Existence and Non-Existence of solutions of third order EQUATIONS COUPLED TO THREE-POINT BOUNDARY CONDITIONS.

Alberto Cabada

This is a joint work with Prof. Nikolay D. Dimitrov (University of Ruse, Bulgaria).

In this talk, we present some results, obtained in [1], of existence and non-existence of solutions of the third order nonlinear one-parameter differential equation

$$
\begin{equation*}
u^{\prime \prime \prime}(t)=-\lambda p(t) f(u(t)), \text { a.e. } t \in[0,1], \tag{1}
\end{equation*}
$$

coupled to the three-point boundary value conditions

$$
\begin{equation*}
u(0)=0, u^{\prime \prime}(\eta)=\alpha u^{\prime}(1), u^{\prime}(1)=\beta u(1), \tag{2}
\end{equation*}
$$

with $0 \leqslant \alpha \leqslant 1,0 \leqslant \beta<\frac{2}{2-\alpha}$ and $0 \leqslant \eta \leqslant \frac{1}{3}$.
We construct its related Green's function and prove that it changes sign on its square of definition, but it has (different) constant sign whenever $0 \leqslant s<\eta$ or $\eta<s \leqslant 1$.

By assuming suitable sign conditions on the nonlinear part of the equation and under additional conditions on the asymptotic behavior of function f, by defining suitable cones on $C^{1}([0,1])$, we deduce, for a particular set of values of the parameter λ, the existence of positive and increasing solutions on the whole interval of definition which are convex on $[0, \eta]$. The results hold by means of degree theory.
[1] A. Cabada, N. D. Dimitrov, Third-order differential equations with three-point boundary conditions. Open Math. 19 (2021), 1, 11-31.

Alberto Cabada, CITMAga, 15782 Santiago de Compostela, Galicia, Spain, and Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, Galicia, Spain. e-mail : alberto.cabada@usc.gal

