On pairs of complementary boundary and transmission conditions

Elżbieta Ratajczyk & Adam Bobrowski

Lublin University of Technology, Poland

• • = • • =

Łódź, 9.03.22

1/27

Elżbieta Ratajczyk & Adam Bobrowski

A curious result

Perpendicular boundary conditions

$$\begin{array}{rcl} f'(0) &=& \gamma f(0) & \perp & f''(0) = \gamma f'(0), & (\gamma > 0), \\ f'(0) &=& 0 & \perp & f(0) = 0 & (\operatorname{not} f''(0) = 0). \end{array}$$

Elżbieta Ratajczyk & Adam Bobrowski

イロト イヨト イヨト イヨト

A curious result

Perpendicular boundary conditions

$$\begin{array}{rcl} f'(0) &=& \gamma f(0) & \perp & f''(0) = \gamma f'(0), & (\gamma > 0), \\ f'(0) &=& 0 & \perp & f(0) = 0 & (\operatorname{not} f''(0) = 0). \end{array}$$

Perpendicular transmission conditions

$$\begin{array}{lll} f'(0+) &=& \gamma[f(0+) - f(0-)], & f(0-) = -f(0+), \\ f'(0-) &=& \delta[f(0+) - f(0-)] & \perp & f''(0+) = \delta f'(0-) + \gamma f'(0+). \end{array}$$

Elżbieta Ratajczyk & Adam Bobrowski

A curious result

Perpendicular boundary conditions

$$\begin{array}{rcl} f'(0) &=& \gamma f(0) & \perp & f''(0) = \gamma f'(0), & (\gamma > 0), \\ f'(0) &=& 0 & \perp & f(0) = 0 & (\operatorname{not} f''(0) = 0). \end{array}$$

Perpendicular transmission conditions

$$\begin{array}{lll} f'(0+) &=& \gamma[f(0+) - f(0-)], & f(0-) = -f(0+), \\ f'(0-) &=& \delta[f(0+) - f(0-)] & \perp & f''(0+) = \delta f'(0-) + \gamma f'(0+). \end{array}$$

Meaning, probabilistic interpetation?

A D F A B F A B F A B

In a certain Banach space:

Elżbieta Ratajczyk & Adam Bobrowski

Semigroups: first order Cauchy problems

- Banach space \mathbb{F} ;
- operator $A:\mathbb{F}\supset D(A)
 ightarrow \mathbb{F}$,
- search for solution *u* of

$$u'(t) = Au(t), \qquad u(0) = f \in \mathbb{F}.$$

イロト 不得 トイヨト イヨト 二日

Semigroups: first order Cauchy problems

- Banach space 𝑘;
- operator $A:\mathbb{F}\supset D(A)
 ightarrow \mathbb{F}$,
- search for solution *u* of

$$u'(t) = Au(t), \qquad u(0) = f \in \mathbb{F}.$$

- Well-posed (existence, uniqueness and continuous dependence on initial data) iff *A* a semigroup generator;
- meaningful $\{e^{tA}, t \ge 0\}$ family of bounded linear operators in \mathbb{F} such that $e^{sA}e^{tA} = e^{(s+t)A}$, $s, t \ge 0$, $\lim_{t\to 0} e^{tA}f = f$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Semigroups: examples

Elżbieta Ratajczyk & Adam Bobrowski

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cosines: second order Cauchy problems

• Search for solution u of

$$u''(t) = Au(t), \qquad u'(0) = 0, u(0) = f \in \mathbb{F}.$$

- Problem well-posed (existence, uniqueness and continuous dependence on initial data) iff A a cosine family generator;
- $\mathcal{C}_{\mathcal{A}}(t), t \in \mathbb{R}$ family of bounded linear operators in \mathbb{F} such that

$$2C_A(t)C_A(s)=C_A(t-s)+C_A(t+s),\qquad s,t\in\mathbb{R}$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Łódź, 9.03.22

6/27

 $\lim_{t\to 0} C_A(t)f = f.$

Elżbieta Ratajczyk & Adam Bobrowski

Cosines: second order Cauchy problems

• Search for solution u of

$$u''(t) = Au(t), \qquad u'(0) = 0, u(0) = f \in \mathbb{F}.$$

- Problem well-posed (existence, uniqueness and continuous dependence on initial data) iff A a cosine family generator;
- $\mathcal{C}_{\mathcal{A}}(t), t \in \mathbb{R}$ family of bounded linear operators in \mathbb{F} such that

$$2C_A(t)C_A(s)=C_A(t-s)+C_A(t+s),\qquad s,t\in\mathbb{R}$$

 $\lim_{t \to 0} C_A(t)f = f.$ • A - bounded, $C_A(t) = \sum_{n=0}^{\infty} \frac{t^{2n}}{(2n)!} A^{2n}$,
• $A = \frac{d^2}{dx^2}, C_A f(x) = \frac{1}{2} [f(x+t) + f(x-t)], t, x \in \mathbb{R}.$

