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The result

A curious result

Perpendicular boundary conditions

f ′(0) = γf (0) ⊥ f ′′(0) = γf ′(0), (γ > 0),

f ′(0) = 0 ⊥ f (0) = 0 (not f ′′(0) = 0).

Perpendicular transmission conditions

f ′(0+) = γ[f (0+)− f (0−)], f (0−) = −f (0+),

f ′(0−) = δ[f (0+)− f (0−)] ⊥ f ′′(0+) = δf ′(0−) + γf ′(0+).

Meaning, probabilistic interpetation?
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The result

In a certain Banach space:

f ′′(0) = γf ′(0)

f ′(0) = γf (0)

.
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Semigroups and cosines

Semigroups: first order Cauchy problems

Banach space F;

operator A : F ⊃ D(A)→ F,

search for solution u of

u′(t) = Au(t), u(0) = f ∈ F.

Well-posed (existence, uniqueness and continuous dependence
on initial data) iff A a semigroup generator;

meaningful {etA, t ­ 0} – family of bounded linear operators in
F such that esAetA = e(s+t)A, s, t ­ 0, limt→0 etAf = f .
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Semigroups and cosines

Semigroups: examples

A – bounded, etA =
∑∞

n=0
tn

n!
An, (t ∈ R),

A – shift by 1: etA = etE f (x + N(t)), N – Poisson process,

A = d
dx , e

tAf (x) = f (x + t),

A = 1
2
d2
dx2 , e

tAf (x) = E f (x + w(t)), w – Wiener process,

A = 1
2
d2
dx2 ,D(A) ∼ f ′(0) = 0, etAf (x) = E f (|x + w(t)|).
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Semigroups and cosines

Cosines: second order Cauchy problems

Search for solution u of

u′′(t) = Au(t), u′(0) = 0, u(0) = f ∈ F.

Problem well-posed (existence, uniqueness and continuous
dependence on initial data) iff A a cosine family generator;

CA(t), t ∈ R – family of bounded linear operators in F such that

2CA(t)CA(s) = CA(t − s) + CA(t + s), s, t ∈ R

limt→0 CA(t)f = f .

A – bounded, CA(t) =
∑∞

n=0
t2n

(2n)!A
2n,

A = d2
dx2 , CAf (x) =

1
2 [f (x + t) + f (x − t)], t, x ∈ R.
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Semigroups and cosines

Cosine family generator is a semigroup generator

Weierstrass Formula:

etAf =
1

2
√
πt

∫ ∞
−∞
e−

s2

4t CA(s)f ds, t > 0

Additionally: the semigroup generated by a cosine family generator is
‘more regular’.
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Semigroups and cosines

Three points of view

(A) Solutions to DE .

(B) Semigroup/cosine family.

(C) Operator A.

Described: (A) ←→ (B). To do: (B) ←→ (C).
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Semigroups and cosines

From semigroup/cosine families to generators

Given {T (t), t ­ 0} such that T (t + s) = T (s)T (s), s, t ­ 0
and limt→0 T (t)f = f , we define

Af = lim
t→0

t−1(T (t)f − f )

for f (composing A’s domain), for which this limit exists.

Given {C (t), t ∈ R} s.t. 2C (s)C (s) = C (t + s) + C (t − s),
s, t ∈ R and limt→0 C (t)f = f , we define

Af = lim
t→0

2t−2(C (t)f − f )

for f (composing A’s domain), for which this limit exists.
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Semigroups and cosines

Generation theorem for semigroups

Hille–Yosida–F–P–M Theorem

The exponent of A exists and satisfies ‖etA‖ ¬ Meωt , t ­ 0 iff A is
closed and densely defined, and∥∥∥∥∥ dndλn (λ− A)−1

∥∥∥∥∥ ¬ Mn!

(λ− ω)n+1
, n ­ 0, λ > ω

The last condition simplifies to∥∥∥(λ− A)−n
∥∥∥ ¬ M

(λ− ω)n
, n ­ 0, λ > ω

and for M = 1 and ω = 0, to

‖λ(λ− A)−1‖ ¬ 1.

