On pairs of complementary boundary and transmission conditions

Elżbieta Ratajczyk \& Adam Bobrowski

Lublin University of Technology, Poland

A curious result

Perpendicular boundary conditions

$$
\begin{array}{lll}
f^{\prime}(0) & =\gamma f(0) & \perp \\
f^{\prime \prime}(0)=\gamma f^{\prime}(0), \quad(\gamma>0) \\
f^{\prime}(0) & =0 & \perp \\
& f(0)=0 \quad\left(\text { not } f^{\prime \prime}(0)=0\right)
\end{array}
$$

A curious result

Perpendicular boundary conditions

$$
\begin{array}{lll}
f^{\prime}(0) & =\gamma f(0) & \perp \\
f^{\prime \prime}(0)=\gamma f^{\prime}(0), \quad(\gamma>0) \\
f^{\prime}(0) & =0 & \perp \\
& f(0)=0 \quad\left(\text { not } f^{\prime \prime}(0)=0\right)
\end{array}
$$

Perpendicular transmission conditions

$$
\begin{aligned}
f^{\prime}(0+) & =\gamma[f(0+)-f(0-)], & f(0-) & =-f(0+) \\
f^{\prime}(0-) & =\delta[f(0+)-f(0-)] & \perp \quad f^{\prime \prime}(0+) & =\delta f^{\prime}(0-)+\gamma f^{\prime}(0+)
\end{aligned}
$$

A curious result

Perpendicular boundary conditions

$$
\begin{aligned}
& f^{\prime}(0)=\gamma f(0) \quad \perp \quad f^{\prime \prime}(0)=\gamma f^{\prime}(0), \quad(\gamma>0) \\
& f^{\prime}(0)=0 \quad \perp \quad f(0)=0 \quad\left(\text { not } f^{\prime \prime}(0)=0\right)
\end{aligned}
$$

Perpendicular transmission conditions

$$
\begin{aligned}
f^{\prime}(0+) & =\gamma[f(0+)-f(0-)], & f(0-) & =-f(0+) \\
f^{\prime}(0-) & =\delta[f(0+)-f(0-)] & \perp \quad f^{\prime \prime}(0+) & =\delta f^{\prime}(0-)+\gamma f^{\prime}(0+)
\end{aligned}
$$

Meaning, probabilistic interpetation?

In a certain Banach space:

Semigroups: first order Cauchy problems

- Banach space \mathbb{F};
- operator $A: \mathbb{F} \supset D(A) \rightarrow \mathbb{F}$,
- search for solution u of

$$
u^{\prime}(t)=A u(t), \quad u(0)=f \in \mathbb{F}
$$

Semigroups: first order Cauchy problems

- Banach space \mathbb{F};
- operator $A: \mathbb{F} \supset D(A) \rightarrow \mathbb{F}$,
- search for solution u of

$$
u^{\prime}(t)=A u(t), \quad u(0)=f \in \mathbb{F}
$$

- Well-posed (existence, uniqueness and continuous dependence on initial data) iff A a semigroup generator;
- meaningful $\left\{\mathrm{e}^{t A}, t \geqslant 0\right\}$ - family of bounded linear operators in \mathbb{F} such that $\mathrm{e}^{s A} \mathrm{e}^{t A}=\mathrm{e}^{(s+t) A}, s, t \geqslant 0, \lim _{t \rightarrow 0} \mathrm{e}^{t A} f=f$.

Semigroups: examples

- A - bounded, $\mathrm{e}^{t A}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} A^{n},(t \in \mathbb{R})$,
- A - shift by $1: \mathrm{e}^{t A}=\mathrm{e}^{t} E f(x+N(t)), N$ - Poisson process,
- $A=\frac{\mathrm{d}}{\mathrm{d} x}, \mathrm{e}^{t A} f(x)=f(x+t)$,
- $A=\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}, \mathrm{e}^{t A} f(x)=E f(x+w(t)), w-$ Wiener process,
- $A=\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{dx}}, D(A) \sim f^{\prime}(0)=0, \mathrm{e}^{t A} f(x)=E f(|x+w(t)|)$.

