |qdx

) 1
q

≤ Dq,Ω

(∫
Ω
|∆w |qdx

) 1
q

,

where 1 < q <∞,

∆♠u(x) := ∆∞u(x)−∆u(x),

∆∞u(x) =
∑

i ,j∈{1,...,n}

vi (x)vj(x)
∂(2)u

∂xi∂xj
(x) ,

v(x) =
∇u(x)

|∇u(x)|
χ{∇u(x) 6=0} ∈ Rn.
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SNMI applies to the model of elektrostatic micromechanical
systems (MEMS), which is reduced to the following problem

∆u = λf (x)
(1−u)2 w Ω

u = 0 on ∂Ω
0 < u < 1 in Ω

where λ ≥ 0, f ≥ 0, f ∈ Lq(Ω), u ∈ C 1(Ω ∩W 2,2(Ω)), and Ω
is open and bounded (papers by Esposito).
In particular we get:

√
1− u ∈W 1,2q(Ω) and∫

Ω
|∇(
√

1− u)|2qdx ≤ Cλq
∫

Ω
|f (x)|qdx .
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Weighted variants in 1-d (with Ignacy Lipka)

∫
(a,b)
|f ′(x)|ph(f (x))ρ(x)dx ≤

C

(∫
(a,b)

(√
|f ′′(x)Th(f (x))|

)p

h(f (x))ρ(x)dx

+

∫
(a,b)
|Th(f (x))|ph(f (x))|ρ′(x)|dx

)

ρ satisfies Bp condition due to Kufner and Opic: ρ−1/(p−1) ∈ L1
loc ,

ρ ∈ ACloc .
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Inequalities involving nonlocal operators (with Claudia
Capogne and Alberto Fiorenza)

Let dA > 1 (lower Simonnenko index) and let 1 < p < iA (Boyd
index). We obtain inequalities:
i) ∫

R
A(|f ′(x)|)dx ≤ CA,p

∫
R

A

(
p

√
|f ′′(x)Th≡1,p(f , x)|)

)
dx .

For every nonnegative f ∈W 2,1
loc (R) such that f

′
is compactly

supported;
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Second example inequality

ii) ∫
R

M(|f ′(x)|h(f (x)))dx ≤

A

∫
R

M

(
B p

√
|Mf ′′(x)Th,p(f , x)| · h(f (x))

)
dx ,

Th,p(f , x) :=


∫ x
−∞ Φp

(
h(f (y))f

′
(y)
)
χ{f (y) 6=0} dy

h(f (x))p−1 , f (x) 6= 0

0, f (x) = 0

and φp(s) = |s|p−2s. For p = 2 we have Th,p = Th, Mh is Hardy -
Littlewood maximal function.
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Indeces

The approach requires analysis Simmonnenko and Boyed indeces
and their invariances: if the inequality holds with comvex function
M then it holds with M1 ∼ M.

Simonnenko indeces for A (convex):

dA := inf
t>0

tA
′
(t)

A(t)
, DA := sup

t>0

tA
′
(t)

A(t)
.

Boyd indeces for A:

iA := sup
A1∼A

dA1 IA := inf
A1∼A

DA1 .
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Interpretation of the nonlinear transform

For h ≡ 1 we have

Th≡1,p(f , x) = ∆−1∆p, ∆pu = div
(
|∇u|p−2∇u

)
.

In general

Th,p(f , x) =
∆−1∆p(H(f ))

Φp(h(f ))
, Φp(s) = |s|p−2s.

In particular Th,p(f , x) is nonlocal.
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Multidimensional variants - with Tomasz Choczewski
(2018, 2019)

i) ∫
Ω
|∇u(x)|ph(u(x))dx ≤

C (n, p)

∫
Ω

(√
|∇(2)u(x)||Th(u(x))|

)p

h(u(x))dx ,

ii) ∫
Ω
|∇u(x)|ph(u(x))dx ≤

D(n, p)

∫
Ω

(√
|∆u(x)||Th(u(x))|

)p
h(u(x))dx ,
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d > 1 - with Tomas Roskovec and Dalmil Pesa (presently)

We work on generalisation of ii) to arbitrary operator elliptic
opertor P (not necessarily with constant coefficients):∫

Ω
|∇u(x)|ph(u(x))dx ≤

D(n, p)

∫
Ω

(√
|Pu(x)||Th(u(x))|

)p
h(u(x))dx ,

The goal: elliptic regularity theory for solutions of:

Pu = g(x)τ(u).
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Thank you very much for your attension.
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