Positive periodic solutions to the system of nonlinear delay differential equations

Robert Hakl

Considering the system of nonlinear delay differential equations

$$u_{i}'(t) = -d_{i}(t)u_{i}(t) - H_{i}(t)u_{i}(t - \sigma_{i}(t)) + \sum_{j=1}^{n} a_{ij}(t)u_{j}(t - \nu_{ij}(t)) + \lambda_{i}\sum_{k=1}^{N} P_{ik}(t)u_{i}(t - \tau_{ik}(t))f_{ik}(u_{i}(t - \mu_{ik}(t))) \quad \text{for a. e. } t \in \mathbb{R} \quad (i = 1, \dots, n) \quad (1)$$

with ω -periodic coefficients and parameters $\lambda_i \ge 0$ (i = 1, ..., n), it is shown that (under suitable conditions) there exists a continuous (n - 1)-surface $S \subset \mathbb{R}^n$ that splits the non-negative orthant of parameters $(\lambda_i)_{i=1}^n$ into two parts: the first part Λ_1 is bounded, contains the origin, and the only ω -periodic solution to the system (1) is a zero solution provided $(\lambda_i)_{i=1}^n \in \Lambda_1$; the second part Λ_2 is unbounded and it consists of parameters for which the system (1) has a positive ω -periodic solution.

<u>Robert Hakl</u>, Institute of Mathematics, Czech Academy of Sciences e-mail : hakl@ipm.cz