Cosines: second order Cauchy problems

- Search for solution u of

$$
u^{\prime \prime}(t)=A u(t), \quad u^{\prime}(0)=0, u(0)=f \in \mathbb{F}
$$

- Problem well-posed (existence, uniqueness and continuous dependence on initial data) iff A a cosine family generator;
- $C_{A}(t), t \in \mathbb{R}$ - family of bounded linear operators in \mathbb{F} such that

$$
2 C_{A}(t) C_{A}(s)=C_{A}(t-s)+C_{A}(t+s), \quad s, t \in \mathbb{R}
$$

$\lim _{t \rightarrow 0} C_{A}(t) f=f$.

Cosines: second order Cauchy problems

- Search for solution u of

$$
u^{\prime \prime}(t)=A u(t), \quad u^{\prime}(0)=0, u(0)=f \in \mathbb{F}
$$

- Problem well-posed (existence, uniqueness and continuous dependence on initial data) iff A a cosine family generator;
- $C_{A}(t), t \in \mathbb{R}$ - family of bounded linear operators in \mathbb{F} such that

$$
2 C_{A}(t) C_{A}(s)=C_{A}(t-s)+C_{A}(t+s), \quad s, t \in \mathbb{R}
$$

$\lim _{t \rightarrow 0} C_{A}(t) f=f$.

- A - bounded, $C_{A}(t)=\sum_{n=0}^{\infty} \frac{t^{2 n}}{(2 n)!} A^{2 n}$,
- $A=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}, C_{A} f(x)=\frac{1}{2}[f(x+t)+f(x-t)], t, x \in \mathbb{R}$.

Cosine family generator is a semigroup generator

Weierstrass Formula:

$$
\mathrm{e}^{t A} f=\frac{1}{2 \sqrt{\pi t}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{s^{2}}{4 t}} C_{A}(s) f \mathrm{~d} s, \quad t>0
$$

Cosine family generator is a semigroup generator

Weierstrass Formula:

$$
\mathrm{e}^{t A} f=\frac{1}{2 \sqrt{\pi t}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{s^{2}}{4 t}} C_{A}(s) f \mathrm{~d} s, \quad t>0
$$

Additionally: the semigroup generated by a cosine family generator is 'more regular'.

Three points of view

(A) Solutions to $D E$.
(B) Semigroup/cosine family.
(C) Operator A.

Three points of view

(A) Solutions to $D E$.
(B) Semigroup/cosine family.
(C) Operator A.

Described: $(A) \longleftrightarrow(B)$. To do: $(B) \longleftrightarrow(C)$.

From semigroup/cosine families to generators

- Given $\{T(t), t \geqslant 0\}$ such that $T(t+s)=T(s) T(s), s, t \geqslant 0$ and $\lim _{t \rightarrow 0} T(t) f=f$, we define

$$
A f=\lim _{t \rightarrow 0} t^{-1}(T(t) f-f)
$$

for f (composing A's domain), for which this limit exists.

- Given $\{C(t), t \in \mathbb{R}\}$ s.t. $2 C(s) C(s)=C(t+s)+C(t-s)$, $s, t \in \mathbb{R}$ and $\lim _{t \rightarrow 0} C(t) f=f$, we define

$$
A f=\lim _{t \rightarrow 0} 2 t^{-2}(C(t) f-f)
$$

for f (composing A's domain), for which this limit exists.

Generation theorem for semigroups

Hille-Yosida-F-P-M Theorem
The exponent of A exists and satisfies $\left\|e^{t A}\right\| \leqslant M \mathrm{e}^{\omega t}, t \geqslant 0$ iff A is closed and densely defined, and

$$
\left\|\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}}(\lambda-A)^{-1}\right\| \leqslant \frac{M n!}{(\lambda-\omega)^{n+1}}, \quad n \geqslant 0, \lambda>\omega
$$

