Connected sets of periodic solutions of autonomous Hamiltonian systems

Sławomir Rybicki

Abstract. Let $\Omega \subset \mathbb{R}^{2N}$ be open and let $H \in C^2(\mathrm{cl}(\Omega), \mathbb{R})$ be such that $H'^{-1}(0) \cap \Omega = H'^{-1}(0) \cap \mathrm{cl}(\Omega)$ is finite. The aim of my lecture is to present the global bifurcation theorem for 2π -periodic solutions of autonomous Hamiltonian system of the form

$$\dot{x}(t) = \lambda J H'(x(t)), \tag{1}$$

where $\lambda > 0$.

More precisely speaking, we will formulate sufficient and necessary conditions for the existence of connected sets of non-stationary 2π -periodic solutions of the system (1) bifurcating from the set $H'^{-1}(0) \times (0, +\infty) \subset C_{2\pi}([0, 2\pi], \Omega) \times (0, +\infty)$.

To illustrate the abstract results we will apply them to some celestial mechanics inspired Hamiltonian systems.

Faculty of Mathematics and Computer Science of Nicolaus Copernicus University in Toruń e-mail:rybicki@mat.umk.pl