Optimal existence results for the Keller–Segel chemotaxis system

Piotr Biler

Abstract

The minimal chemotaxis system consists of two parabolic equations

$$u_t - \Delta u + \nabla \cdot (u \nabla \varphi) = 0, \quad \tau \varphi_t = \Delta \varphi + u,$$

and describes the evolution of the density population u under diffusion and attraction directed by gradient $\nabla \varphi$ of the chemoattractant density in the whole space \mathbb{R}^d . The question: What is the minimal regularity and what is the maximal size of initial data leading to global-in-time solutions? is addressed in the higher dimensional case $d \ge 3$. At the same time conditions for the finite time blowup of solutions are found. The answers depend in a sensitive way on the size of the coefficient τ varying from 0 (the parabolicelliptic case) to ∞ in the fully parabolic case.

<u>Piotr Biler</u>, Mathematical Institute, University of Wrocław e-mail:piotr.biler@math.uni.wroc.pl