Generation theorem for semigroups

Hille-Yosida-F-P-M Theorem
The exponent of A exists and satisfies $\left\|e^{t A}\right\| \leqslant M \mathrm{e}^{\omega t}, t \geqslant 0$ iff A is closed and densely defined, and

$$
\left\|\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}}(\lambda-A)^{-1}\right\| \leqslant \frac{M n!}{(\lambda-\omega)^{n+1}}, \quad n \geqslant 0, \lambda>\omega
$$

The last condition simplifies to

$$
\left\|(\lambda-A)^{-n}\right\| \leqslant \frac{M}{(\lambda-\omega)^{n}}, \quad n \geqslant 0, \lambda>\omega
$$

and for $M=1$ and $\omega=0$, to

$$
\left\|\lambda(\lambda-A)^{-1}\right\| \leqslant 1
$$

Checking this is from time to time doable - stochastic processes.

Generation theorem for cosine families

Sova and Da Prato-Giusti Theorem
A generates a cosine family which satisfies $\left\|C_{A}(t)\right\| \leqslant M \mathrm{e}^{\omega|t|}, t \in \mathbb{R}$ iff A is closed and densely defined, and

$$
\left\|\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}}\left[\lambda\left(\lambda^{2}-A\right)^{-1}\right]\right\| \leqslant \frac{M n!}{(\lambda-\omega)^{n+1}}, \quad n \geqslant 0, \lambda>\omega
$$

Generation theorem for cosine families

Sova and Da Prato-Giusti Theorem
A generates a cosine family which satisfies $\left\|C_{A}(t)\right\| \leqslant M \mathrm{e}^{\omega|t|}, t \in \mathbb{R}$ iff A is closed and densely defined, and

$$
\left\|\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}}\left[\lambda\left(\lambda^{2}-A\right)^{-1}\right]\right\| \leqslant \frac{M n!}{(\lambda-\omega)^{n+1}}, \quad n \geqslant 0, \lambda>\omega
$$

The last condition DOES NOT simplify, and checking it is almost never doable.
Hence, need for other methods.

Subspace semigroups/cosine families

- Given: a semigroup $\{T(t), t \geqslant 0\}$ in \mathbb{F} with generator A
- Assumption: $\mathbb{F}_{0} \subset \mathbb{F}$ is left invariant
- Then $\left\{T(t)_{\mid \mathbb{F}_{0}}, t \geqslant 0\right\}$ is a semigroup in \mathbb{F}_{0} with generator

$$
A_{0}:=A_{\mid D(A) \cap \mathbb{F}_{0}} .
$$

Isomorphic/similar semigroups/cosine families

- Isomorphic Banach spaces \mathbb{F} and \mathbb{G} : isomorphism $\mathcal{I}: \mathbb{F} \rightarrow \mathbb{G}$,
- Generator A of a semigroup in \mathbb{F};

Isomorphic/similar semigroups/cosine families

- Isomorphic Banach spaces \mathbb{F} and \mathbb{G} : isomorphism $\mathcal{I}: \mathbb{F} \rightarrow \mathbb{G}$,
- Generator A of a semigroup in \mathbb{F};
- Then $\left\{\mathcal{I} \mathrm{e}^{\text {tA }} \mathcal{I}^{-1}, t \geqslant 0\right\}$ - a semigroup in \mathbb{G};
- Its generator is 'the image of A in \mathbb{G}^{\prime} :

$$
D(B)=\mathcal{I} D(A) \quad \text { and } \quad B \mathcal{I} f=\mathcal{I} A f, f \in D(A) .
$$

Isomorphic/similar semigroups/cosine families

- Isomorphic Banach spaces \mathbb{F} and \mathbb{G} : isomorphism $\mathcal{I}: \mathbb{F} \rightarrow \mathbb{G}$,
- Generator A of a semigroup in \mathbb{F};
- Then $\left\{\mathcal{I}^{t A} \mathcal{I}^{-1}, t \geqslant 0\right\}$ - a semigroup in \mathbb{G};
- Its generator is 'the image of A in \mathbb{G} ':

$$
D(B)=\mathcal{I} D(A) \quad \text { and } \quad B \mathcal{I} f=\mathcal{I} A f, f \in D(A) .
$$

(Solving the heat equation by Fourier series ...)

