QUASILINEAR REACTION-DIFFUSION EQUATION WITH DISCONTINUOUS DIFFUSIVITY AND BISTABLE REACTION TERM

Michaela Zahradníková

joint work with Pavel Drábek (University of West Bohemia, Pilsen, Czech Republic)

We study the existence and properties of travelling wave solutions of the reactiondiffusion equation

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(d(u) \left| \frac{\partial u}{\partial x} \right|^{p-2} \frac{\partial u}{\partial x} \right) + g(u), \quad (x,t) \in \mathbb{R} \times [0,+\infty)$$
(1)

with p > 1 and a continuous bistable reaction term g. The diffusion coefficient d is only piecewise continuous and allows for degenerations as well as singularities near 0 and 1.

Our approach is based on the investigation of an equivalent first order problem and provides a broad theoretical background for mathematical treatment of various phenomena in population dynamics, chemistry and physics. We prove the existence of a unique speed of propagation such that (1) possesses a travelling wave solution which is a nonsmooth function in general and unique up to translation. Assuming power-type behaviour of the reaction and diffusion term near equilibria, we also discuss asymptotic behaviour of the profile.

<u>Michaela Zahradníková</u>, University of West Bohemia, Pilsen, Czech Republic e-mail : mzahrad@kma.zcu.cz