Checking this is from time to time doable — stochastic processes.
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Semigroups and cosines

Generation theorem for cosine families

Sova and Da Prato–Giusti Theorem

A generates a cosine family which satisfies ‖CA(t)‖ ¬ Meω|t|, t ∈ R
iff A is closed and densely defined, and∥∥∥∥∥ dndλn [λ(λ2 − A)−1]

∥∥∥∥∥ ¬ Mn!

(λ− ω)n+1
, n ­ 0, λ > ω

The last condition DOES NOT simplify, and checking it is almost
never doable.
Hence, need for other methods.
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Semigroups and cosines

Subspace semigroups/cosine families

Given: a semigroup {T (t), t ­ 0} in F with generator A

Assumption: F0 ⊂ F is left invariant

Then {T (t)|F0 , t ­ 0} is a semigroup in F0 with generator

A0 := A|D(A)∩F0 .
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Semigroups and cosines

Isomorphic/similar semigroups/cosine families

Isomorphic Banach spaces F and G: isomorphism I : F→ G,
Generator A of a semigroup in F;

Then {IetAI−1, t ­ 0} – a semigroup in G;
Its generator is ‘the image of A in G’:

D(B) = ID(A) and BIf = IAf , f ∈ D(A).

(Solving the heat equation by Fourier series ...)

F G

f If

Af BIf
BA

In G, B plays the role of A.
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Boundary conditions and invariant subspaces

Feller boundary conditions for 1D Laplace operator

Work in C [0,∞]:

Candidates for generators:

Af = f ′′ for twice continuously differentiable functions with
f ′′ ∈ C [0,∞], satisfying Feller b.c.

αf ′′(0)− βf ′(0) + γf (0)− δ
∫
R+
∗

f dµ = 0,

where µ – a probability measure on R+
∗ = (0,∞), and α, β, γ and δ –

non-negative constants with γ ­ δ and α + β > 0.

Interpretation of constants. Traditional approach – obstacles.
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Boundary conditions and invariant subspaces

Solving differential equations ...

George (György) Pólya

In order to solve a differential equation you look at it till a solution
occurs to you
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Boundary conditions and invariant subspaces

Lord Kelvin’s method of images

Idea:
use what you know from a larger space.

Use basic cosine family in C [−∞,∞],

C (t)f (x) = 1
2 (f (x + t) + f (x − t)) , x , t ∈ R.

generated by d2
dx2 .

Find a subspace of C [−∞,∞] that is invariant under the basic
cosine family and isomorphic to C [0,∞].
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Boundary conditions and invariant subspaces

How it works for Neumann b.c. (Feller 1970)

Neumann boundary condition: f ′(0) = 0.

Extend: f̃ (−x) = f (x)

Use C (t): C (t)f̃ (x) = 1
2 [f̃ (x + t) + f̃ (x − t)]

Restrict to x ­ 0.

Abstract Kelvin Formula:

CN(t) = RC (t)Ef .
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Boundary conditions and invariant subspaces

Side notes:

2t−2(CN(t)f − f ) = 2Rt−2(C (t)Ef − Ef ).

For f ∈ C 2[0,∞], its even extension belongs to C 2[−∞,∞] iff
f ′(0) = 0.

Operator R — obvious. Operator E — not so obvious.

How to connect a b.c. with extension operator?

Elżbieta Ratajczyk & Adam Bobrowski (Lublin University of Technology, Poland) Łódź, 9.03.22 18 / 27



Boundary conditions and invariant subspaces

Other b.c.

Dirichlet b.c.? Same procedure – just use odd extensions.
Robin boundary condition: f ′(0) = γf (0)? Same. Different
extension.

f (−x) = f (x)− 2γ
∫ x
0 e
−γ(x−y)f (y)dy , x ­ 0

Abstract Kelvin Formula:

Cγ(t) = RC (t)Ef .