Feller boundary conditions for 1D Laplace operator

Work in $C[0, \infty]$:
Candidates for generators:
$A f=f^{\prime \prime}$ for twice continuously differentiable functions with $f^{\prime \prime} \in C[0, \infty]$, satisfying Feller b.c.

$$
\alpha f^{\prime \prime}(0)-\beta f^{\prime}(0)+\gamma f(0)-\delta \int_{\mathbb{R}_{*}^{+}} f \mathrm{~d} \mu=0,
$$

where μ - a probability measure on $\mathbb{R}_{*}^{+}=(0, \infty)$, and α, β, γ and δ -non-negative constants with $\gamma \geqslant \delta$ and $\alpha+\beta>0$.

Interpretation of constants. Traditional approach - obstacles.

Solving differential equations ...

George (György) Pólya
In order to solve a differential equation you look at it till a solution occurs to you

Lord Kelvin's method of images

Idea:
use what you know from a larger space.
Use basic cosine family in $C[-\infty, \infty]$,

$$
C(t) f(x)=\frac{1}{2}(f(x+t)+f(x-t)), \quad x, t \in \mathbb{R}
$$

generated by $\frac{\mathrm{d}^{2}}{\mathrm{dx}}$.

Lord Kelvin's method of images

Idea:
use what you know from a larger space.
Use basic cosine family in $C[-\infty, \infty]$,

$$
C(t) f(x)=\frac{1}{2}(f(x+t)+f(x-t)), \quad x, t \in \mathbb{R}
$$

generated by $\frac{\mathrm{d}^{2}}{\mathrm{~d} \mathrm{x}^{2}}$.
Find a subspace of $C[-\infty, \infty]$ that is invariant under the basic cosine family and isomorphic to $C[0, \infty]$.

How it works for Neumann b.c. (Feller 1970)

Neumann boundary condition: $f^{\prime}(0)=0$.

How it works for Neumann b.c. (Feller 1970)

Neumann boundary condition: $f^{\prime}(0)=0$.

Extend: $\widetilde{f}(-x)=f(x)$

How it works for Neumann b.c. (Feller 1970)

Neumann boundary condition: $f^{\prime}(0)=0$.

Extend: $\widetilde{f}(-x)=f(x)$

Use $C(t): C(t) \tilde{f}(x)=\frac{1}{2}[\widetilde{f}(x+t)+\widetilde{f}(x-t)]$

How it works for Neumann b.c. (Feller 1970)

Neumann boundary condition: $f^{\prime}(0)=0$.

$$
\text { Extend: } \widetilde{f}(-x)=f(x)
$$

Use $C(t): C(t) \tilde{f}(x)=\frac{1}{2}[\widetilde{f}(x+t)+\widetilde{f}(x-t)]$

Restrict to $x \geqslant 0$.

Abstract Kelvin Formula:

$$
C_{N}(t)=R C(t) E f
$$

Side notes:

- $2 t^{-2}\left(C_{N}(t) f-f\right)=2 R t^{-2}(C(t) E f-E f)$.
- For $f \in C^{2}[0, \infty]$, its even extension belongs to $C^{2}[-\infty, \infty]$ iff $f^{\prime}(0)=0$.
- Operator R - obvious. Operator E - not so obvious.
- How to connect a b.c. with extension operator?

Other b.c.

- Dirichlet b.c.? Same procedure - just use odd extensions.
- Robin boundary condition: $f^{\prime}(0)=\gamma f(0)$? Same. Different extension.

Other b.c.

- Dirichlet b.c.? Same procedure - just use odd extensions.
- Robin boundary condition: $f^{\prime}(0)=\gamma f(0)$? Same. Different extension.

Abstract Kelvin Formula:

$$
C_{\gamma}(t)=R C(t) E f .
$$

Other b.c.

- Dirichlet b.c.? Same procedure - just use odd extensions.
- Robin boundary condition: $f^{\prime}(0)=\gamma f(0)$? Same. Different extension.

