A GEOMETRIC METHOD FOR INFINITE-DIMENSIONAL CHAOS: SYMBOLIC DYnamics for the Kuramoto-Sivashinsky PDE on the line

Piotr Zgliczyński

We discuss a method for rigorous study of dynamics of dissipative PDEs on the torus (i.e. assuming periodic boundary conditions).

As an example we consider the Kuramoto-Sivashinsky PDE on the line

$$
\begin{equation*}
u_{t}=-\nu u_{x x x x}-u_{x x}+\left(u^{2}\right)_{x}, \quad \nu>0 \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}, u(t, x) \in \mathbb{R}$ and we impose odd and periodic boundary conditions

$$
\begin{equation*}
u(t, x)=-u(t,-x), \quad u(t, x)=u(t, x+2 \pi) . \tag{2}
\end{equation*}
$$

and parameter $\nu=0.1212$.
We give a computer-assisted proof of the existence of symbolic dynamics, countable infinity of periodic orbits with arbitrary large periods and homo- and heteroclinic connections between them. The proof combines geometric tools from dynamics with rigorous numerics for dissipative PDEs.

This is a joint work with Daniel Wilczak.

Piotr Zgliczyński, Jagiellonian University
e-mail: umzglicz@cyf-kr.edu.pl