Cosine family generator is a semigroup generator

Weierstrass Formula:

$$\mathrm{e}^{tA}f = rac{1}{2\sqrt{\pi t}}\int_{-\infty}^{\infty}\mathrm{e}^{-rac{s^2}{4t}}C_A(s)f\,\mathrm{d}s,\qquad t>0$$

Elżbieta Ratajczyk & Adam Bobrowski

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cosine family generator is a semigroup generator

Weierstrass Formula:

$$\mathrm{e}^{tA}f = rac{1}{2\sqrt{\pi t}}\int_{-\infty}^{\infty}\mathrm{e}^{-rac{s^2}{4t}}C_A(s)f\,\mathrm{d}s,\qquad t>0$$

Additionally: the semigroup generated by a cosine family generator is 'more regular'.

< □ > < □ > < □ > < □ > < □ > < □ >

Three points of view

- (A) Solutions to DE.
- (B) Semigroup/cosine family.
- (C) Operator A.

イロト イヨト イヨト イヨト

Three points of view

- (A) Solutions to DE.
- (B) Semigroup/cosine family.
- (C) Operator A.

Described: (A) \longleftrightarrow (B). To do: (B) \longleftrightarrow (C).

イロト 不得 トイヨト イヨト 二日

From semigroup/cosine families to generators

• Given $\{T(t), t \ge 0\}$ such that $T(t+s) = T(s)T(s), s, t \ge 0$ and $\lim_{t\to 0} T(t)f = f$, we define

$$Af = \lim_{t \to 0} t^{-1}(T(t)f - f)$$

for f (composing A's domain), for which this limit exists. • Given $\{C(t), t \in \mathbb{R}\}$ s.t. 2C(s)C(s) = C(t+s) + C(t-s), $s, t \in \mathbb{R}$ and $\lim_{t\to 0} C(t)f = f$, we define

$$Af = \lim_{t \to 0} 2t^{-2} (C(t)f - f)$$

for f (composing A's domain), for which this limit exists.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generation theorem for semigroups

Hille-Yosida-F-P-M Theorem

The exponent of A exists and satisfies $||e^{tA}|| \leq M e^{\omega t}$, $t \ge 0$ iff A is closed and densely defined, and

$$\left\|\frac{\mathrm{d}^n}{\mathrm{d}\lambda^n}(\lambda-A)^{-1}\right\| \leqslant \frac{Mn!}{(\lambda-\omega)^{n+1}}, \qquad n \geqslant 0, \lambda > \omega$$

Generation theorem for semigroups

Hille-Yosida-F-P-M Theorem

The exponent of A exists and satisfies $||e^{tA}|| \leq M e^{\omega t}$, $t \ge 0$ iff A is closed and densely defined, and

$$\left\|\frac{\mathrm{d}^{n}}{\mathrm{d}\lambda^{n}}(\lambda-A)^{-1}\right\| \leqslant \frac{Mn!}{(\lambda-\omega)^{n+1}}, \qquad n \geqslant 0, \lambda > \omega$$

The last condition simplifies to

$$\left\| (\lambda - A)^{-n} \right\| \leq \frac{M}{(\lambda - \omega)^n}, \qquad n \geq 0, \lambda > \omega$$

and for M=1 and $\omega=0$, to

$$\|\lambda(\lambda-A)^{-1}\|\leqslant 1.$$

Checking this is from time to time doable — stochastic processes.

Elżbieta Ratajczyk & Adam Bobrowski

Łódź, 9.03.22 10 / 27

Generation theorem for cosine families

Sova and Da Prato-Giusti Theorem

A generates a cosine family which satisfies $\|C_A(t)\| \leq M e^{\omega|t|}, t \in \mathbb{R}$ iff A is closed and densely defined, and

$$\left\|\frac{\mathrm{d}^n}{\mathrm{d}\lambda^n}[\lambda(\lambda^2-A)^{-1}]\right\| \leqslant \frac{Mn!}{(\lambda-\omega)^{n+1}}, \qquad n \geqslant 0, \lambda > \omega$$

Łódź, 9.03.22

11/27

Elżbieta Ratajczyk & Adam Bobrowski

Generation theorem for cosine families

Sova and Da Prato-Giusti Theorem

A generates a cosine family which satisfies $\|C_A(t)\| \leq M e^{\omega|t|}, t \in \mathbb{R}$ iff A is closed and densely defined, and

$$\left\|\frac{\mathrm{d}^n}{\mathrm{d}\lambda^n}[\lambda(\lambda^2-A)^{-1}]\right\| \leqslant \frac{Mn!}{(\lambda-\omega)^{n+1}}, \qquad n \geqslant 0, \lambda > \omega$$

The last condition DOES NOT simplify, and checking it is almost never doable.