Abstract Kelvin Formula:

$$
C_{\gamma}(t)=R C(t) E f
$$

Works for all b.c. presented above (A.B. circa 2010)

Lord Kelvin's method of images

Given

- basic cosine family in $C[-\infty, \infty]$ with generator $A=\frac{\mathrm{d}^{2}}{\mathrm{dx} \mathrm{x}^{2}}$
- $\mathbb{F}_{0} \subset C[-\infty, \infty]$ invariant; cosine family in \mathbb{F}_{0} has generator $A_{0}=A_{\mid D(A) \cap \mathbb{F}_{0}}$
- isomorphism $E: C[0, \infty] \rightarrow \mathbb{F}_{0}, E^{-1}=R$

Lord Kelvin's method of images

Given

- basic cosine family in $C[-\infty, \infty]$ with generator $A=\frac{\mathrm{d}^{2}}{\mathrm{dx} \mathrm{x}^{2}}$
- $\mathbb{F}_{0} \subset C[-\infty, \infty]$ invariant; cosine family in \mathbb{F}_{0} has generator $A_{0}=A_{\mid D(A) \cap \mathbb{F}_{0}}$
- isomorphism $E: C[0, \infty] \rightarrow \mathbb{F}_{0}, E^{-1}=R$

Lord Kelvin's method of images

Given

- basic cosine family in $C[-\infty, \infty]$ with generator $A=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}$
- $\mathbb{F}_{0} \subset C[-\infty, \infty]$ invariant; cosine family in \mathbb{F}_{0} has generator $A_{0}=A_{\mid D(A) \cap \mathbb{F}_{0}}$
- isomorphism $E: C[0, \infty] \rightarrow \mathbb{F}_{0}, E^{-1}=R$

Result: the cosine family in $C[0, \infty]$ generated by

$$
B=R A_{0} E \quad \text { on the domain } \quad D(B)=R D\left(A_{0}\right) .
$$

Why this approach works?

Key ingredients:
(1) Invariant subspace of $C[-\infty, \infty]$ which is isomorphic to $C[0, \infty]$;
(2) The related extension operator E.
(3) The invariant subspace intimately related to a b.c.

$$
\text { Boundary condition } \Longrightarrow \text { invariant subspace }
$$

Questions (June 2021)

(1) $C_{\gamma}^{R} \subset C[-\infty, \infty]$ invariant for the basic cosine family

$$
C_{\gamma}^{R}:=\left\{f ; f(-x)=f(x)-2 \gamma \int_{0}^{x} \mathrm{e}^{-\gamma(x-y)} f(y) \mathrm{d} y, x \geqslant 0\right\} .
$$

(2) Is C_{γ}^{R} complemented by another invariant subspace?

$$
C[-\infty, \infty]=C_{\text {even }} \oplus C_{\text {odd }} ; \quad C[-\infty, \infty]=C_{\gamma}^{R} \oplus X \text { ??????? }
$$

(Can X be related to a boundary condition?

Questions (June 2021)

(1) $C_{\gamma}^{R} \subset C[-\infty, \infty]$ invariant for the basic cosine family

$$
C_{\gamma}^{R}:=\left\{f ; f(-x)=f(x)-2 \gamma \int_{0}^{x} \mathrm{e}^{-\gamma(x-y)} f(y) \mathrm{d} y, x \geqslant 0\right\} .
$$

(2) Is C_{γ}^{R} complemented by another invariant subspace?

$$
C[-\infty, \infty]=C_{\text {even }} \oplus C_{\text {odd }} ; \quad C[-\infty, \infty]=C_{\gamma}^{R} \oplus X \text { ??????? }
$$

(Can X be related to a boundary condition?

- How to meaningfully project onto C_{γ}^{R} ? (The projection

$$
P f(x)= \begin{cases}f(x), & x \geqslant 0 \\ f(-x)-2 \gamma \int_{0}^{-x} \mathrm{e}^{-\gamma(-x-y)} f(y) \mathrm{d} y, & x<0\end{cases}
$$

is not very informative ...)