Works for all b.c. presented above (A.B. circa 2010)
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Boundary conditions and invariant subspaces

Lord Kelvin’s method of images

Given
basic cosine family in C [−∞,∞] with generator A = d2

dx2

F0 ⊂ C [−∞,∞] invariant;
cosine family in F0 has generator A0 = A|D(A)∩F0
isomorphism E : C [0,∞]→ F0, E−1 = R

Result: the cosine family in C [0,∞] generated by

B = RA0E on the domain D(B) = RD(A0).

C [0,∞] F0

f Ef

RA0Ef A0Ef
A0B

C [−∞,∞]
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Boundary conditions and invariant subspaces

Why this approach works?

Key ingredients:
1 Invariant subspace of C [−∞,∞] which is isomorphic to C [0,∞];
2 The related extension operator E .
3 The invariant subspace intimately related to a b.c.

Boundary condition =⇒ invariant subspace
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‘Perpendicular’ b.c.

Questions (June 2021)

1 CR
γ ⊂ C [−∞,∞] invariant for the basic cosine family

CR
γ := {f ; f (−x) = f (x)− 2γ

∫ x

0
e−γ(x−y)f (y) dy , x ­ 0}.

2 Is CR
γ complemented by another invariant subspace?

C [−∞,∞] = Ceven ⊕ Codd ; C [−∞,∞] = CR
γ ⊕ X ??????

3 Can X be related to a boundary condition?

4 How to meaningfully project onto CR
γ ? (The projection

Pf (x) =

f (x), x ­ 0,

f (−x)− 2γ
∫−x
0 e

−γ(−x−y)f (y) dy , x < 0

is not very informative ... )
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‘Perpendicular’ b.c.

An idea (mimic decomp. into even and odd parts):

Given f ∈ C [−∞,∞], find for each N > 0, a g ∈ CR
γ that minimizes

∫ N

−N
[f (x)− g(x)]2 dx .

This gives g of the form

g(x) = (g(0)− f (0))eγx + feven(x)+γ
∫ x

0
eγ(x−y)f (−y) dy , x ∈ [0,N].

Since we want (a) limx→∞ g(x) to exist, and (b) g ∈ CR
γ , this leads

to

Pγf (x) := g(x) := feven(x)− γeγx
∫ ∞
x
e−γy f (−y) dy , x ∈ R.
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An idea (mimic decomp. into even and odd parts):

Given f ∈ C [−∞,∞], find for each N > 0, a g ∈ CR
γ that minimizes

∫ N

−N
[f (x)− g(x)]2 dx .

This gives g of the form

g(x) = (g(0)− f (0))eγx + feven(x)+γ
∫ x

0
eγ(x−y)f (−y) dy , x ∈ [0,N].

Since we want (a) limx→∞ g(x) to exist, and (b) g ∈ CR
γ , this leads

to

Pγf (x) := g(x) := feven(x)− γeγx
∫ ∞
x
e−γy f (−y) dy , x ∈ R.
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Results:

Theorem 1

Pγ is a projection on CR
γ

Theorem 2
Qγ := I − Pγ is a projection on

CF
γ := {f ; f (−x) = −f (x)+2γ

∫ x

0
e−γ(x−y)f (y) dy+2f (0)e−γx , x ­ 0}.

CF
γ is related to the sticky boundary condition f ′′(0) = γf ′(0) and in

particular is invariant!
Theorem 3

C [−∞,∞] = CR
γ ⊕ CF

γ , that is,

f ′(0) = γf (0) ⊥ f ′′(0) = γf ′(0).
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Examples of Robin and Feller extensions

Dependence on parameter γ:
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About projections

N. L. Carothers 2004
outside of the Hilbert space setting, nontrivial projections are often
hard to come by

Pγf (x) := feven(x)− γeγx
∫ ∞
x
e−γy f (−y) dy ,

Qγf (x) := fodd(x) + γeγx
∫ ∞
x
e−γy f (−y) dy , x ∈ R.

Properties of γ 7→ Pγ

(a) It is continuous in the uniform operator topology for γ ∈ (0,∞).

(b) At γ =∞: limγ→∞ Pγ = P∞ := Q0 in the strong topology.

(c) Pγ from projection on even to projection on odd; Qγ in the other
direction but their paths never cross!
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Thinking of Ukraine

Thank you
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