Hence, need for other methods.

Subspace semigroups/cosine families

- Given: a semigroup $\{T(t), t \ge 0\}$ in \mathbb{F} with generator A
- \bullet Assumption: $\mathbb{F}_0 \subset \mathbb{F}$ is left invariant
- Then $\{T(t)_{|\mathbb{F}_0}, t \ge 0\}$ is a semigroup in \mathbb{F}_0 with generator

 $A_0 := A_{|D(A) \cap \mathbb{F}_0}.$

イロト 不得下 イヨト イヨト 二日

Isomorphic/similar semigroups/cosine families

- Isomorphic Banach spaces $\mathbb F$ and $\mathbb G\colon$ isomorphism $\mathcal I:\mathbb F\to\mathbb G,$
- Generator A of a semigroup in \mathbb{F} ;

イロト 不得 トイヨト イヨト 二日

Isomorphic/similar semigroups/cosine families

- \bullet Isomorphic Banach spaces $\mathbb F$ and $\mathbb G\colon$ isomorphism $\mathcal I:\mathbb F\to\mathbb G,$
- Generator A of a semigroup in \mathbb{F} ;
- Then $\{\mathcal{I}e^{tA}\mathcal{I}^{-1}, t \ge 0\}$ a semigroup in \mathbb{G} ;
- Its generator is 'the image of A in \mathbb{G} ':

 $D(B) = \mathcal{I}D(A)$ and $B\mathcal{I}f = \mathcal{I}Af, f \in D(A)$.

Isomorphic/similar semigroups/cosine families

- \bullet Isomorphic Banach spaces $\mathbb F$ and $\mathbb G\colon$ isomorphism $\mathcal I:\mathbb F\to\mathbb G,$
- Generator A of a semigroup in \mathbb{F} ;
- Then $\{\mathcal{I}e^{tA}\mathcal{I}^{-1}, t \ge 0\}$ a semigroup in \mathbb{G} ;
- Its generator is 'the image of A in \mathbb{G} ':

 $D(B) = \mathcal{I}D(A)$ and $B\mathcal{I}f = \mathcal{I}Af, f \in D(A)$.

(Solving the heat equation by Fourier series ...)

Feller boundary conditions for 1D Laplace operator

Work in $C[0,\infty]$:

Candidates for generators:

Af = f'' for twice continuously differentiable functions with $f'' \in C[0, \infty]$, satisfying Feller b.c.

$$\alpha f''(\mathbf{0}) - \beta f'(\mathbf{0}) + \gamma f(\mathbf{0}) - \delta \int_{\mathbb{R}^+_*} f \, \mathrm{d}\mu = \mathbf{0},$$

where μ – a probability measure on $\mathbb{R}^+_* = (0, \infty)$, and α, β, γ and δ – non-negative constants with $\gamma \ge \delta$ and $\alpha + \beta > 0$.

Interpretation of constants. Traditional approach – obstacles.

イロト イヨト イヨト

Solving differential equations ...

George (György) Pólya

In order to solve a differential equation you look at it till a solution occurs to you

A (10) N (10) N (10)

Idea:

use what you know from a larger space.

Use basic cosine family in $C[-\infty,\infty]$,

$$C(t)f(x) = \frac{1}{2}\left(f(x+t) + f(x-t)\right), \qquad x, t \in \mathbb{R}.$$

generated by $\frac{d^2}{dx^2}$.

A D F A B F A B F A B

Idea:

use what you know from a larger space.

Use basic cosine family in $C[-\infty,\infty]$,

$$C(t)f(x) = \frac{1}{2}\left(f(x+t) + f(x-t)\right), \qquad x,t \in \mathbb{R}.$$

generated by $\frac{d^2}{dx^2}$. Find a subspace of $C[-\infty,\infty]$ that is invariant under the basic cosine family and isomorphic to $C[0,\infty]$.

A D F A B F A B F A B

Neumann boundary condition: f'(0) = 0.