An idea (mimic decomp. into even and odd parts):

Given $f \in C[-\infty, \infty]$, find for each $N>0$, a $g \in C_{\gamma}^{R}$ that minimizes

$$
\int_{-N}^{N}[f(x)-g(x)]^{2} \mathrm{~d} x .
$$

An idea (mimic decomp. into even and odd parts):

Given $f \in C[-\infty, \infty]$, find for each $N>0$, a $g \in C_{\gamma}^{R}$ that minimizes

$$
\int_{-N}^{N}[f(x)-g(x)]^{2} d x
$$

This gives g of the form

$$
g(x)=(g(0)-f(0)) \mathrm{e}^{\gamma x}+f_{\text {even }}(x)+\gamma \int_{0}^{x} \mathrm{e}^{\gamma(x-y)} f(-y) \mathrm{d} y, x \in[0, N] .
$$

An idea (mimic decomp. into even and odd parts):

Given $f \in C[-\infty, \infty]$, find for each $N>0$, a $g \in C_{\gamma}^{R}$ that minimizes

$$
\int_{-N}^{N}[f(x)-g(x)]^{2} d x
$$

This gives g of the form
$g(x)=(g(0)-f(0)) \mathrm{e}^{\gamma x}+f_{\text {even }}(x)+\gamma \int_{0}^{x} \mathrm{e}^{\gamma(x-y)} f(-y) \mathrm{d} y, x \in[0, N]$.
Since we want (a) $\lim _{x \rightarrow \infty} g(x)$ to exist, and (b) $g \in C_{\gamma}^{R}$, this leads to

$$
P_{\gamma} f(x):=g(x):=f_{\text {even }}(x)-\gamma \mathrm{e}^{\gamma x} \int_{x}^{\infty} \mathrm{e}^{-\gamma y} f(-y) \mathrm{d} y, \quad x \in \mathbb{R} .
$$

Results:

Theorem 1
P_{γ} is a projection on C_{γ}^{R}
Theorem 2
$Q_{\gamma}:=I-P_{\gamma}$ is a projection on
$C_{\gamma}^{F}:=\left\{f ; f(-x)=-f(x)+2 \gamma \int_{0}^{x} \mathrm{e}^{-\gamma(x-y)} f(y) \mathrm{d} y+2 f(0) \mathrm{e}^{-\gamma x}, x \geqslant 0\right\}$.
C_{γ}^{F} is related to the sticky boundary condition $f^{\prime \prime}(0)=\gamma f^{\prime}(0)$ and in particular is invariant!
Theorem 3
$C[-\infty, \infty]=C_{\gamma}^{R} \oplus C_{\gamma}^{F}$, that is,

$$
f^{\prime}(0)=\gamma f(0) \quad \perp \quad f^{\prime \prime}(0)=\gamma f^{\prime}(0)
$$

Examples of Robin and Feller extensions

Dependence on parameter γ :

About projections

N. L. Carothers 2004

outside of the Hilbert space setting, nontrivial projections are often hard to come by

$$
\begin{aligned}
& P_{\gamma} f(x):=f_{\text {even }}(x)-\gamma \mathrm{e}^{\gamma x} \int_{x}^{\infty} \mathrm{e}^{-\gamma y} f(-y) \mathrm{d} y, \\
& Q_{\gamma} f(x):=f_{\text {odd }}(x)+\gamma \mathrm{e}^{\gamma x} \int_{x}^{\infty} \mathrm{e}^{-\gamma y} f(-y) \mathrm{d} y, \quad x \in \mathbb{R} .
\end{aligned}
$$

Properties of $\gamma \mapsto P_{\gamma}$
(a) It is continuous in the uniform operator topology for $\gamma \in(0, \infty)$.
(b) At $\gamma=\infty: \lim _{\gamma \rightarrow \infty} P_{\gamma}=P_{\infty}:=Q_{0}$ in the strong topology.
(c) P_{γ} from projection on even to projection on odd; Q_{γ} in the other direction but their paths never cross!

Thinking of Ukraine

Thank you