< □ > < 同 > < 回 > < 回 > < 回 >

Extend:
$$\widetilde{f}(-x) = f(x)$$

< □ > < 同 > < 回 > < 回 > < 回 >

Łódź, 9.03.22 17 / 27

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Abstract Kelvin Formula:

 $C_N(t) = RC(t)Ef.$

Side notes:

- $2t^{-2}(C_N(t)f f) = 2Rt^{-2}(C(t)Ef Ef).$
- For $f \in C^2[0,\infty]$, its even extension belongs to $C^2[-\infty,\infty]$ iff f'(0) = 0.
- Operator R obvious. Operator E not so obvious.
- How to connect a b.c. with extension operator?

イロト 不得下 イヨト イヨト 二日

Other b.c.

- Dirichlet b.c.? Same procedure just use odd extensions.
- Robin boundary condition: f'(0) = γf(0)? Same. Different extension.

A D F A B F A B F A B

Other b.c.

- Dirichlet b.c.? Same procedure just use odd extensions.
- Robin boundary condition: f'(0) = γf(0)? Same. Different extension.

Abstract Kelvin Formula:

$$C_{\gamma}(t) = RC(t)Ef.$$

< □ > < □ > < □ > < □ > < □ > < □ >

Other b.c.

- Dirichlet b.c.? Same procedure just use odd extensions.
- Robin boundary condition: f'(0) = γf(0)? Same. Different extension.

Abstract Kelvin Formula:

$$C_{\gamma}(t) = RC(t)Ef.$$

Works for all b.c. presented above (A.B. circa 2010)

Elżbieta Ratajczyk & Adam Bobrowski

Given

- basic cosine family in $C[-\infty,\infty]$ with generator $A = \frac{d^2}{dx^2}$
- $\mathbb{F}_0 \subset C[-\infty,\infty]$ invariant; cosine family in \mathbb{F}_0 has generator $A_0 = A_{|D(A) \cap \mathbb{F}_0}$
- isomorphism $E \colon C[0,\infty] \to \mathbb{F}_0$, $E^{-1} = R$

イロト イポト イヨト イヨト 二日

Given

- basic cosine family in $C[-\infty,\infty]$ with generator $A = \frac{d^2}{dx^2}$
- $\mathbb{F}_0 \subset C[-\infty,\infty]$ invariant; cosine family in \mathbb{F}_0 has generator $A_0 = A_{|D(A) \cap \mathbb{F}_0}$
- isomorphism $E \colon C[0,\infty] \to \mathbb{F}_0$, $E^{-1} = R$

イロト イポト イヨト イヨト 二日

Given

- basic cosine family in $C[-\infty,\infty]$ with generator $A = \frac{d^2}{dx^2}$
- $\mathbb{F}_0 \subset C[-\infty, \infty]$ invariant; cosine family in \mathbb{F}_0 has generator $A_0 = A_{|D(A) \cap \mathbb{F}_0}$
- isomorphism $E \colon C[0,\infty] \to \mathbb{F}_0$, $E^{-1} = R$

Result: the cosine family in $C[0,\infty]$ generated by

 $B = RA_0E$ on the domain $D(B) = RD(A_0)$.

Why this approach works?

Key ingredients:

- Invariant subspace of $C[-\infty,\infty]$ which is isomorphic to $C[0,\infty]$;
- 2 The related extension operator E.
- Solution The invariant subspace intimately related to a b.c.

Boundary condition \implies invariant subspace

Questions (June 2021)

• $C_{\gamma}^{R} \subset C[-\infty,\infty]$ invariant for the basic cosine family

$$C^R_{\gamma} \coloneqq \{f; f(-x) = f(x) - 2\gamma \int_0^x \mathrm{e}^{-\gamma(x-y)} f(y) \,\mathrm{d}y, x \ge 0\}.$$

2 Is C_{γ}^{R} complemented by another invariant subspace?

$$\mathcal{C}[-\infty,\infty] = \mathcal{C}_{ ext{even}} \oplus \mathcal{C}_{ ext{odd}}; \qquad \mathcal{C}[-\infty,\infty] = \mathcal{C}_{\gamma}^{\mathcal{R}} \oplus X ~??????$$

San X be related to a boundary condition?

イロト 不得 トイヨト イヨト 二日

Questions (June 2021)

• $C_{\gamma}^{R} \subset C[-\infty,\infty]$ invariant for the basic cosine family

$$C_{\gamma}^{R} \coloneqq \{f; f(-x) = f(x) - 2\gamma \int_{0}^{x} e^{-\gamma(x-y)} f(y) \,\mathrm{d}y, x \ge 0\}.$$

2 Is C_{γ}^{R} complemented by another invariant subspace?

$$\mathcal{C}[-\infty,\infty] = \mathcal{C}_{even} \oplus \mathcal{C}_{odd}; \qquad \mathcal{C}[-\infty,\infty] = \mathcal{C}_{\gamma}^{\mathcal{R}} \oplus X ??????$$

- San X be related to a boundary condition?
- Output: Instant in the second state of the projection of the projection of the projection of the project of

$$Pf(x) = \begin{cases} f(x), & x \ge 0, \\ f(-x) - 2\gamma \int_0^{-x} e^{-\gamma(-x-y)} f(y) \, \mathrm{d}y, & x < 0 \end{cases}$$

is not very informative ...)

(日)

An idea (mimic decomp. into even and odd parts):

Given $f \in C[-\infty,\infty]$, find for each N > 0, a $g \in C_{\gamma}^{R}$ that minimizes

$$\int_{-N}^{N} [f(x) - g(x)]^2 \,\mathrm{d}x.$$

イロト 不得 トイヨト イヨト 二日

An idea (mimic decomp. into even and odd parts):

Given $f \in C[-\infty,\infty]$, find for each N > 0, a $g \in C_{\gamma}^{R}$ that minimizes

$$\int_{-N}^{N} [f(x) - g(x)]^2 \,\mathrm{d}x.$$

This gives g of the form

$$g(x) = (g(0) - f(0))e^{\gamma x} + f_{even}(x) + \gamma \int_0^x e^{\gamma(x-y)} f(-y) \, \mathrm{d}y, x \in [0, N].$$

イロト 不得下 イヨト イヨト

An idea (mimic decomp. into even and odd parts):

Given $f \in C[-\infty,\infty]$, find for each N > 0, a $g \in C_{\gamma}^{R}$ that minimizes

$$\int_{-N}^{N} [f(x) - g(x)]^2 \,\mathrm{d}x.$$

This gives g of the form

$$g(x) = (g(0) - f(0))e^{\gamma x} + f_{even}(x) + \gamma \int_0^x e^{\gamma(x-y)} f(-y) \, \mathrm{d}y, x \in [0, N].$$

Since we want (a) $\lim_{x \to \infty} g(x)$ to exist, and (b) $g \in C_{\gamma}^R$, this leads to

$$P_{\gamma}f(x) \coloneqq g(x) \coloneqq f_{\mathrm{even}}(x) - \gamma \mathrm{e}^{\gamma x} \int_{x}^{\infty} \mathrm{e}^{-\gamma y} f(-y) \, \mathrm{d}y, \quad x \in \mathbb{R}.$$

イロト イポト イヨト イヨト 二日

Results:

Theorem 1

 P_{γ} is a projection on C_{γ}^{R}

Theorem 2

 $\mathcal{Q}_\gamma\coloneqq \mathcal{I}-\mathcal{P}_\gamma$ is a projection on

$$C_{\gamma}^{\mathsf{F}} \coloneqq \{f; f(-x) = -f(x) + 2\gamma \int_{0}^{x} \mathrm{e}^{-\gamma(x-y)} f(y) \,\mathrm{d}y + 2f(0) \mathrm{e}^{-\gamma x}, x \ge 0\}$$

 C_{γ}^{F} is related to the sticky boundary condition $f''(0) = \gamma f'(0)$ and in particular is invariant!

Theorem 3

$$egin{aligned} C[-\infty,\infty] &= C_{\gamma}^{R} \oplus C_{\gamma}^{F} ext{, that is,} \\ f'(0) &= \gamma f(0) & \perp & f''(0) = \gamma f'(0). \end{aligned}$$

Examples of Robin and Feller extensions

Dependence on parameter $\gamma:$

About projections

N. L. Carothers 2004

outside of the Hilbert space setting, nontrivial projections are often hard to come by

$$\begin{split} P_{\gamma}f(x) &:= f_{\text{even}}(x) - \gamma \mathrm{e}^{\gamma x} \int_{x}^{\infty} \mathrm{e}^{-\gamma y} f(-y) \, \mathrm{d}y, \\ Q_{\gamma}f(x) &:= f_{\text{odd}}(x) + \gamma \mathrm{e}^{\gamma x} \int_{x}^{\infty} \mathrm{e}^{-\gamma y} f(-y) \, \mathrm{d}y, \qquad x \in \mathbb{R}. \end{split}$$

Properties of $\gamma \mapsto P_{\gamma}$

(a) It is continuous in the uniform operator topology for γ ∈ (0,∞).
(b) At γ = ∞: lim_{γ→∞} P_γ = P_∞ := Q₀ in the strong topology.
(c) P_γ from projection on even to projection on odd; Q_γ in the other direction but their paths never cross!

Thinking of Ukraine

3

27 / 27

Łódź, 9.03.22

Elżbieta Ratajczyk & Adam Bobrowski